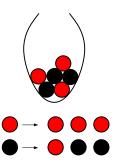
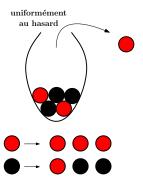
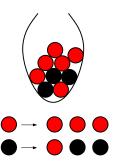
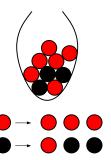
Urnes de Pólya: approches probabilistes

– Cécile Mailler –(Prob-L@B – Université de Bath)



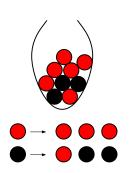






Matrice de remplacement :

$$R = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$$



Matrice de remplacement :

$$R = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$$

Un processus de Markov

$$U(n) = \begin{pmatrix} U_1(n) \\ U_2(n) \end{pmatrix},$$

où $U_i(n)$ est le nombre de boules de couleur i dans l'urne au temps n.

Deux paramètres :

- ullet le vecteur de composition initiale U(0)
- la matrice de remplacement $R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

 \rightarrow même chose avec $d \ge 2$ couleurs.

Comment se comporte U(n)? notamment quand $n \to +\infty$?

A priori, la réponse dépend de :

- la composition initiale U(0)
- la matrice de remplacement *R*.

Comment se comporte U(n)? notamment quand $n \to +\infty$?

A priori, la réponse dépend de :

- la composition initiale U(0)
- la matrice de remplacement R.

Dans ce cours:

- Urnes de Pólya classiques et martingales
 - L'urne "originelle" de Pólya et Eggenberger
 - Le cas "irréductible" : une loi des grands nombres...
 - ... un "théorème central limite"
 - ... et un exemple d'application : le profil de l'arbre aléatoire récursif
- Urnes à tirage multiple et approximation stochastique
 - Un exemple d'application : le réseau aléatoire récursif
 - L'approximation stochastique
 - Une loi des grands nombres et un théorème central limite
- Urnes de Pólya à une infinité de couleurs
 - Motivation
 - Étude par approximation stochastique
 - Une autre approche

Comment se comporte U(n)? notamment quand $n \to +\infty$?

A priori, la réponse dépend de :

- la composition initiale U(0)
- la matrice de remplacement R.

Dans ce cours :

- Urnes de Pólya classiques et martingales
 - L'urne "originelle" de Pólya et Eggenberger
 - Le cas "irréductible" : une loi des grands nombres...
 - ... un "théorème central limite"
 - ... et un exemple d'application : le profil de l'arbre aléatoire récursif
- Urnes à tirage multiple et approximation stochastique
 - Un exemple d'application : le réseau aléatoire récursif
 - L'approximation stochastique
 - Une loi des grands nombres et un théorème central limite
- Urnes de Pólya à une infinité de couleurs

Dans tout le cours, on ne s'intéresse qu'aux urnes telles que $\|U(n)\|_1$ (= # total de boules au temps n) $\to \infty$.

Urnes de Pólya classiques et martingales

Pour un cours moins vite fait : voir, e.g., le cours de Brigitte Chauvin, Alea 2002.

[http://chauvin.perso.math.cnrs.fr/martingales.ps]

Définition:

Une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une martingale ssi, pour tout $n\geq 0$,

$$\mathbb{E}_n[M_{n+1}] := \mathbb{E}[M_{n+1}|M_0,\ldots,M_n] = M_n.$$

L'espérance conditionnelle vérifie ces trois propriétés :

- ② Si X = f(Y), alors $\mathbb{E}[X|Y] = X$. (Y est "mesurable" par rapport à X.)
- 3 Si X est indépendante Y, alors $\mathbb{E}[X|Y] = \mathbb{E}X$.

Pour un cours moins vite fait : voir, e.g., le cours de Brigitte Chauvin, Alea 2002.

[http://chauvin.perso.math.cnrs.fr/martingales.ps]

Définition:

Une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une martingale ssi, pour tout $n\geq 0$,

$$\mathbb{E}_n[M_{n+1}] := \mathbb{E}[M_{n+1}|M_0,\ldots,M_n] = M_n.$$

L'espérance conditionnelle vérifie ces trois propriétés :

- ② Si X = f(Y), alors $\mathbb{E}[X|Y] = X$. (Y est "mesurable" par rapport à X.)
- 3 Si X est indépendante Y, alors $\mathbb{E}[X|Y] = \mathbb{E}X$.

Exemple : la marche aléatoire simple

Supposons que $M_n = \sum_{i=1}^n \Delta_i$, où les Δ_i sont i.i.d. ± 1 avec proba 1/2:

Pour un cours moins vite fait : voir, e.g., le cours de Brigitte Chauvin, Alea 2002.

[http://chauvin.perso.math.cnrs.fr/martingales.ps]

Définition:

Une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une martingale ssi, pour tout $n\geq 0$,

$$\mathbb{E}_n[M_{n+1}] := \mathbb{E}[M_{n+1}|M_0,\ldots,M_n] = M_n.$$

L'espérance conditionnelle vérifie ces trois propriétés :

- Si X = f(Y), alors $\mathbb{E}[X|Y] = X$. (Y est "mesurable" par rapport à X.)
- 3 Si X est indépendante Y, alors $\mathbb{E}[X|Y] = \mathbb{E}X$.

Exemple : la marche aléatoire simple

Supposons que $M_n = \sum_{i=1}^n \Delta_i$, où les Δ_i sont i.i.d. ± 1 avec proba $^1/_2$: on a :

$$\mathbb{E}_n\big[M_{n+1}\big] = \mathbb{E}_n\big[M_n + \Delta_{n+1}\big] = \mathbb{E}_n\big[M_n\big] + \mathbb{E}_n\big[\Delta_{n+1}\big]$$

Pour un cours moins vite fait : voir, e.g., le cours de Brigitte Chauvin, Alea 2002.

[http://chauvin.perso.math.cnrs.fr/martingales.ps]

Définition:

Une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une martingale ssi, pour tout $n\geq 0$,

$$\mathbb{E}_n[M_{n+1}] := \mathbb{E}[M_{n+1}|M_0,\ldots,M_n] = M_n.$$

L'espérance conditionnelle vérifie ces trois propriétés :

- Si X = f(Y), alors $\mathbb{E}[X|Y] = X$. (Y est "mesurable" par rapport à X.)
- 3 Si X est indépendante Y, alors $\mathbb{E}[X|Y] = \mathbb{E}X$.

Exemple : la marche aléatoire simple

Supposons que $M_n = \sum_{i=1}^n \Delta_i$, où les Δ_i sont i.i.d. ± 1 avec proba $^1/_2$: on a :

$$\mathbb{E}_n[M_{n+1}] = \mathbb{E}_n[M_n + \Delta_{n+1}] = \mathbb{E}_n[M_n] + \mathbb{E}_n[\Delta_{n+1}] = \frac{M_n}{N} + \mathbb{E}[\Delta_{n+1}]$$

Pour un cours moins vite fait : voir, e.g., le cours de Brigitte Chauvin, Alea 2002.

[http://chauvin.perso.math.cnrs.fr/martingales.ps]

Définition:

Une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une martingale ssi, pour tout $n\geq 0$,

$$\mathbb{E}_n[M_{n+1}] := \mathbb{E}[M_{n+1}|M_0,\ldots,M_n] = M_n.$$

L'espérance conditionnelle vérifie ces trois propriétés :

- Si X = f(Y), alors $\mathbb{E}[X|Y] = X$. (Y est "mesurable" par rapport à X.)
- 3 Si X est indépendante Y, alors $\mathbb{E}[X|Y] = \mathbb{E}X$.

Exemple : la marche aléatoire simple

Supposons que $M_n = \sum_{i=1}^n \Delta_i$, où les Δ_i sont i.i.d. ± 1 avec proba 1/2: on a :

$$\mathbb{E}_n\big[M_{n+1}\big] = \mathbb{E}_n\big[M_n + \Delta_{n+1}\big] = \mathbb{E}_n\big[M_n\big] + \mathbb{E}_n\big[\Delta_{n+1}\big] = M_n + \mathbb{E}\big[\Delta_{n+1}\big] = M_n \quad \Box$$

Propriétés dont on a besoin dans ce cours

- Une martingale positive converge presque sûrement.
- Si $\sup_{n\geq 0} \|M_n\|^2 < \infty$ (on dit que M_n est "uniformément bornée dans L^2 "), alors M_n converge presque sûrement. [Théorèmes de Doob]

Cécile Mailler (Prob-L@B)

Propriétés dont on a besoin dans ce cours

- Une martingale positive converge presque sûrement.
- Si $\sup_{n\geq 0}\|M_n\|^2<\infty$ (on dit que M_n est "uniformément bornée dans L^2 "), alors M_n converge presque sûrement. [Théorèmes de Doob]
- Supposons que $\mathbb{E}\|M_n\|^2 < \infty$ $(\forall n)$; s'il existe $\alpha > 0$ tel que $\sup_{n \geq 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} M_i)^2] < +\infty$. Alors, $n^{-\alpha}M_n \overset{p.s.}{\to} 0$. [Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]

Propriétés dont on a besoin dans ce cours

- Une martingale positive converge presque sûrement.
- Si $\sup_{n\geq 0}\|M_n\|^2<\infty$ (on dit que M_n est "uniformément bornée dans L^2 "), alors M_n converge presque sûrement. [Théorèmes de Doob]
- Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$; s'il existe $\alpha > 0$ tel que $\sup_{n \geq 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} M_i)^2] < +\infty$. Alors, $n^{-\alpha}M_n \overset{p.s.}{\to} 0$. [Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]
- Supposons que $\|M_0\| < \infty$ et $\sup_{n \ge 0} \|M_{n+1} M_n\| < \infty$ p.s. Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} M_n)^2]$ et $\tau_X = \min\{m \ge 0: \sum_{i=0}^m \sigma_i^2 \ge X\}$. Alors, en distribution quand $X \to \infty$,

$$\frac{M_{\tau_X}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1).$$

[Théorème de la limite centrale pour martingales : voir Duflo'97 Th. 2.1.19]

On prend $R = \mathrm{Id}_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

La distribution de Dirichlet :

Soit $\Sigma = \{(x_1, \dots, x_d) \in [0, 1]^d : \sum_{i=1}^d x_i\}$ le simplexe de dimension d. La densité de Dirichlet $(\alpha_1, \dots, \alpha_d)$ est donnée par

$$\frac{\Gamma(\nu_1+\cdots+\nu_d)}{\Gamma(\nu_1)\ldots\Gamma(\nu_d)}\prod_{i=1}^d X_j^{\nu_i-1}\mathrm{d}\Sigma(x_1,\ldots,x_d),$$

où dΣ est la mesure de Lebesgue sur Σ.

NB : Dirichlet(1, ..., 1) est la mesure uniforme sur Σ .

On prend $R = Id_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

Deux remarques :

- la limite est aléatoire (non déterministe)
- et elle dépend de la composition initiale de l'urne.

On prend $R = \mathrm{Id}_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

Preuve : Si $\xi(n+1)$:= couleur de la boule tirée au temps n+1, et e_i est le i-ème vecteur de la base canonique, alors

$$\mathbb{E}_n[U(n+1)] = U(n) + \mathbb{E}_n[\boldsymbol{e}_{\xi(n+1)}] = U(n) + \sum_{i=1}^d \frac{U_i(n)}{\sum_i U_i(n)} \boldsymbol{e}_i$$

On prend $R = Id_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

Preuve : Si $\xi(n+1)$:= couleur de la boule tirée au temps n+1, et e_i est le i-ème vecteur de la base canonique, alors

$$\mathbb{E}_{n}[U(n+1)] = U(n) + \mathbb{E}_{n}[\mathbf{e}_{\xi(n+1)}] = U(n) + \sum_{i=1}^{d} \frac{U_{i}(n)}{\sum_{j} U_{j}(n)} \mathbf{e}_{i}$$

$$= \left(1 + \frac{1}{\|U(0)\|_{1} + n}\right) U(n) = \frac{\|U(0)\|_{1} + n + 1}{\|U(0)\|_{1} + n} U(n).$$

On prend $R = Id_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

Preuve : Si $\xi(n+1)$:= couleur de la boule tirée au temps n+1, et e_i est le i-ème vecteur de la base canonique, alors

$$\mathbb{E}_{n}[U(n+1)] = U(n) + \mathbb{E}_{n}[\mathbf{e}_{\xi(n+1)}] = U(n) + \sum_{i=1}^{d} \frac{U_{i}(n)}{\sum_{j} U_{j}(n)} \mathbf{e}_{i}$$

$$= \left(1 + \frac{1}{\|U(0)\|_{1} + n}\right) U(n) = \frac{\|U(0)\|_{1} + n + 1}{\|U(0)\|_{1} + n} U(n).$$

Donc $M_n := U(n)/(\|U(0)\|_1 + n)$ est une martingale. Comme elle est positive, elle converge p.s. vers une limite que l'on appelle Δ .

On prend $R = \mathrm{Id}_d$, et $U(0) = {}^t(\alpha_1, \ldots, \alpha_d)$.

Théorème:

[Eggenberger & Pólya '23]

Presque sûrement quand $n \to \infty$, $U(n)/n \to \Delta$, où Δ est une variable aléatoire de loi Dirichlet $(\alpha_1, \dots, \alpha_d)$.

Preuve : On a donc montré que $U(n)/n \rightarrow \Delta$ p.s.

Pour déterminer la distribution de Δ , on peut calculer les limites des moments de U(n)/n et montrer qu'elles sont égales aux moments de la Dirichlet.

voir, e.g., l'appendice de [Chauvin, Mailler, Pouyanne, 2015]

Un autre cas : quand R est irréductible

Irréducibilité

La matrice R est irréductible.

 \Rightarrow le rayon spectral de R en est une valeur propre simple.

Positivité

- $\sum_{i=1}^{d} U_i(0) > 0$,
- $R_{i,j} \geq 0 \ (\forall i,j)$
- $R_{i,i} \geq -1 \ (\forall i)$.

Théorème:

[Athreya & Karlin '68]

Si $(U(n))_{n\geq 0}$ est positive et irréductible, alors

$$U(n)/n \rightarrow v_1$$
, p.s.

où v_1 est un vecteur propre à coordonnées positives de tR associé à λ_1 .

Deux remarques :

"Loi des Grands Nombres"

- la limite est déterministe
- elle ne dépend pas de la composition initiale.

Le cas irréductible : preuve de la LGN

Pour cette preuve, on se réduit au cas d=2 et $\|R_i\|_1 = S$ pour tout $1 \le i \le d$ (cas "balancé", ou "équilibré").

 $\xi(n+1)$ = couleur de la boule tirée au temps n+1, R_i = i-ème ligne de R

On a
$$\mathbb{E}_{n}[U(n+1)] = U(n) + \mathbb{E}_{n}[R_{\xi(n+1)}] = U(n) + \sum_{i=1}^{a} \frac{U_{i}(n)}{\sum_{j} U_{j}(n)} R_{i}$$

= $\left(\operatorname{Id} + \frac{{}^{t}R}{\|U(0)\|_{1} + nS} \right) U(n)$.

Le cas irréductible : preuve de la LGN

Pour cette preuve, on se réduit au cas d=2 et $||R_i||_1 = S$ pour tout $1 \le i \le d$ (cas "balancé", ou "équilibré").

 $\xi(n+1)$ = couleur de la boule tirée au temps n+1, R_i = i-ème ligne de R

On a
$$\mathbb{E}_{n}[U(n+1)] = U(n) + \mathbb{E}_{n}[R_{\xi(n+1)}] = U(n) + \sum_{i=1}^{a} \frac{U_{i}(n)}{\sum_{j} U_{j}(n)} R_{i}$$

= $\left(\operatorname{Id} + \frac{{}^{t}R}{\|U(0)\|_{1} + nS} \right) U(n)$.

Donc $\prod_{i=0}^{n-1} \left(\operatorname{Id} + \frac{t_R}{\|U(0)\|_1 + iS} \right)^{-1} U(n) \in \mathbb{R}^2$ est une martingale.

Le cas irréductible : preuve de la LGN

Pour cette preuve, on se réduit au cas d=2 et $||R_i||_1 = S$ pour tout $1 \le i \le d$ (cas "balancé", ou "équilibré").

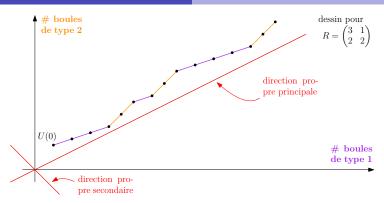
 $\xi(n+1)$ = couleur de la boule tirée au temps n+1, R_i = i-ème ligne de R

On a
$$\mathbb{E}_{n}[U(n+1)] = U(n) + \mathbb{E}_{n}[R_{\xi(n+1)}] = U(n) + \sum_{i=1}^{a} \frac{U_{i}(n)}{\sum_{j} U_{j}(n)} R_{i}$$

= $\left(\operatorname{Id} + \frac{{}^{t}R}{\|U(0)\|_{1} + nS} \right) U(n)$.

Donc $\prod_{i=0}^{n-1} \left(\operatorname{Id} + \frac{{}^t R}{\|U(0)\|_1 + iS} \right)^{-1} U(n) \in \mathbb{R}^2$ est une martingale.

On projète sur les deux axes propres pour obtenir deux martingales réelles.



- On peut choisir le premier vecteur propre v_1 tel que $\pi_1 U(n) = \pi_1 U(0) + n \quad (\forall n)$.
- $M_n := \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2 U(n)$ est une martingale.

(S= première valeur propre de R) (m= seconde valeur propre de R)

[Loi des grands nombres pour martingales : voir Duflo'97. Th. 1.3.15]

Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$. S'il existe $\alpha > 0$ tel que $\sup_{n>1} n^{-\alpha} \sum_{i=1}^n \mathbb{E}[(M_{i+1} - M_i)^2] < +\infty$, alors, $n^{-\alpha}M_n \stackrel{p.s.}{\rightarrow} 0$.

$$\mathbb{E}\left[\left(M_{n+1} - M_{n}\right)^{2}\right] = \prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_{1} + iS}\right)^{-2}$$

$$\mathbb{E}\left[\left(\pi_{2}U(n+1) - \left(1 + \frac{m}{\|U(0)\|_{1} + nS}\right)\pi_{2}U(n)\right)^{2}\right]$$

[Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]

Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$. S'il existe $\alpha > 0$ tel que $\sup_{n \geq 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} - M_i)^2] < +\infty$, alors, $n^{-\alpha}M_n \overset{p.s.}{\to} 0$.

$$\mathbb{E}\left[\left(M_{n+1} - M_{n}\right)^{2}\right] = \prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_{1} + iS}\right)^{2}$$

$$\mathbb{E}\left[\left(\pi_{2}U(n+1) - \left(1 + \frac{m}{\|U(0)\|_{1} + nS}\right)\pi_{2}U(n)\right)^{2}\right]$$

On a
$$\prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_{1} + iS} \right)^{-2} = \exp\left(-2 \sum_{j=0}^{n} \log\left(1 + \frac{m}{\|U(0)\|_{1} + iS} \right) \right)$$

$$\sim \exp\left(-2 \sum_{j=0}^{n} \frac{m}{\|U(0)\|_{1} + iS} \right)$$

$$\sim \exp\left(-\left(\frac{2m}{s} \right) \log n \right) \sim n^{-2m/s} .$$

[Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]

Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$. S'il existe $\alpha > 0$ tel que $\sup_{n \ge 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} - M_i)^2] < +\infty$, alors, $n^{-\alpha}M_n \overset{p.s.}{\to} 0$.

$$\mathbb{E}\left[\left(M_{n+1} - M_{n}\right)^{2}\right] = \prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_{1} + iS}\right)^{-2} \sim n^{-2m/S}$$

$$\mathbb{E}\left[\left(\pi_{2}U(n+1) - \left(1 + \frac{m}{\|U(0)\|_{1} + nS}\right)\pi_{2}U(n)\right)^{2}\right]$$

[Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]

Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$. S'il existe $\alpha > 0$ tel que $\sup_{n \ge 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} - M_i)^2] < +\infty$, alors, $n^{-\alpha}M_n \stackrel{p.s.}{\to} 0$.

$$\mathbb{E}\left[\left(M_{n+1} - M_{n}\right)^{2}\right] = \prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_{1} + iS}\right)^{-2} \sim n^{-2m/S}$$

$$\mathbb{E}\left[\left(\pi_{2}U(n+1) - \left(1 + \frac{m}{\|U(0)\|_{1} + nS}\right)\pi_{2}U(n)\right)^{2}\right]$$

Et
$$\mathbb{E}\bigg[\bigg(\pi_2 U(n+1) - \bigg(1 + \frac{m}{\|U(0)\|_1 + nS}\bigg)\pi_2 U(n)\bigg)^2\bigg]$$

$$= \mathbb{E}\bigg[\bigg(\underbrace{\pi_2 U(n+1) - \pi_2 U(n)}_{\text{ne peut prendre que deux valeurs}} - \underbrace{\frac{m \pi_2 U(n)}{\|U(0)\|_1 + nS}}_{\text{borné}}\bigg)^2\bigg] = \mathcal{O}(1).$$

[Loi des grands nombres pour martingales : voir Duflo'97, Th. 1.3.15]

Supposons que $\mathbb{E}\|M_n\|^2 < \infty \ (\forall n)$. S'il existe $\alpha > 0$ tel que $\sup_{n \ge 1} n^{-\alpha} \sum_{i=0}^n \mathbb{E}[(M_{i+1} - M_i)^2] < +\infty$, alors, $n^{-\alpha}M_n \overset{p.s.}{\to} 0$.

$$\mathbb{E}[(M_{n+1} - M_n)^2] = \prod_{j=0}^{n} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-2} \sim n^{-2m/s}$$

$$\mathbb{E}\left[\left(\pi_2 U(n+1) - \left(1 + \frac{m}{\|U(0)\|_1 + nS}\right)\pi_2 U(n)\right)^2\right]$$

$$= \mathcal{O}(n^{-2m/s}).$$

Donc $n^{1-2m/s} \sum_{i=1}^{n} \mathbb{E}[(M_{i+1} - M_i)^2] = \mathcal{O}(n^{-m/2})$, et la LGN s'applique.

On obtient $n^{1-2m/s}M_n \to 0$, et, comme $\pi_2 U(n) \sim n^{m/s}M_n$,

$$\frac{\pi_2 U(n)}{n} \stackrel{p.s.}{\to} 0 \quad \text{et} \quad \frac{\pi_1 U(n)}{n} \stackrel{p.s.}{\to} v_1 \quad \Rightarrow \quad \frac{U(n)}{n} \stackrel{p.s.}{\to} v_1. \quad \Box$$

Un "théorème central limite"

 λ_2 = valeur propre de R ayant la plus grande partie réelle après λ_1

Théorème:

[Janson '04, Pouvanne '08]

Supposons que $(U(n))_{n>0}$ est positive et irréductible.

- Si Re(λ_2) < $\lambda_1/2$, alors $n^{-1/2}(U(n) nv_1) \stackrel{\sigma}{\to} \mathcal{N}(0, \Sigma^2)$.
- Si Re(λ_2) = $\lambda_1/2$, alors $(n \log n)^{-1/2} (U(n) nv_1) \stackrel{\sigma}{\to} \mathcal{N}(0, \Theta^2)$.

["petites" urnes]

• Si Re(λ_2) > $\lambda_1/2$, alors $n^{-2\text{Re}(\lambda_2)/\lambda_1}(U(n) - nv_1) \stackrel{a.s.}{\to} W$

["grandes" urnes]

Remarques:

• Σ^2 et Θ^2 sont explicites et ne dépendent pas de U(0)

[Janson '04]

• W n'est pas explicite, elle dépend de U(0), sa loi est inconnue

[Chauvin, Pouvanne, Sahnoun '11] [Chauvin, M., Pouyanne '15]

Le cas irréductible : preuve du TCL (d = 2)

$$M_n := \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

Est-ce qu'elle converge a.s.?

• malheureusement, elle n'est pas positive...

Le cas irréductible : preuve du TCL (d = 2)

$$M_n := \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

Est-ce qu'elle converge a.s.?

- malheureusement, elle n'est pas positive...
- est-elle bornée dans L2?

Lemme:

[Preuve : Exercice 2]

Pour tout $n \ge 1$, on note $\Delta M_n = M_n - M_{n-1}$ ("incréments"). Si $\sum_{n \ge 1} \mathbb{E}[(\Delta M_n)^2] < +\infty$, alors $(M_n)_{n \ge 0}$ est unif. bornée dans L^2 .

On a déjà montré que $\mathbb{E}[(\Delta M_{n+1})^2] = \mathcal{O}(n^{-2m/s})$. Donc, si $m > \frac{s}{2}$, alors

$$\sum_{n\geq 0}\mathbb{E}\big[\Delta M_{n+1}^2\big]<\infty.$$

 $(M_n)_{n\geq 0}$ est unif. bornée dans L^2 et donc converge p.s.

Le cas irréductible : preuve du TCL (d = 2)

Si $m > \frac{S}{2}$, alors il existe W une v.a. finie telle que

$$\underbrace{\prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1}}_{\sim n^{-m/S}} \pi_2(U(n)) \to W,$$
et donc $\pi_2 U(n) = n^{m/S} W(1 + o(1)).$

Cela conclut le cas des "grandes" urnes.

Le cas irréductible : preuve du TCL (d = 2)

Si $m > \frac{S}{2}$, alors il existe W une v.a. finie telle que

$$\underbrace{\prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1}}_{\sim n^{-m/S}} \pi_2(U(n)) \to W,$$
et donc $\pi_2 U(n) = n^{m/S} W(1 + o(1)).$

Cela conclut le cas des "grandes" urnes.

Que se passe-t-il quand m < S/2?

Dans ce cas, la martingale ne converge pas p.s., mais le TCL s'applique...

$$M_n := \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

[TCL pour martingales]

Supposons que
$$||M_0|| < \infty$$
 et $\sup_{n \ge 0} ||M_{n+1} - M_n|| < \infty$ p.s.
Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2]$ et $\tau_x = \min\{m \ge 0: \sum_{i=0}^m \sigma_i^2 \ge x\}$. Alors,

$$\frac{M_{\tau_X}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1) \quad \text{quand } x \to \infty.$$

Dans notre cas.

$$||M_{n+1} - M_n|| = \prod_{i=0}^n \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1}$$

$$= \underbrace{\left\|\pi_2 U(n+1) - \left(1 + \frac{m}{\|U(0)\| + nS}\right) \pi_2 U(n)\right\|}_{\text{borné}}$$

$$M_n \coloneqq \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

[TCL pour martingales]

Supposons que $||M_0|| < \infty$ et $\sup_{n \ge 0} ||M_{n+1} - M_n|| < \infty$ p.s. Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2]$ et $\tau_X = \min\{m \ge 0: \sum_{i=0}^m \sigma_i^2 \ge X\}$. Alors,

$$\frac{M_{\tau_X}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1)$$
 quand $x \to \infty$.

If existe
$$c > 0$$
 tell que $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2] \sim cn^{-2m/s}$.

Si $m < \frac{s}{2}$, alors $\sum_{i=1}^{n} \sigma_i^2 \sim c n^{1-2m/s}$. Donc, par définition,

$$X \leq C\tau_X^{1-2m/S}(1+o(1)) \leq X+1.$$

Par le TCL, et en changeant la variable $n = \tau_X \Rightarrow x \sim c n^{1-2m/S}$, on obtient

$$\frac{M_n}{n^{1/2-m/S}} \stackrel{d}{\to} \mathcal{N}(0,c).$$

$$M_n \coloneqq \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

[TCL pour martingales]

Supposons que $||M_0|| < \infty$ et $\sup_{n>0} ||M_{n+1} - M_n|| < \infty$ p.s. Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2]$ et $\tau_X = \min\{m \ge 0 : \sum_{i=0}^m \sigma_i^2 \ge x\}$. Alors,

$$\frac{M_{\tau_X}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1)$$
 quand $x \to \infty$.

If existe
$$c > 0$$
 tell que $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2] \sim cn^{-2m/s}$. [Exercise

[Exercice 6]

Si m < S/2, alors $\sum_{i=1}^{n} \sigma_i^2 \sim c n^{1-2m/S}$. Donc, par définition,

$$x \le c\tau_x^{1-2m/s}(1+o(1)) \le x+1.$$

Par le TCL, et en changeant la variable $n = \tau_x \Rightarrow x \sim c n^{1-2m/S}$, on obtient

$$\frac{\pi_2 U(n)}{n^{1/2}} \sim \frac{M_n}{n^{1/2-m/s}} \stackrel{d}{\to} \mathcal{N}(0,c).$$

$$M_n \coloneqq \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

[TCL pour martingales]

Supposons que
$$||M_0|| < \infty$$
 et $\sup_{n \ge 0} ||M_{n+1} - M_n|| < \infty$ p.s.
Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2]$ et $\tau_x = \min\{m \ge 0: \sum_{i=0}^m \sigma_i^2 \ge x\}$. Alors,

$$\frac{M_{\tau_X}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1) \quad \text{ quand } x \to \infty.$$

Il existe
$$c > 0$$
 tel que $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2] \sim cn^{-2m/s}$.

[Exercice 6]

Si $m = \frac{s}{2}$, alors $\sum_{i=1}^{n} \sigma_i^2 \sim c \log n$. Donc, par définition,

$$X \leq C \log \tau_X \leq X + 1$$
.

Par le TCL, et en changeant la variable $n = \tau_X \Rightarrow x \sim c \log n$, on obtient

$$\frac{M_n}{\sqrt{\log n}} \stackrel{d}{\to} \mathcal{N}(0,c).$$

$$M_n \coloneqq \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS}\right)^{-1} \pi_2(U(n))$$
 est une martingale.

[TCL pour martingales]

Supposons que $||M_0|| < \infty$ et $\sup_{n \ge 0} ||M_{n+1} - M_n|| < \infty$ p.s. Soit $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2]$ et $\tau_x = \min\{m \ge 0: \sum_{i=0}^m \sigma_i^2 \ge x\}$. Alors,

$$\frac{M_{\tau_x}}{\sqrt{X}} \stackrel{d}{\to} \mathcal{N}(0,1)$$
 quand $x \to \infty$.

Il existe
$$c > 0$$
 tel que $\sigma_n^2 := \mathbb{E}_n[(M_{n+1} - M_n)^2] \sim cn^{-2m/s}$.

[Exercice 6]

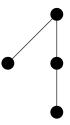
Si $m = \frac{s}{2}$, alors $\sum_{i=1}^{n} \sigma_i^2 \sim c \log n$. Donc, par définition,

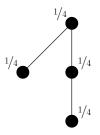
$$X \leq C \log \tau_X \leq X + 1$$
.

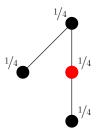
Par le TCL, et en changeant la variable $n = \tau_X \Rightarrow x \sim c \log n$, on obtient

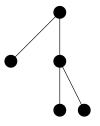
$$\frac{\pi_2 U(n)}{\sqrt{n \log n}} \sim \frac{M_n}{\sqrt{\log n}} \stackrel{d}{\to} \mathcal{N}(0, c).$$

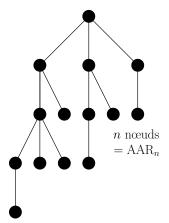
Cécile Mailler (Prob-L@B)











Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard.
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.

Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.

Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.

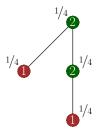
Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.



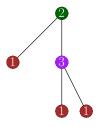
Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard.
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.



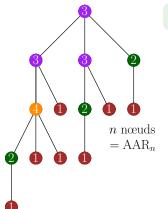
Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.



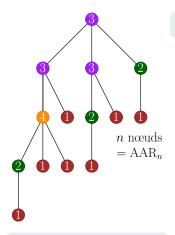
Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.



Combien de nœuds on degré x dans AAR_n ?

- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.

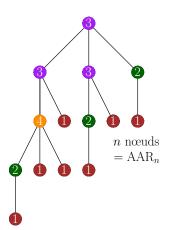


C'est une urne... avec $d = \infty$ couleurs.

Combien de nœuds on degré x dans AAR_n ?

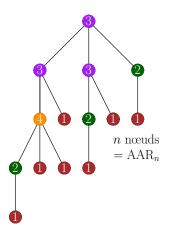
- au temps 1, on a 2 nœuds de couleur 1;
- à chaque étape,
 - on pioche un nœud uniformément au hasard,
 - s'il est de couleur x, on le retire de l'urne et on ajoute un nœud de couleur x + 1 et un nœud de couleur 1.

$$R = \begin{pmatrix} 0 & 1 & 0 & & & \\ 1 & -1 & 1 & 0 & & \\ 1 & 0 & -1 & 1 & \ddots & \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$



On décide que toutes les couleurs $\geq M$ sont de la même couleur, disons M:

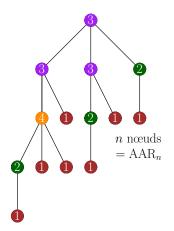
C'est une urne... avec $d = \infty$ couleurs.



On décide que toutes les couleurs $\geq M$ sont de la même couleur, disons M : e.g. pour M = 3.

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

C'est une urne... avec $d = \infty$ couleurs.



C'est une urne... avec $d = \infty$ couleurs.

On décide que toutes les couleurs $\geq M$ sont de la même couleur, disons M: e.g. pour M = 3.

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

On a $\lambda_1 = 1$, $v_1 = {}^t (1/2, 1/4, 1/4)$,

et $\lambda_2 = -1 < 1/2$, donc c'est une petite urne.

Théorème: [Mahmoud & Smythe '92] [Janson '04]

Pour tout $x \ge 1$,

$$\sqrt{n}\left(\frac{U_X(n)}{n}-2^{-x}\right)\stackrel{d}{\to} \mathcal{N}(0,\sigma_X^2).$$

Urnes irréductibles : un bilan

Nous avons montré qu'une urne de Pólya positive et irréductible vérifie

- une "loi forte des grands nombres" et
- un "théorème central limite" qui dépend du trou spectral de R.
- Les preuves que l'on a vues pour deux couleurs s'adaptent à d couleurs en utilisant les mêmes techniques de martingales.
 - La principale difficulté est que les valeurs propres peuvent être complexes, et les espaces propres de dimension ≥ 2.
- Pour généraliser à des urnes non balancées, une solution est de plonger les urnes en temps continu, et utiliser les techniques de martingales en temps continu.
 - Processus de Galton-Watson multi-types

[Janson '04] [Athreya & Ney '72]

Urnes de Pólya classiques : un bilan

Dans cette section, nous avons étudié :

- le cas originel de Eggenberger et Pólya (R = Id);
- le cas irréductible.

Remarques:

- En fait, ce que nous avons montré dans le cas irréductible s'applique à toutes les urnes dont la matrice de remplacement a une valeur propre principale "à la" Perron-Frobenius.
- Les autres cas non-irréductibles peuvent aussi être étudiés avec des techniques de martingales, mais les résultats sont moins universels.

[Janson '05] [Bose, Dasgupta, Maulik '09]

Références : Urnes de Pólya classiques

- [Athreya & Karlin '68] Embedding of urn schemes into continuous time Markov branching processes and related limit theorems. K.B. Athreya and S. Karlin. *The Annals of Mathematical Statistics*, 1968.
- [Athreya & Ney '78] Branching processes. K.B. Athreya et P.E. Ney. *Ed : Springer.* 2004.
- [Bose, Dasgupta, Maulik '09] Strong laws for balanced triangular urns. A. Bose, A. Dasgupta, et K. Maulik. *Journal of Applied Probability*, 46(2), pp 571-584, 2009.
- [Chauvin, Mailler, Pouyanne '15] Smoothing equations for large Pólya urns. B. Chauvin, C. Mailler and N. Pouyanne. *Journal of Theoretical Probability*, 28, pp 923-957, 2015.
- [Chauvin, Pouyanne, Sahnoun '11] Limit distributions for large Pólya urns. B. Chauvin, N. Pouyanne and R. Sahnoun. *The Annals of Applied Probability*, 21(1), pp 1-32, 2011.
- [Janson '04] Functional limit theorems for multitype branching processes and generalized Pólya urns. S. Janson. *Stochastic Processes and their Applications*, 110(2), pp 177-245, 2004.
- [Mailler '18] Describing the asymptotic behaviour of multicolour Pólya urns via smoothing systems analysis. C. Mailler. *Latin American Journal of Probability and Mathematical Statistics ALEA*, XV, pp 375-408, 2018.
- [Pólya & Eggenberger '23] F. Eggenberger and G. Pólya. Über die statistik verketetter vorgäge. Zeitschrift für Angewandte Mathematik und Mechanik, 1, pp 279-289, 1923.
- [Pouyanne '08] An algebraic approach to Pólya processes. N. Pouyanne. *Annales de l'Institut Henri Poincaré*, 44(2), pp 293-323, 2008.

Urnes de Pólya à tirage multiple et approximation stochastique

Le processus $(U(n))_{n\geq 0}$ (sur \mathbb{N}^d) dépend de trois paramètres :

- la composition initiale U(0),
- la taille d'une poignée $m \in \mathbb{N}$,
- la règle de remplacement $R: \Sigma_m^{(d)} \mapsto \mathbb{N}^d$, où

$$\Sigma_m^{(d)} = \big\{ v \in \mathbb{N}^d \colon v_1 + \dots + v_d = m \big\}.$$

Étant donné U(n), on définit $U(n+1) = U(n) + R(\xi(n+1))$, où

- Avec remise : $\mathbb{P}_n(\xi(n+1) = v) = \binom{m}{v_1, \dots, v_d} \prod_{i=1}^d \left(\frac{U_i(n)}{T(n)}\right)^{v_i}$.
- Sans remise : $\mathbb{P}_n(\xi(n+1) = v) = {T(n) \choose m}^{-1} \prod_{i=1}^d {U_i(n) \choose v_i}$.

T(n) = # total de boules dans l'urne au temps n.

$$\binom{m}{v} := \binom{m}{v_1, \dots, v_d} = \frac{m!}{v_1! \dots v_d!}$$

Le processus $(U(n))_{n\geq 0}$ (sur \mathbb{N}^d) dépend de trois paramètres :

- la composition initiale U(0),
- la taille d'une poignée $m \in \mathbb{N}$,
- la règle de remplacement $R: \Sigma_m^{(d)} \mapsto \mathbb{N}^d$, où

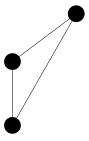
$$\Sigma_m^{(d)} = \big\{ v \in \mathbb{N}^d \colon v_1 + \dots + v_d = m \big\}.$$

Étant donné U(n), on définit $U(n+1) = U(n) + R(\xi(n+1))$, où

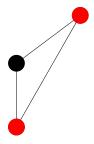
- Avec remise : $\mathbb{P}_n(\xi(n+1) = v) = \binom{m}{v_1, \dots, v_d} \prod_{i=1}^d \left(\frac{U_i(n)}{T(n)}\right)^{v_i}$.
- Sans remise : $\mathbb{P}_n(\xi(n+1) = v) = {T(n) \choose m}^{-1} \prod_{i=1}^d {U_i(n) \choose v_i}$.

T(n) = # total de boules dans l'urne au temps n.

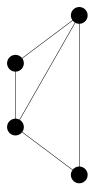
$$\binom{m}{v} := \binom{m}{v_1, \dots, v_d} = \frac{m!}{v_1! \dots v_d!}$$



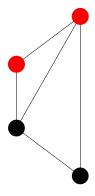
- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



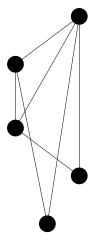
- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



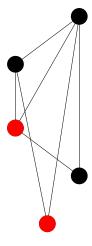
- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



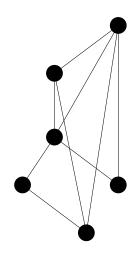
- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.



À chaque étape :

- on choisit une paire de nœuds (distincts) uniformément au hasard,
- on ajoute un nouveau nœud que l'on relie aux deux choisis.

 $X_i(n) = \#$ nœuds de degrés i au temps n (2 \leq i) $(X(n))_{n\geq 0}$ est une urne à tirage multiple :

- $X(0) = 3e_2$,
- $R(e_i + e_j) = e_{i+1} + e_{j+1} + e_2 e_i e_j$

On a bien affaire à une urne de Pólya à tirage multiple.

Notation : \mathbf{e}_i est le vecteur dont toutes les coordonnées sont 0 sauf la i-ème qui est 1.

Approximation stochastique

Étant donné U(n), on définit $U(n+1) = U(n) + R(\xi(n+1))$, où

$$\mathbb{P}_n(\xi(n+1)=v)=\binom{m}{v_1,\ldots,v_d}\prod_{i=1}^d\left(\frac{U_i(n)}{T(n)}\right)^{v_i}.$$

Rappel :
$$R : \Sigma_m^{(d)} \mapsto \mathbb{N}^d$$
, où $\Sigma_m^{(d)} = \{ v \in \mathbb{N}^d : v_1 + \dots + v_d = m \}$.

Les méthodes usuelles ne s'appliquent pas :

- pas de martingale
- pas de plongement en temps continu "utile"

Approximation stochastique

Étant donné U(n), on définit $U(n+1) = U(n) + R(\xi(n+1))$, où

$$\mathbb{P}_n(\xi(n+1)=v)=\binom{m}{v_1,\ldots,v_d}\prod_{i=1}^d\left(\frac{U_i(n)}{T(n)}\right)^{v_i}.$$

Rappel : $R : \Sigma_m^{(d)} \mapsto \mathbb{N}^d$, où $\Sigma_m^{(d)} = \{ v \in \mathbb{N}^d : v_1 + \dots + v_d = m \}$.

On a une approximation stochastique:

Si l'on note $Z_i = U_i(n)/T(n)$ pour tout $1 \le i \le d$ and $n \ge 0$, on a

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}),$$

où h est une fonction sur $\Sigma^{(a)}$, γ_n et ε_n sont (Z_1, \ldots, Z_n) -mesurable, ΔM_{n+1} est un incrément de martingale et $\varepsilon_n \to 0$ p.s.

$$\Sigma^{(d)} = \{(x_1, \ldots, x_d) \in [0, 1]^d : \sum x_i = 1\}$$

Rappel:

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$

$$Z_{n+1} = \frac{U(n+1)}{T(n+1)} = \frac{U(n) + R(\xi(n+1))}{T(n+1)} = Z_n \cdot \frac{T(n)}{T(n+1)} + \frac{R(\xi(n+1))}{T(n+1)}$$

Rappel:

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$U(n+1) = U(n) + R(\xi(n+1))$$
 $Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$

$$Z_{n+1} = \frac{U(n+1)}{T(n+1)} = \frac{U(n) + R(\xi(n+1))}{T(n+1)} = Z_n \cdot \frac{T(n)}{T(n+1)} + \frac{R(\xi(n+1))}{T(n+1)}$$
$$= Z_n \left(1 - \frac{\|R(\xi(n+1))\|_1}{T(n+1)}\right) + \frac{R(\xi(n+1))}{T(n+1)}$$

Rappel:

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$U(n+1) = U(n) + R(\xi(n+1))$$
 $Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$

$$Z_{n+1} = \frac{U(n+1)}{T(n+1)} = \frac{U(n) + R(\xi(n+1))}{T(n+1)} = Z_n \cdot \frac{T(n)}{T(n+1)} + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n \left(1 - \frac{\|R(\xi(n+1))\|_1}{T(n+1)}\right) + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n + \frac{1}{T(n+1)} \left(\underbrace{R(\xi(n+1)) - \|R(\xi(n+1))\|_1 Z_n}\right)$$

$$=: Y_{n+1}$$

Rappel:

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$U(n+1) = U(n) + R(\xi(n+1))$$

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$

$$Z_{n+1} = \frac{U(n+1)}{T(n+1)} = \frac{U(n) + R(\xi(n+1))}{T(n+1)} = Z_n \cdot \frac{T(n)}{T(n+1)} + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n \left(1 - \frac{\|R(\xi(n+1))\|_1}{T(n+1)}\right) + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n + \frac{1}{T(n+1)} \left(\underbrace{R(\xi(n+1)) - \|R(\xi(n+1))\|_1 Z_n}\right)$$

$$= Z_n + \frac{1}{T(n)} \left(\underbrace{E_n Y_{n+1} + Y_{n+1} - E_n Y_{n+1} + \varepsilon_{n+1}}\right)$$

Rappel:

$$U(n+1) = U(n) + R(\xi(n+1))$$

Notre but:

$$U(n+1) = U(n) + R(\xi(n+1))$$
 $Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$

$$Z_{n+1} = \frac{U(n+1)}{T(n+1)} = \frac{U(n) + R(\xi(n+1))}{T(n+1)} = Z_n \cdot \frac{T(n)}{T(n+1)} + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n \left(1 - \frac{\|R(\xi(n+1))\|_1}{T(n+1)}\right) + \frac{R(\xi(n+1))}{T(n+1)}$$

$$= Z_n + \frac{1}{T(n+1)} \left(\underbrace{R(\xi(n+1)) - \|R(\xi(n+1))\|_1 Z_n}\right)$$

$$= Z_n + \frac{1}{T(n)} \left(\underbrace{E_n Y_{n+1} + Y_{n+1} - E_n Y_{n+1} + \varepsilon_{n+1}}\right)$$

Il reste à montrer que $\mathbb{E}_n Y_{n+1} = h(Z_n)...$

Rappel:

$$Y_{n+1} = R(\xi(n+1)) - ||R(\xi(n+1))||_1$$

$$\mathbb{E}_n Y_{n+1} = h(Z_n)$$

$$\mathbb{E}_{n}Y_{n+1} = \sum_{v \in \Sigma_{m}^{(d)}} \mathbb{P}_{n}(\xi(n+1) = v) (R(v) - ||R(v)||_{1}Z_{n})$$

$$= \sum_{v \in \Sigma_{m}^{(d)}} {m \choose v} \prod_{i=1}^{d} Z_{n,i}^{v_{i}} (R(v) - ||R(v)||_{1}Z_{n})$$

Rappel:

$$Y_{n+1} = R(\xi(n+1)) - ||R(\xi(n+1))||_1$$

Notre but:

$$\mathbb{E}_n Y_{n+1} = h(Z_n)$$

$$\mathbb{E}_{n}Y_{n+1} = \sum_{v \in \Sigma_{m}^{(d)}} \mathbb{P}_{n}(\xi(n+1) = v) (R(v) - ||R(v)||_{1}Z_{n})$$

$$= \sum_{v \in \Sigma_{m}^{(d)}} {m \choose v} \prod_{i=1}^{d} Z_{n,i}^{v_{i}} (R(v) - ||R(v)||_{1}Z_{n})$$

On obtient donc

$$h(x) = \sum_{v \in \Sigma_m^{(d)}} {m \choose v} \prod_{i=1}^d x_i^{v_i} \left(R(v) - ||R(v)||_1 x \right)$$

Notons que $h: \Sigma^{(d)} \to \{(y_1, \dots, y_d) \in \mathbb{R}^d : \sum y_i = 0\}.$

Rappel:

$$Y_{n+1} = R(\xi(n+1)) - ||R(\xi(n+1))||_1$$

Notre but:

$$\mathbb{E}_n Y_{n+1} = h(Z_n)$$

$$\mathbb{E}_{n}Y_{n+1} = \sum_{v \in \Sigma_{m}^{(d)}} \mathbb{P}_{n}(\xi(n+1) = v) (R(v) - ||R(v)||_{1}Z_{n})$$

$$= \sum_{v \in \Sigma_{m}^{(d)}} {m \choose v} \prod_{i=1}^{d} Z_{n,i}^{v_{i}} (R(v) - ||R(v)||_{1}Z_{n})$$

On obtient donc

$$h(x) = \sum_{v \in \Sigma_m^{(d)}} {m \choose v} \prod_{i=1}^d x_i^{v_i} \left(R(v) - ||R(v)||_1 x \right)$$

Notons que $h: \Sigma^{(d)} \to \{(y_1, \dots, y_d) \in \mathbb{R}^d : \sum y_i = 0\}.$

On a bien
$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}).$$

On a bien
$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$
.

Si h est une fonction Lipschitz, alors Z_n va asymptotiquement suivre le flot de l'équation différentielle y' = h(y). [Duflo '90, Benaîm '99, Pemantle '07]

Dans notre exemple du réseau aléatoire récursif :

 $U_1(n) \coloneqq \#$ de nœuds de degré 2

 $U_2(n) \coloneqq \#$ de nœuds de degré ≥ 3

On a
$$R\binom{2}{0} = \binom{-1}{2}$$
, $R\binom{1}{1} = \binom{0}{1}$, $R\binom{0}{2} = \binom{1}{0}$,

On a bien
$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}).$$

Si h est une fonction Lipschitz, alors Z_n va asymptotiquement suivre le flot de l'équation différentielle y' = h(y). [Duflo '90, Benaîm '99, Pemantle '07]

Dans notre exemple du réseau aléatoire récursif :

 $U_1(n) \coloneqq \#$ de nœuds de degré 2

 $U_2(n) \coloneqq \#$ de nœuds de degré ≥ 3

On a $R\binom{2}{0} = \binom{-1}{2}$, $R\binom{1}{1} = \binom{0}{1}$, $R\binom{0}{2} = \binom{1}{0}$, et donc

$$h(x) = x_1^2 \binom{-1}{2} + 2x_1x_2 \binom{0}{1} + x_2^2 \binom{1}{0} - \binom{x_1}{x_2}.$$

On a bien
$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$
.

Si h est une fonction Lipschitz, alors Z_n va asymptotiquement suivre le flot de l'équation différentielle y' = h(y). [Duflo '90, Benaîm '99, Pemantle '07]

Dans notre exemple du réseau aléatoire récursif :

 $U_1(n) \coloneqq \#$ de nœuds de degré 2

 $U_2(n) \coloneqq \#$ de nœuds de degré ≥ 3

On a $R\binom{2}{0} = \binom{-1}{2}$, $R\binom{1}{1} = \binom{0}{1}$, $R\binom{0}{2} = \binom{1}{0}$, et donc

$$h(x) = x_1^2 \binom{-1}{2} + 2x_1x_2 \binom{0}{1} + x_2^2 \binom{1}{0} - \binom{x_1}{x_2}.$$

On utilise $x_2 = 1 - x_1$ et $h_1 + h_2 = 0$ pour se limiter à une équation :

$$h_1(x) = -x^2 + (1-x)^2 - x = 1 - 3x.$$

NB: En fait, si *h* est linéaire, on peut trouver une martingale...

[Kuba & Mahmoud '17]

On a bien
$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$
.

Si h est une fonction Lipschitz, alors Z_n va asymptotiquement suivre le flot de l'équation différentielle y' = h(y). [Duflo '90, Benaïm '99, Pemantle '07]

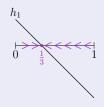
Dans notre exemple du réseau aléatoire récursif :

$$U_1(n) \coloneqq \#$$
 de nœuds de degré 2

$$U_2(n) := \#$$
 de nœuds de degré ≥ 3

On a
$$R\binom{2}{0} = \binom{-1}{2}$$
, $R\binom{1}{1} = \binom{0}{1}$, $R\binom{0}{2} = \binom{1}{0}$, et donc

$$h(x) = x_1^2 \binom{-1}{2} + 2x_1x_2 \binom{0}{1} + x_2^2 \binom{1}{0} - \binom{x_1}{x_2}.$$



On utilise $x_2 = 1 - x_1$ et $h_1 + h_2 = 0$ pour se limiter à une équation :

$$h_1(x) = -x^2 + (1-x)^2 - x = 1 - 3x.$$

NB: En fait, si h est linéaire, on peut trouver une martingale...

[Kuba & Mahmoud '17]

Loi des grands nombres

Lemme (cas "diagonal"):

Si $h \equiv 0$, alors $Z_n \to Z_\infty$ p.s., et Z_∞ à une densité sur [0,1].

Loi des grands nombres

Lemme (cas "diagonal"):

Si $h \equiv 0$, alors $Z_n \to Z_\infty$ p.s., et Z_∞ à une densité sur [0,1].

 \bullet On appelle ensemble limite de Z l'ensemble de ses points d'accumulations :

$$L(Z) = \bigcap_{n \geq 0} \bigcup_{m \geq n} \{Z_m\}.$$

Theorème:

[Lasmar, M. & Selmi '18]

Si $h \not\equiv 0$, alors:

- presque sûrement, L(Z) est un ensemble compact et connexe stable par le flot de y' = h(y).
- s'il existe x^* tel que $h(x^*) = 0$ et $\langle x x^*, h(x) \rangle < 0$ pour tout $x \in \Sigma^{(d)}$, alors $Z_n \to x^*$ presque sûrement.

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$

•
$$h(x^*) = 0$$

On pose
$$V_n = ||Z_n - x^*||^2$$
:

$$V_{n+1} = V_n + \gamma_n^2 \|h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}\|^2 + 2\gamma_n \langle Z_n - x^\star, h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1} \rangle.$$

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$

- $h(x^*) = 0$

On pose $V_n = ||Z_n - x^*||^2$:

$$V_{n+1} = V_n + \gamma_n^2 \|h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}\|^2 + 2\gamma_n \langle Z_n - x^*, h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1} \rangle.$$

On prend l'espérance conditionnelle :

$$\begin{split} \mathbb{E}_{n} V_{n+1} &\leq V_{n} + \frac{K}{N} \gamma_{n}^{2} + 2\gamma_{n} \langle Z_{n} - x^{*}, h(Z_{n}) \rangle + 2\gamma_{n} \langle Z_{n} - x^{*}, \mathbb{E}_{n} \varepsilon_{n+1} \rangle \\ &\leq V_{n} + K \gamma_{n}^{2} + 2\gamma_{n} \langle Z_{n} - x^{*}, h(Z_{n}) \rangle + 2\gamma_{n} V_{n}^{1/2} \| \mathbb{E}_{n} \varepsilon_{n+1} \|, \end{split}$$

par l'inégalité de Cauchy-Schwartz.

$$Z_{n+1} = Z_n + \gamma_n (h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1})$$

•
$$h(x^*) = 0$$

On pose $V_n = ||Z_n - x^*||^2$:

$$V_{n+1} = V_n + \gamma_n^2 \|h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1}\|^2 + 2\gamma_n \langle Z_n - x^\star, h(Z_n) + \Delta M_{n+1} + \varepsilon_{n+1} \rangle.$$

On prend l'espérance conditionnelle :

$$\begin{split} \mathbb{E}_{n} V_{n+1} &\leq V_{n} + K \gamma_{n}^{2} + 2 \gamma_{n} \langle Z_{n} - x^{*}, h(Z_{n}) \rangle + 2 \gamma_{n} \langle Z_{n} - x^{*}, \mathbb{E}_{n} \varepsilon_{n+1} \rangle \\ &\leq V_{n} + K \gamma_{n}^{2} + 2 \gamma_{n} \langle Z_{n} - x^{*}, h(Z_{n}) \rangle + 2 \gamma_{n} V_{n}^{1/2} \| \mathbb{E}_{n} \varepsilon_{n+1} \|, \end{split}$$

par l'inégalité de Cauchy-Schwartz. Comme $x^{1/2} \le 1 \land x$, on a

$$\mathbb{E}_n V_{n+1} \, V_n \big(1 + 2 \gamma_n \mathbb{E}_n \varepsilon_{n+1} \big) + K \gamma_n^2 + 2 \gamma_n \big\| \mathbb{E}_n \varepsilon_{n+1} \big\| + 2 \gamma_n \big\langle Z_n - x^\star, h(Z_n) \big\rangle.$$

Il existe c > 0 telle que $\gamma_n \le c/n$ et $\mathbb{E}_n \varepsilon_{n+1} \le c/n$.

Au total nous avons
$$\mathbb{E}_{n}V_{n+1} \leq V_{n}(1+c/n^{2}) + K/n^{2} + 2\gamma_{n}\langle Z_{n} - x^{*}, h(Z_{n}) \rangle$$
.
Posons $W_{n} = \prod_{i=1}^{n-1} (1+c/i^{2})^{-1} V_{n}$, on a
$$\mathbb{E}_{n}W_{n+1} \leq W_{n} + \frac{K/n^{2} + 2\gamma_{n}\langle Z_{n} - x^{*}, h(Z_{n}) \rangle}{\prod_{i=1}^{n} (1+c/i^{2})},$$

Au total nous avons $\mathbb{E}_n V_{n+1} \leq V_n (1+c/n^2) + K/n^2 + 2\gamma_n (Z_n - x^*, h(Z_n))$. Posons $W_n = \prod_{i=1}^{n-1} (1 + c/i^2)^{-1} V_n$, on a

$$\mathbb{E}_n W_{n+1} \leq W_n + \frac{\kappa/n^2 + 2\gamma_n \langle Z_n - x^*, h(Z_n) \rangle}{\prod_{i=1}^n (1 + c/i^2)},$$

et donc, si $\hat{W}_n = W_n - \sum_{i=1}^{n-1} \frac{\kappa_i i^2 + 2\gamma_i (Z_i - x^*, h(Z_i))}{\prod_{i=1}^n (1 + c/i^2)}$, on a $\mathbb{E}_n \hat{W}_{n+1} \leq \hat{W}_n$: on dit que $(\hat{W}_n)_{n>0}$ est une sur-martingale.

Au total nous avons $\mathbb{E}_n V_{n+1} \leq V_n (1 + c/n^2) + K/n^2 + 2\gamma_n (Z_n - x^*, h(Z_n)).$ Posons $W_n = \prod_{i=1}^{n-1} (1 + c/i^2)^{-1} V_n$, on a

$$\mathbb{E}_n W_{n+1} \leq W_n + \frac{\kappa/n^2 + 2\gamma_n \langle Z_n - x^*, h(Z_n) \rangle}{\prod_{i=1}^n (1 + c/i^2)},$$

et donc, si $\hat{W}_n = W_n - \sum_{i=1}^{n-1} \frac{\kappa_i / i^2 + 2\gamma_i (Z_i - x^*, h(Z_i))}{\prod_{i=1}^n (1 + c/i^2)}$, on a $\mathbb{E}_n \hat{W}_{n+1} \leq \hat{W}_n$: on dit que $(\hat{W}_n)_{n>0}$ est une sur-martingale.

Théorème de Doob:

Toute sur-martingale positive converge p.s. vers une v.a. p.s. finie.

Donc $\hat{W}_n \to \hat{W}_{\infty}$ p.s. quand $n \to \infty$

Au total nous avons $\mathbb{E}_n V_{n+1} \leq V_n (1+c/n^2) + K/n^2 + 2\gamma_n (Z_n - x^*, h(Z_n))$. Posons $W_n = \prod_{i=1}^{n-1} (1 + c/i^2)^{-1} V_n$, on a

$$\mathbb{E}_n W_{n+1} \leq W_n + \frac{\kappa/n^2 + 2\gamma_n \langle Z_n - x^*, h(Z_n) \rangle}{\prod_{i=1}^n (1 + c/i^2)},$$

et donc, si $\hat{W}_n = W_n - \sum_{i=1}^{n-1} \frac{\kappa_i / i^2 + 2\gamma_i \langle Z_i - x^*, h(Z_i) \rangle}{\prod_{i=1}^n (1 + c/i^2)}$, on a $\mathbb{E}_n \hat{W}_{n+1} \leq \hat{W}_n$: on dit que $(\hat{W}_n)_{n>0}$ est une sur-martingale.

Théorème de Doob:

Toute sur-martingale positive converge p.s. vers une v.a. p.s. finie.

Donc $\hat{W}_n \to \hat{W}_{\infty}$ p.s. quand $n \to \infty \not \Rightarrow W_n \to W_{\infty}$...

Au total nous avons $\mathbb{E}_n V_{n+1} \leq V_n (1 + c/n^2) + K/n^2 + 2\gamma_n \langle Z_n - x^*, h(Z_n) \rangle$. Posons $W_n = \prod_{i=1}^{n-1} (1 + c/i^2)^{-1} V_n$, on a

$$\mathbb{E}_n W_{n+1} \leq W_n + \frac{\kappa \big/ n^2 + 2\gamma_n \big\langle Z_n - x^\star, h(Z_n) \big\rangle}{\prod_{i=1}^n \big(1 + c/i^2\big)},$$

et donc, si $\hat{W}_n = W_n - \sum_{i=1}^{n-1} \frac{\kappa/i^2 + 2\gamma_i \langle Z_i - x^*, h(Z_i) \rangle}{\prod_{j=1}^n (1 + c/j^2)}$, on a $\mathbb{E}_n \hat{W}_{n+1} \leq \hat{W}_n$: on dit que $(\hat{W}_n)_{n \geq 0}$ est une sur-martingale.

Théorème de Doob:

Toute sur-martingale positive converge p.s. vers une v.a. p.s. finie.

Donc $\hat{W}_n \to \hat{W}_\infty$ p.s. quand $n \to \infty \implies W_n \to W_\infty$...

Posons $T_a = \inf\{n \geq 0, W_n - \hat{W}_n \geq a\}$: T_a est un "temps d'arrêt" (i.e. $\forall n, \{T_a \leq n\}$ est mesurable par rapport à W_0, \ldots, W_n), et donc $(\hat{W}_{n \wedge T_a})_{n \geq 0}$ est aussi une sur-martingale.

Conditionellement à $T_a = \infty$, $W_n \to W_\infty$ et $\sum_{i \ge 0} \gamma_i |\langle Z_i - x^*, h(Z_i) \rangle| < \infty$.

Notre but : montrer que $V_n = ||Z_n - x^*|| \to 0$ p.s.

Comme
$$\bigcup_{a \in \mathbb{N}} \{ T_a = \infty \} = \Omega$$
, on obtient que $V_n \to V_\infty$ et
$$\sum_{i \geq 0} \gamma_i |\langle Z_i - x^*, h(Z_i) \rangle| < \infty \text{ p.s.}$$

Comme $\bigcup_{a \in \mathbb{N}} \{ T_a = \infty \} = \Omega$, on obtient que $V_n \to V_\infty$ et $\sum_{i>0} \gamma_i |\langle Z_i - x^*, h(Z_i) \rangle| < \infty \text{ p.s.}$

Rappel: $h(x^*) = 0$ et $\langle x - x^*, h(x) \rangle < 0 (\forall x)$. Cela implique en particulier que $h(x) \neq 0$ pour tout $x \in \Sigma^{(d)}$.

Si $V_{\infty} \neq 0$, alors il existe ε tel que $||Z_i - x^*|| \ge \varepsilon$ pour *i* assez grand.

Comme $\bigcup_{a \in \mathbb{N}} \{ T_a = \infty \} = \Omega$, on obtient que $V_n \to V_\infty$ et

$$\sum_{i\geq 0} \gamma_i |\langle Z_i - x^*, h(Z_i) \rangle| < \infty \text{ p.s.}$$

Rappel: $h(x^*) = 0$ et $\langle x - x^*, h(x) \rangle < 0 (\forall x)$. Cela implique en particulier que $h(x) \neq 0$ pour tout $x \in \Sigma^{(d)}$.

Si $V_{\infty} \neq 0$, alors il existe ε tel que $||Z_i - x^*|| \ge \varepsilon$ pour *i* assez grand.

La fonction $x \mapsto \langle x - x^*, h(x) \rangle$ est strictement négative, et continue sur le compact $\Sigma^{(d)} \setminus \mathcal{B}(x,\varepsilon)$. Il existe donc $\eta > 0$ tel que : $\langle Z_i - x^*, h(Z_i) \rangle \leq -\varepsilon$, et

$$\sum_{i\geq 0} \gamma_i |\langle Z_i - x^*, h(Z_i) \rangle| \geq \varepsilon \sum_{i\geq i_0} \gamma_i = +\infty$$

parce que $\gamma_i = 1/(\|U(0)\|_1 + iS) \sim 1/(iS)$. Impossible, donc $V_{\infty} = 0$.

Notre but : montrer que $V_n = ||Z_n - x^*|| \to 0$ p.s.

Retour à l'énoncé

Lemme (cas "diagonal"):

Si $h \equiv 0$, alors $Z_n \to Z_\infty$ p.s., et Z_∞ à une densité sur [0,1].

Retour à l'énoncé

Lemme (cas "diagonal"):

Si $h \equiv 0$, alors $Z_n \to Z_\infty$ p.s., et Z_∞ à une densité sur [0,1].

• On appelle ensemble limite de Z l'ensemble de ses points d'accumulations :

$$L(Z) = \bigcap_{n \geq 0} \bigcup_{m \geq n} \{Z_m\}.$$

Theorème:

[Lasmar, M. & Selmi '18]

Si $h \not\equiv 0$, alors:

- presque sûrement, L(Z) est un ensemble compact et connexe stable par le flot de y' = h(y).
- s'il existe x^* tel que $h(x^*) = 0$ et $\langle x x^*, h(x) \rangle < 0$ pour tout $x \in \Sigma^{(d)}$, alors $Z_n \to x^*$ presque sûrement.

- Cas favorables : h admet un unique zéro x^* sur $\Sigma^{(d)}$, et $\langle h(x), x x^* \rangle < 0$ pour tout $x \in \Sigma^{(d)}$
 - Vrai sur "la plupart" des exemples.
 - ► Ce x^* doit vérifier que toutes les v.p. de $\nabla h(x^*)$ sont négatives.

- Cas favorables : h admet un unique zéro x^* sur $\Sigma^{(d)}$, et $\langle h(x), x x^* \rangle < 0$ pour tout $x \in \Sigma^{(d)}$
 - Vrai sur "la plupart" des exemples.
 - ► Ce x^* doit vérifier que toutes les v.p. de $\nabla h(x^*)$ sont négatives.
- Si m = 1 le cas irréductible est "favorable" : l'unique zéro de $h(x) = ({}^tR SId)x$ (R =matrice de remplacement) sur $\Sigma^{(d)}$ est le vecteur propre à gauche v_1 associé à S.

- Cas favorables : h admet un unique zéro x^* sur $\Sigma^{(d)}$, et $\langle h(x), x x^* \rangle < 0$ pour tout $x \in \Sigma^{(d)}$
 - Vrai sur "la plupart" des exemples.
 - Ce x^* doit vérifier que toutes les v.p. de $\nabla h(x^*)$ sont négatives.
- Si m=1 le cas irréductible est "favorable": l'unique zéro de $h(x)=({}^t\!R-S{\rm Id})x$ (R=matrice de remplacement) sur $\Sigma^{(d)}$ est le vecteur propre à gauche v_1 associé à S.
- Cas non favorables
 ⇔ cas (m = 1)-non-irréductibles. Il est normal
 que ces cas soient plus compliqués.

 [Janson '06]

- Cas favorables : h admet un unique zéro x^* sur $\Sigma^{(d)}$, et $\langle h(x), x x^* \rangle < 0$ pour tout $x \in \Sigma^{(d)}$
 - Vrai sur "la plupart" des exemples.
 - ► Ce x^* doit vérifier que toutes les v.p. de $\nabla h(x^*)$ sont négatives.
- Si m=1 le cas irréductible est "favorable": l'unique zéro de $h(x)=({}^t\!R-S{\rm Id})x$ (R=matrice de remplacement) sur $\Sigma^{(d)}$ est le vecteur propre à gauche v_1 associé à S.
- Cas non favorables \Leftrightarrow cas (m = 1)-non-irréductibles. Il est normal que ces cas soient plus compliqués. [Janson '06]
- Dans le cas affine (h(x) = Ax + b) on peut appliquer la théorie des martingales. [Kuba & Mahmoud '17]

Une bonne nouvelle

On dit que x^* est un zéro stable de h ssi toutes les valeurs propres de $\nabla h(x^*)$ sont strictement négatives.

Théorème [LMS++]: Pour toute urne équilibrée:

Supposons que h admette un zéro stable x^* tel que $Z_n \to x^*$ a.s. Soit Λ la valeur propre de $-\nabla h(x^*)$ avec la plus petite partie réelle. Alors,

• si Re(Λ) > S/2, alors $\sqrt{n}(Z_n - x^*) \Rightarrow \mathcal{N}(0, \Sigma)$ when $n \to \infty$.

Supposons de plus que tous les blocs de Jordan de $\nabla h(x^*)$ associés à Λ sont de taille 1.

- Si Re(Λ) = S/2, alors $\sqrt{n/\log n}(Z_n X^*) \Rightarrow \mathcal{N}(0,\Theta)$ quand $n \to \infty$.
- Si $\operatorname{Re}(\Lambda) < S/2$, alors $n^{\operatorname{Re}(\Lambda)/S}(Z_n X^\star) \to W < +\infty$ p.s. of [Zhang '16]
- Σ et Θ sont explicites et ne dépendent pas de U(0).
- C'est bien une généralisation du cas m = 1 de Janson et du cas "affine" de Kuba et Mahmoud.

Cécile Mailler (Prob-L@B) Urnes de Pólya 35/71

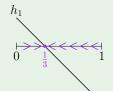
Exemples à deux couleurs, m = 2

Le graphe aléatoire récursif :

Rappelons que, dans ce cas,

$$R\binom{2}{0} = \binom{-1}{2}, \quad R\binom{1}{1} = \binom{0}{1}, \quad R\binom{0}{2} = \binom{1}{0}, \text{ et}$$

$$h_1(x) = 1 - 3x.$$



- par notre "loi des grands nombres", on a $Z_n \to \binom{1/3}{2/3}$ p.s.
- comme $h' \equiv -3$, alors $\Lambda = 3 > S/2 = 1$, et donc

$$n^{3/2}\left(Z_n-\binom{1/3}{2/3}\right)\to W$$
 p.s.

Exemples à deux couleurs, m = 2

Un exemple non linéaire

Posons
$$R\binom{2}{0} = \binom{4}{0}$$
, $R\binom{1}{1} = \binom{1}{3}$, $R\binom{0}{2} = \binom{1}{3}$. $\binom{1}{0} = \binom{1}{3}$. On a $h_1(x) = (1-x)(1-3x)$.

- par notre "loi des grands nombres" $Z_n \to \binom{1/3}{2/3}$ p.s.
- comme $-h'_1(1/3) = 2 = S/2$, notre "TCL" donne

$$\sqrt{n/\log n}\left(Z_n-\binom{1/3}{2/3}\right)\Rightarrow \mathcal{N}(0,1/18).$$

Exemples à deux couleurs, m = 2

Un exemple non linéaire

Posons
$$R\binom{2}{0} = \binom{4}{0}$$
, $R\binom{1}{1} = \binom{1}{3}$, $R\binom{0}{2} = \binom{1}{3}$. $\binom{1}{0} = \binom{1}{3}$. On a $h_1(x) = (1-x)(1-3x)$.

- par notre "loi des grands nombres" $Z_n \to \binom{1/3}{2/3}$ p.s.
- comme $-h'_1(1/3) = 2 = S/2$, notre "TCL" donne

$$\sqrt{n/\log n}\left(Z_n-\binom{1/3}{2/3}\right)\Rightarrow \mathcal{N}(0,1/18).$$

Remarque : Dans les exemples à deux couleurs, si m=2 il ne peut y avoir au maximum qu'un unique zéro stable, mais cela n'est plus vrai pour m=3...

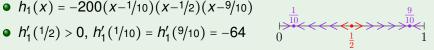
Exemple à deux couleurs, m = 3

Un exemple avec deux zéros stables

Prenons
$$R\begin{pmatrix} 3\\0 \end{pmatrix} = \begin{pmatrix} 82\\9 \end{pmatrix}$$
 $R\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 91\\0 \end{pmatrix}$ $R\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 0\\91 \end{pmatrix}$ $R\begin{pmatrix} 0\\3 \end{pmatrix} = \begin{pmatrix} 9\\82 \end{pmatrix}$.

•
$$h_1(x) = -200(x-1/10)(x-1/2)(x-9/10)$$

•
$$h'_1(1/2) > 0$$
, $h'_1(1/10) = h'_1(9/10) = -64$



• $\Lambda = 64 > 91/2 = S/2$, donc

$$Z_{n,1} \to X_{\infty} \in \{1/10, 9/10\}$$
 et $\sqrt{n}(Z_{n,1} - X_{\infty}) \Rightarrow \mathcal{N}(0, 4131/67340)$.

Exemple à deux couleurs, m = 3

Un exemple avec deux zéros stables

Prenons
$$R\begin{pmatrix} 3\\0 \end{pmatrix} = \begin{pmatrix} 82\\9 \end{pmatrix}$$
 $R\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 91\\0 \end{pmatrix}$ $R\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 0\\91 \end{pmatrix}$ $R\begin{pmatrix} 0\\3 \end{pmatrix} = \begin{pmatrix} 9\\82 \end{pmatrix}$.

•
$$h_1(x) = -200(x-1/10)(x-1/2)(x-9/10)$$

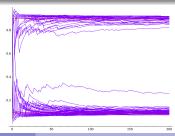
•
$$h'_1(1/2) > 0$$
, $h'_1(1/10) = h'_1(9/10) = -64$

$$0 \qquad \frac{\frac{1}{10}}{\frac{1}{2}} \qquad 1$$

•
$$\Lambda = 64 > 91/2 = S/2$$
, donc

$$Z_{n,1} \to X_{\infty} \in \{1/10, 9/10\}$$
 et $\sqrt{n}(Z_{n,1} - X_{\infty}) \Rightarrow \mathcal{N}(0, 4131/67340).$

Simulation de 100 trajectoires (200 étapes chacune) commençant à $\binom{2/5}{3/5}$:



Exemple à deux couleurs, m = 3

Un exemple avec deux zéros stables

Prenons
$$R\begin{pmatrix} 3\\0 \end{pmatrix} = \begin{pmatrix} 82\\9 \end{pmatrix}$$
 $R\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 91\\0 \end{pmatrix}$ $R\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 0\\91 \end{pmatrix}$ $R\begin{pmatrix} 0\\3 \end{pmatrix} = \begin{pmatrix} 9\\82 \end{pmatrix}$.

•
$$h_1(x) = -200(x-1/10)(x-1/2)(x-9/10)$$

•
$$h'_1(1/2) > 0$$
, $h'_1(1/10) = h'_1(9/10) = -64$

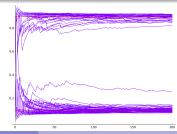
 $0 \xrightarrow{\frac{1}{10}} \left(\begin{array}{c} \frac{1}{10} \\ \frac{1}{2} \end{array} \right) \xrightarrow{\frac{9}{10}} \left(\begin{array}{c} \frac{9}{10} \\ 1 \end{array} \right)$

•
$$\Lambda = 64 > 91/2 = S/2$$
, donc

$$Z_{n,1} \to X_{\infty} \in \{1/10, 9/10\}$$
 et $\sqrt{n}(Z_{n,1} - X_{\infty}) \Rightarrow \mathcal{N}(0, 4131/67340)$.

Simulation de 100 trajectoires (200 étapes chacune) commençant à $\binom{2/5}{3/5}$:

NB: expérimentalement, 35% de ces trajectoires convergent vers 9/10.



Exemples à trois couleurs (m = 2)

$$R: (2,0,0) \mapsto (2,0,0)$$

$$(0,2,0) \mapsto (1,0,1)$$

$$(0,0,2) \mapsto (1,1,0)$$

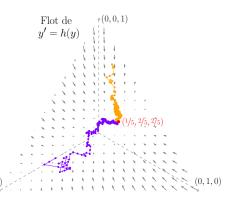
$$(1,1,0) \mapsto (0,0,2)$$

$$(1,0,1) \mapsto (0,2,0)$$

$$(0,1,1) \mapsto (0,1,1)$$

Deux trajectoires de 200 étapes chacune commençant respectivement en (6,3,3) et (2,6,20) :

$$\sqrt{n}(Z_n-(1/5,2/5,2/5)^T)\Rightarrow \mathcal{N}(0,\Sigma)$$



$$\Sigma = \frac{1}{25} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 19/13 & -6/13 \\ -1 & -6/13 & 19/13 \end{pmatrix}$$

NB:
$$\Sigma \cdot (1, 1, 1) = (0, 0, 0)$$
.

Un exemple à trois couleurs "défavorable" : pierre-papier-ciseaux

$$R: (2,0,0) \mapsto (1,0,0)$$

$$(0,2,0) \mapsto (0,1,0)$$

$$(0,0,2) \mapsto (0,0,1)$$

$$(1,1,0) \mapsto (1,0,0)$$

$$(1,0,1) \mapsto (0,0,1)$$

$$(0,1,1) \mapsto (0,1,0)$$

h a quatre zéros : (1,0,0), (0,1,0), (0,0,1) and (1/3,1/3,1/3), mais ils sont tous "répulsifs".



Théorème [Laslier & Laslier '17]:

La trajectoire de Z_n s'accumule le long d'un cycle stable par le flot de y' = h(y).

Les urnes à multi-tirage

En appliquant la théorie de l'approxiation stochastique (classique pour les processus renforcés), nous avons obtenu :

- convergence p.s. de la composition de l'urne dans les case favorable (un zéro stable dont le domain d'attraction est le domaine entier privé des éventuels zéros instables);
- conditionnellement à $Z_n \to x^*$, un théorème qui donne la vitesse de convergence vers cette limite en fonction du trou spectral de $\nabla h(x^*)$.

Malheureusement:

- il n'y a pas de caractérisation "facile" des cas favorables : il faut calculer h, et trouver ses zéros stables ;
- la vitesse de convergence n'est connue que si toutes les valeurs propres de $\nabla h(x^*)$ sur $\Sigma^{(d)}$ sont strictement négatives.

Probabilités XXXIII, 1999.

Dynamics of stochastic approximation algorithms. M. Benaïm. Séminaire de

Central limit theorems of a recursive stochastic algorithm with applications to

Références : Urnes à multi-tirage

[Dutlo '90]	Méthodes itératives aléatoires. M. Duflo, Ed. Masson, 1990.
[Janson '04]	Functional limit theorems for multitype branching processes and generalized Pólya urns. S. Janson. <i>Stochastic Processes and their Applications</i> , 2004.
[Janson '06]	Limit theorems for triangular urn schemes. S. Janson. <i>Probability Theory and Related Fields</i> , 2006.
[Laslier & Laslier	'17] Reinforcement learning from comparisons : Three alternatives is enough, two is not. B. Laslier & J.F. Laslier <i>Annals of Applied Probability</i> , 2017
[Lasmar, M & Sel	mi '18] Multiple drawing multi-colour urns by stochastic approximation. N. Lasmar, C. Mailler & O. Selmi. <i>Journal of Applied Probability</i> , 2018.
[Kuba & Mahmou	d '17] Two-colour balanced affine urn models with multiple drawings. M. Kuba & H. Mahmoud. <i>Advances in Applied Mathematics</i> , 2017.
[Pemantle '07]	A survey of random processes with reinforcement R. Pemantle. <i>Probability Surveys</i> . 2007.

[Benaïm '99]

[Zhang '16]

adaptive designs. L.X. Zhang. Annals of Applied Probability, 2016.

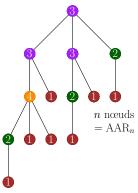
Urnes de Pólya à une infinité de couleurs

Une infinité de couleurs?

Peut-on généraliser la théorie des urnes de Pólya classiques irréductibles à une infinité de couleurs?

Cas diagonal, cf. [Blackwell & MacQueen '73]

Applications : Estimer des mesures quasi-stationnaires :



Profil de l'AAR.

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov sur un espace $E \cup \{\emptyset\}$ et telle que \emptyset est un puit.

Une mesure ν est quasi-stationnaire pour X s'il existe $x \in E$ tel que, pour tout Borel set $\mathcal{B} \in E$,

$$\mathbb{P}_{X}\left(X_{n}\in\mathcal{B}\big|X_{n}\neq\varnothing\right)\rightarrow\nu(\mathcal{B}).$$

Si l'espace est fini, alors on peut approximer la/les MQS en utilisant une urne de Pólya : on voudrait faire pareil quand l'espace est infini.

[Aldous, Flannery & Palacios '88][Exercice 5]

Processus de Pólya à valeur mesure

[Bandyopadhyay & Thacker ++][M & Marckert '17]

On définit $(m_n)_{n\geq 0}$ une suite de mesures positives aléatoires sur un espace Polonais \mathcal{P} (e.g. \mathbb{Z}^d , \mathbb{R}^d ou tout espace métrique complet).

Deux paramètres :

- la composition initiale m₀ (une mesure positive sur P);
- les mesures de remplacement $(\mathcal{R}_X)_{X\in\mathcal{P}}$ (un ensemble de mesures positives sur \mathcal{P}).

Dictionnaire

- ullet est l'ensemble des couleurs ;
- m_n est la composition de l'urne au temps n;
- Pour tout Borélien \mathcal{B} de \mathcal{P} , $m_n(\mathcal{B})$ est la masse des boules de couleur dans \mathcal{B} dans l'urne au temps n.

Définition du processus de Markov $(m_n)_{n\geq 0}$

Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

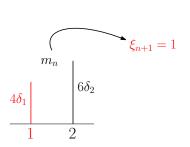
Le cas original de l'urne à deux couleurs :

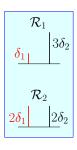
$$m_0 = U_1(0)\delta_1 + U_2(0)\delta_2$$
 et $\mathcal{R}_1 = a\delta_1 + b\delta_2$ et $\mathcal{R}_2 = c\delta_1 + d\delta_2$.

Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Le cas original de l'urne à deux couleurs :

$$m_0 = U_1(0)\delta_1 + U_2(0)\delta_2$$
 et $\mathcal{R}_1 = a\delta_1 + b\delta_2$ et $\mathcal{R}_2 = c\delta_1 + d\delta_2$.

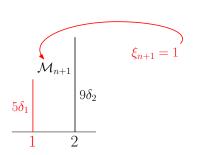


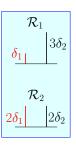


Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Le cas original de l'urne à deux couleurs :

$$m_0 = U_1(0)\delta_1 + U_2(0)\delta_2$$
 et $\mathcal{R}_1 = a\delta_1 + b\delta_2$ et $\mathcal{R}_2 = c\delta_1 + d\delta_2$.

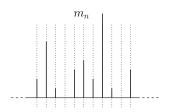




Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Remarques:

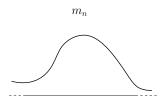
• L'ensemble des couleurs peut désormais être infini,



Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Remarques:

- L'ensemble des couleurs peut désormais être infini, voire non-dénombrable.
- La mesure de composition m_n peut être à densité (les boules ont alors un poids infinitésimal).



Au temps n+1, on tire au hasard une couleur $\xi_{n+1} \in \mathcal{P}$ selon la loi $m_n/m_n(\mathcal{P})$; puis on définit $m_{n+1} = m_n + \mathcal{R}_{\xi_{n+1}}$.

Remarques:

- L'ensemble des couleurs peut désormais être infini, voire non-dénombrable.
- La mesure de composition m_n peut être à densité (les boules ont alors un poids infinitésimal).

Sous quelles conditions ce processus converge-t-il?

Convergence de mesures : $\mu_n \rightarrow \mu$ faiblement ssi

pour toute fonction continue bornée $f: \mathcal{P} \to \mathbb{R}$, on a $\int f d\mu_n \to \int f d\mu$.

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \left(h(\tilde{m}_n) + \Delta M_{n+1} \right),$$

avec
$$h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{x} d\mu(x) - \mu$$
.

$$\tilde{m}_{n+1} = \frac{m_n}{n} \frac{n}{n+1} + \frac{\mathcal{R}_{\xi(n+1)}}{n+1}$$

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{x} d\mu(x) - \mu$.

$$\tilde{m}_{n+1} = \frac{m_n}{n} \frac{n}{n+1} + \frac{\mathcal{R}_{\xi(n+1)}}{n+1} = \tilde{m}_n \left(1 - \frac{1}{n+1}\right) + \frac{\mathcal{R}_{\xi(n+1)}}{n+1}$$

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{x} d\mu(x) - \mu$.

$$\tilde{m}_{n+1} = \frac{m_n}{n} \frac{n}{n+1} + \frac{\mathcal{R}_{\xi(n+1)}}{n+1} = \tilde{m}_n \left(1 - \frac{1}{n+1} \right) + \frac{\mathcal{R}_{\xi(n+1)}}{n+1}$$

$$= \tilde{m}_n + \frac{1}{n+1} \left(\underbrace{\mathcal{R}_{\xi(n+1)} - \tilde{m}_n}_{=:Y_{n+1}} \right)$$

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{x} d\mu(x) - \mu$.

$$\tilde{m}_{n+1} = \frac{m_n}{n} \frac{n}{n+1} + \frac{\mathcal{R}_{\xi(n+1)}}{n+1} = \tilde{m}_n \left(1 - \frac{1}{n+1} \right) + \frac{\mathcal{R}_{\xi(n+1)}}{n+1}$$

$$= \tilde{m}_n + \frac{1}{n+1} \left(\underbrace{\mathcal{R}_{\xi(n+1)} - \tilde{m}_n}_{=:Y_{n+1}} \right) = \tilde{m}_n + \frac{1}{n+1} \left(\mathbb{E}_n Y_{n+1} + \Delta M_{n+1} \right)$$

48/71

Approximation stochastique

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{x} d\mu(x) - \mu$.

Preuve:

$$\tilde{m}_{n+1} = \frac{m_n}{n} \frac{n}{n+1} + \frac{\mathcal{R}_{\xi(n+1)}}{n+1} = \tilde{m}_n \left(1 - \frac{1}{n+1}\right) + \frac{\mathcal{R}_{\xi(n+1)}}{n+1} \\
= \tilde{m}_n + \frac{1}{n+1} \left(\underbrace{\mathcal{R}_{\xi(n+1)} - \tilde{m}_n}_{=:Y_{n+1}}\right) = \tilde{m}_n + \frac{1}{n+1} \left(\mathbb{E}_n Y_{n+1} + \Delta M_{n+1}\right)$$

On a bien $\mathbb{E}_n Y_{n+1} = \mathbb{E}_n \mathcal{R}_{\xi(n+1)} - \tilde{m}_n = \int_{\mathcal{P}} \mathcal{R}_x d\tilde{m}_n(x) - \tilde{m}_n = h(\tilde{m}_n)$ car $\xi(n+1) \sim \tilde{m}_n$ conditionnellement à \tilde{m}_n .

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{\mathbf{X}} d\mu(\mathbf{X}) - \mu$.

Donc $(m_n)_{n\geq 0}$ est un approximation stochastique à valeurs dans $\mathcal{M}(\mathcal{P})$, l'espace des mesures sur \mathcal{P} ...

• Quand l'espace \mathcal{P} est compact, c'est relativement standard, et on peut montrer que $(\tilde{m}_n)_{n\geq 0}$ suit le flot de

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}t} = h(\mu_t).$$

[Benaïm '99]

On suppose que l'urne est équilibrée : $m_0(\mathcal{P}) = \mathcal{R}_x(\mathcal{P}) = 1(\forall x)$.

Lemme [M & Villemonais ++]:

Posons $\tilde{m}_n = m_n/(n+1)$, alors, pour tout $n \ge 0$,

$$\tilde{m}_{n+1} = \tilde{m}_n + \frac{1}{n+1} \big(h(\tilde{m}_n) + \Delta M_{n+1} \big),$$

avec $h(\mu) = \int_{\mathcal{P}} \mathcal{R}_{\mathbf{X}} \mathrm{d}\mu(\mathbf{X}) - \mu$.

Donc $(m_n)_{n\geq 0}$ est un approximation stochastique à valeurs dans $\mathcal{M}(\mathcal{P})$, l'espace des mesures sur \mathcal{P} ...

• Quand l'espace \mathcal{P} est compact, c'est relativement standard, et on peut montrer que $(\tilde{m}_n)_{n\geq 0}$ suit le flot de

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}t}=h(\mu_t).$$

[Benaïm '99]

49/71

• Avec des hypothèse (de type "Lyapunov") sur $(\mathcal{R}_X)_{X \in \mathcal{P}}$, on peut montrer que cela marche aussi si \mathcal{P} n'est pas compact.

On sait que $(\tilde{m}_n)_{n\geq 0}$ suit le flot de $\frac{\mathrm{d}\mu_t}{\mathrm{d}t} = \int_{\mathcal{D}} \mathcal{R}_x \mathrm{d}\mu_t(x) - \mu_t$.

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}t} = \int_{\mathcal{P}} \mathcal{R}_X \mathrm{d}\mu_t(x) - \mu_t$$

Soit $(X_t)_{t>0}$ la chaîne de Markov de saut à valeurs dans \mathcal{P} telle que : $X_0 \sim \mu_0$, la marche saute à taux 1, si elle est en x, elle saute vers une position aléatoire, distribuée comme \mathcal{R}_x .

Alors $X_t \sim \mu_t$ pour tout $t \geq 0$.

On sait que $(\tilde{m}_n)_{n\geq 0}$ suit le flot de $\frac{\mathrm{d}\mu_t}{\mathrm{d}t} = \int_{\mathcal{D}} \mathcal{R}_x \mathrm{d}\mu_t(x) - \mu_t$.

$$\frac{\mathrm{d}\mu_t}{\mathrm{d}t} = \int_{\mathcal{P}} \mathcal{R}_{\mathbf{X}} \mathrm{d}\mu_t(\mathbf{X}) - \mu_t.$$

Soit $(X_t)_{t>0}$ la chaîne de Markov de saut à valeurs dans \mathcal{P} telle que : $X_0 \sim \mu_0$, la marche saute à taux 1, si elle est en x, elle saute vers une position aléatoire, distribuée comme \mathcal{R}_x .

Alors $X_t \sim \mu_t$ pour tout $t \geq 0$.

Donc, s'il existe une mesure de probabilité ν telle que $X_t \rightarrow \nu$ en loi guand $t \to \infty$, pour toute distribution initiale μ_0 (on dit que X est "ergodique"), alors $\tilde{m}_n \to \nu$ presque sûrement!

Théorème [M & Villemonais]:

Si la chaîne de Markov $(W_n)_{n>0}$ de noyau $(\mathcal{R}_x)_{x\in\mathcal{P}}$ est ergodique de distribution limite ν et si \mathcal{P} est compact, alors $\tilde{m}_n \to \nu$ p.s $(n \to \infty)$.

 $W_{n+1} \sim \mathcal{R}_{W_n}$, il s'agit de la version en temps discret de $(X_t)_{t>0}$

Théorème [M & Villemonais ++]:

Si la chaîne de Markov $(W_n)_{n\geq 0}$ de noyau $(\mathcal{R}_x)_{x\in\mathcal{P}}$ est ergodique de distribution limite ν et si \mathcal{P} est compact, alors $\tilde{m}_n \to \nu$ p.s $(n \to \infty)$.

Appliquons ce résultat au cas classique de l'urne $(U(n))_{n\geq 0}$ à d couleurs avec matrice de remplacement irréductible R et balance S.

On pose
$$\mathcal{P} = \{1, \dots, d\}$$
 et

$$m_n = \frac{1}{S} \sum_{i=1}^d U_i(n) \delta_i \quad (\forall \, n).$$

Alors m_n est le MVPP de mesures de remplacement

$$\mathcal{R}_i = \frac{1}{S} \sum_{j=1}^d R_{i,j} \delta_j \quad (\forall i).$$

- La chaîne $(W_n)_{n\geq 0}$ a pour matrice de transition la matrice R/s
- R/s est irréductible $\Rightarrow (W_n)_{n\geq 0}$ est ergodique et converge vers $\nu = \sum_{i=1}^d u_i \delta_i$ où $u^R/s = u \Leftrightarrow uR = Su$.
- Donc $m_n/n \to \nu$ p.s. $\Leftrightarrow U(n)/n \to u$ p.s.

[Athreya & Karlin '68]

Approximation stochastique

Théorème [M & Villemonais ++]:

Si la chaîne de Markov $(W_n)_{n\geq 0}$ de noyau $(\mathcal{R}_X)_{X\in\mathcal{P}}$ est ergodique de distribution limite ν et si \mathcal{P} est compact, alors $\tilde{m}_n \to \nu$ p.s $(n \to \infty)$.

- On peut aussi traiter le cas où P n'est pas compact sous l'hypothèse supplémentaire qu'il existe V: P → [1,∞), telle que
 - ▶ pour tout $n \ge 1$, $\{x \in \mathcal{P}: V(x) \le n\}$ est relativement compact
 - il existe C > 0 et $\theta \in (0, 1)$ tels que

$$\int_{\mathcal{P}} V(y) d\mathcal{R}_{x}(y) \leq \theta V(x) + C \quad (\forall x \in \mathcal{P}).$$

Approximation stochastique

Théorème [M & Villemonais ++]:

Si la chaîne de Markov $(W_n)_{n\geq 0}$ de noyau $(\mathcal{R}_x)_{x\in\mathcal{P}}$ est ergodique de distribution limite ν et si \mathcal{P} est compact, alors $\tilde{m}_n \to \nu$ p.s $(n \to \infty)$.

- On peut aussi traiter le cas où P n'est pas compact sous l'hypothèse supplémentaire qu'il existe V: P → [1,∞), telle que
 - ▶ pour tout $n \ge 1$, $\{x \in \mathcal{P}: V(x) \le n\}$ est relativement compact
 - ▶ il existe C > 0 et $\theta \in (0, 1)$ tels que

$$\int_{\mathcal{P}} V(y) d\mathcal{R}_{x}(y) \leq \theta V(x) + C \quad (\forall x \in \mathcal{P}).$$

- La cas non-équilibré est aussi faisable :
 - ▶ il faut supposer que $\sup_{x \in \mathcal{P}} R_x(\mathcal{P}) \le 1$
 - et que la chaîne de Markov sur $\mathcal{P} \cup \{\emptyset\}$ de noyau $\mathcal{R}_x + (1 \mathcal{R}_x(\mathcal{P}))\delta_{\emptyset}$, absorbée à \emptyset admet une unique MQS ν .
- On peut aussi rajouter des "poids" aux couleurs, "retirer des boules" de l'urne, et rendre la règle de remplacement aléatoire.

Application: encore l'AAR

 $U_i(n)$ = nombre de nœuds de degré i dans AAR_n .

 $m_n := \sum_{i=1}^{\infty} U_i(n)\delta_i$ est un MVPP avec mesures de remplacement

- $\mathcal{R}_0 = \delta_1$,
- $\mathcal{R}_i = \delta_{i+1} \delta_i + \delta_1$

[on a le droit de retirer des boules]

On pose $V(x) = (3/2)^x$ et notre théorème s'applique :

$$\widetilde{m}_n := \frac{m_n}{n} \to \nu$$
, p.s, où $\nu_i = 2^{-i} (i \ge 1)$.

Théorème:

En fait, on obtient un résultat un tout petit peu plus fort :

$$\int f \,\mathrm{d}\tilde{m}_n \to \int f \,\mathrm{d}\nu \text{ p.s.},$$

pour toute fonction continue $f: \mathcal{P} \to \mathbb{R}$ t.q. $f(x) = o((3/2)^x)$ quand $x \to \infty$.

[répond partiellement à une question de Janson '04]
On est loin d'obtenir un TCL, ceci dit...

Une autre approche : par branchement

Dans cette section, on traite le cas où la chaîne de Markov $(W_n)_{n\geq 0}$ n'est ergodique qu'après renormalisation :

Définition:

On dit que la chaîne de Markov $(W_n)_{n\geq 0}$ est (a_n,b_n) -ergodique si $\frac{W_n-b_n}{a_n}\Rightarrow \gamma$ en distribution $(n\to\infty)$ et γ ne dépend pas de W_0 .

On suppose que:

- $0 < m_0(P) < \infty$,
- $\mathcal{R}_{x}(\mathcal{P})$ = 1 pour tout $x \in \mathcal{P}$ (l'urne est équilibrée),
- $(W_n)_{n\geq 0}$ est (a_n,b_n) -ergodique de distribution limite γ ,
- pour tout $x \in \mathcal{P}$, pour tout $\varepsilon_n = o(\sqrt{n})$,

$$\lim_{n\to\infty}\frac{b_{n+x\sqrt{n}+\varepsilon_n}-b_n}{a_n}=f(x) \text{ and } \lim_{n\to\infty}\frac{a_{n+x\sqrt{n}+\varepsilon_n}}{a_n}=g(x),$$

où f et g sont deux fonctions mesurables.

Une autre loi des grands nombres

Théorème [M & Marckert 17]:

Sous toutes ces hypothèses,

$$n^{-1} m_n (a_{\log n} + b_{\log n}) \rightarrow \nu$$
 en probas,

où ν est la distribution de $\Gamma g(\Lambda) + f(\Lambda)$, où $\Gamma \sim \gamma$ et $\Lambda \sim \mathcal{N}(0, 1)$ sont indépendantes.

N.B.: si
$$X_n \sim m_n$$
 alors $\frac{X_n - b_{\log n}}{a_{\log n}} \sim m_n (a_{\log n} + b_{\log n})$.

Exemples:

- Classique irréductible : mais on obtient un résultat plus faible que [Athreya & Karlin '68] (en proba. au lieu de p.s.);
- On peut traiter des cas qui ne sont pas couverts par [M & Villemonais ++] : $a_n \not\equiv 1$ ou $b_n \not\equiv 0$.

Un exemple : le cas de la marche aléatoire simple

Lemme : Δ r.v. de moyenne $m < \infty$ et variance $\sigma^2 < \infty$.

Si \mathcal{R}_x est la distribution de $x + \Delta$, alors

$$f(x) = mx$$
, $g(x) = 1$ et $\gamma = \mathcal{N}(0, \sigma^2)$.

Preuve : $W_n = W_0 + \sum_{i=1}^n \Delta_i \text{ où } (\Delta_i)_i \text{ est une suite i.i.d. de copies de } \Delta.$

Par le TCL,
$$\frac{W_n - mn}{\sqrt{n}} \Rightarrow \mathcal{N}(0, \sigma^2) =: \gamma.$$

Donc, $a_n = \sqrt{n}$ et $b_n = mn$, et $(\forall x \in \mathbb{R}, \varepsilon_n = o(1))$

$$f(x) = \lim_{n \to \infty} \frac{b_{n+x\sqrt{n}+\varepsilon_n} - b_n}{a_n} = \lim_{n \to \infty} \frac{m(n+x\sqrt{n}+\varepsilon_n) - mn}{\sqrt{n}} = mx,$$

$$g(x) = \lim_{n \to \infty} \frac{a_{n+x\sqrt{n}+\varepsilon_n}}{a_n} = \lim_{n \to \infty} \frac{\sqrt{n+x\sqrt{n}+\varepsilon_n}}{\sqrt{n}} = 1.$$

Un exemple : le cas de la marche aléatoire simple

Lemme : Δ r.v. de moyenne $m < \infty$ et variance $\sigma^2 < \infty$.

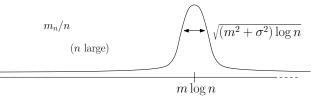
Si \mathcal{R}_x est la distribution de $x + \Delta$, alors

$$f(x) = mx$$
, $g(x) = 1$ et $\gamma = \mathcal{N}(0, \sigma^2)$.

Le théorème s'applique donc, et on obtient

$$n^{-1}m_n(\sqrt{\log n} + m\log n) \rightarrow \mathcal{N}(0, m^2 + \sigma^2)$$
, en proba.,

car $\mathcal{N}(0, m^2 + \sigma^2)$ est la loi de $m\Lambda + \Phi$ ($\Lambda \sim \mathcal{N}(0, 1)$ indep. de $\Phi \sim \nu$).



[Janson '18] montre convergence p.s. dans ce cas!

On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.

On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.

On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

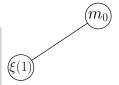
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

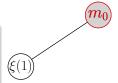
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

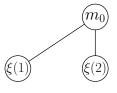
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

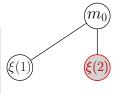
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

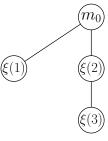
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

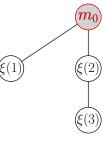
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

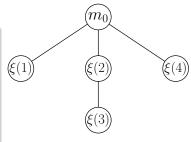
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

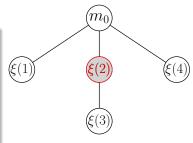
où $\xi(i)$ est la couleur tirée au temps i .

On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.



On a
$$\frac{m_n}{n} = \frac{1}{n} \Big(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \Big),$$

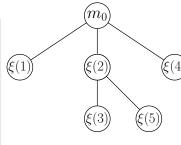
où $\xi(i)$ est la couleur tirée au temps i.

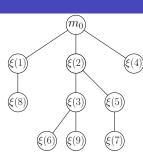
On suppose pour la preuve que $m_0(\mathcal{P}) = 1$.

On couple le processus de Pólya avec une chaîne de Markov branchante (CMB) sur l'AAR :

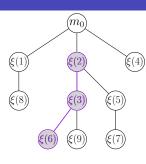
Idée clef:

- tirer un entier u uniformément au hasard dans {0,...,i};
- si u = 0, tirer $\xi(i + 1)$ selon m_0 ;
- sinon, tirer $\xi(i+1)$ selon $\mathcal{R}_{\xi(u)}$.

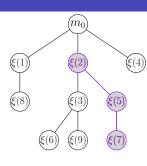




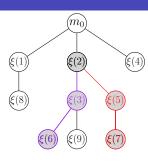
l'arbre sous-jacent est l'AAR;



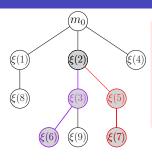
- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x \in \mathcal{P}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n\geq 0}$;



- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x \in \mathcal{P}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n\geq 0}$;



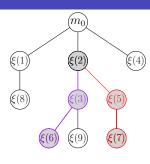
- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x \in \mathcal{P}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n>0}$;
 - deux branches distinctes sont indép.



- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x\in\mathcal{D}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n>0}$;
 - deux branches distinctes sont indép.

NB: $\tilde{m}_n = \frac{1}{n} (m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)})$ est la loi de l'étiquette du "prochain" nœud : nœud numéro n + 1.

Notons cette étiquette $X(\nu_{n+1})$.



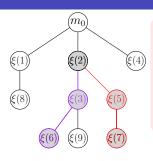
- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x \in \mathcal{P}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n\geq 0}$;
 - deux branches distinctes sont indép.

NB : $\tilde{m}_n = \frac{1}{n} \left(m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)} \right)$ est la loi de l'étiquette du "prochain" nœud : nœud numéro n+1.

Notons cette étiquette $X(\nu_{n+1})$.

On sait que

- $X(\nu_{n+1}) = W_{|\nu_{n+1}|}$ en loi,
- $\frac{|\nu_{n+1}| \log n}{\sqrt{\log n}} \to \Lambda \sim \mathcal{N}(0,1)$ en loi,
- $\frac{W_n b_n}{a_n} \to \Gamma \sim \gamma$ en loi.



- l'arbre sous-jacent est l'AAR;
- les étiquettes sont une CMB de noyau $(\mathcal{R}_x)_{x\in\mathcal{D}}$, i.e.
 - la suite des étiquettes le long de chaque branche à la même loi que $(W_n)_{n>0}$;
 - deux branches distinctes sont indép.

NB: $\tilde{m}_n = \frac{1}{n} (m_0 + \sum_{i=1}^{n-1} \mathcal{R}_{\xi(i)})$ est la loi de l'étiquette du "prochain" nœud : nœud numéro n+1.

Notons cette étiquette $X(\nu_{n+1})$.

On sait que

•
$$X(\nu_{n+1}) = W_{|\nu_{n+1}|}$$
 en loi,

•
$$\frac{|\nu_{n+1}| - \log n}{\sqrt{\log n}} \to \Lambda \sim \mathcal{N}(0, 1)$$
 en loi,

•
$$\frac{W_n - b_n}{a_n} \to \Gamma \sim \gamma$$
 en loi.

$$\frac{X(\nu_{n+1}) - b_{\log n}}{a_{\log n}} = \frac{a_{|\nu_{n+1}|}}{a_{\log n}} \frac{X(\nu_{n+1}) - b_{|\nu_{n+1}|}}{a_{|\nu_{n+1}|}} + \frac{b_{|\nu_{n+1}| - b_{\log n}}}{a_{\log n}} \to f(\Lambda)\Gamma + g(\Lambda)$$

Cela implique que $\mathbb{E}[\tilde{m}_n(a_{\log n} + b_{\log n})] \to \nu$.

Conclusion

Nous avons réussi à généraliser le modèle des urnes de Pólya irréductibles à une infinité de couleurs en exploitant le lien avec les chaînes de Markov branchantes sur l'AAR.

- Une loi forte des grands nombres quand la chaîne de Markov sous-jacente est ergodique sans renormalisation (approximation stochastique).
- Une loi faible des grands nombres dans les cas avec renormalisation (méthodes de branchement).

Problèmes ouverts:

- quid des fluctuations autour de la limite p.s.? (TCL)
- peut-on traiter les urnes à tirage multiple et infinité de couleurs?

Références : Urnes à une infinité de couleurs

- [Aldous, Flannery & Palacios '88] Two applications of urn processes [...]. *Probability in the engineering and informational sciences*, 1988.
- [Bandyopadhyay & Thacker ++] A new approach to Pólya urn schemes and its infinite color generalization. A. Bandyopadhyay & D. Thacker.

 ArXiV:1606.05317.
- [Bandyopadhyay & Thacker 14] Rate of convergence and large deviation for the infinite color Pólya urn schemes. A. Bandyopadhyay & D. Thacker. Statistics and Probability Letters, 2014.
- [Blackwell & MacQueen '73] Ferguson distributions via Pólya urn schemes.

 D. Blackwell & J.B. MacQueen. *Annals of Statistics*, 1973.
- [Janson ++] A.s. convergence for infinite colour Pólya urns associated with random walks. S. Janson. ArXiV:1803.04207.
- [M & Marckert '17] Measure-valued Pólya processes. C. Mailler & J.-F. Marckert. Electronic Journal of Probability, 2017.
- [M & Villemonais ++] Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes. C. Mailler & D. Villemonais. ArXiV:1809.01461.

- Urnes de Pólya classiques et martingales
 - L'urne "originelle" de Pólya et Eggenberger
 - Le cas "irréductible" : une loi des grands nombres...
 - ... un "théorème central limite"
 - ... et un exemple d'application : le profil de l'arbre aléatoire récursif
- Urnes à tirage multiple et approximation stochastique
 - Un exemple d'application : le réseau aléatoire récursif
 - L'approximation stochastique
 - Une loi des grands nombres et un théorème central limite
- Urnes de Pólya à une infinité de couleurs
 - Motivation
 - Étude par approximation stochastique
 - Une autre approche

- Urnes de Pólya classiques et martingales
 - L'urne "originelle" de Pólya et Eggenberger
 - Le cas "irréductible" : une loi des grands nombres...
 - ... un "théorème central limite"
 - ou ... et un exemple d'application : le profil de l'arbre aléatoire récursif
- Urnes à tirage multiple et approximation stochastique
 - Un exemple d'application : le réseau aléatoire récursif
 - L'approximation stochastique
 - Une loi des grands nombres et un théorème central limite
- Urnes de Pólya à une infinité de couleurs
 - Motivation
 - Étude par approximation stochastique
 - Une autre approche

Exercices

Exercice 1 : temps d'arrêts*

Pour le contexte, voir page 31.

- On rappelle qu'une suite de variables aléatoires $(M_n)_{n\geq 0}$ est une sur-martingale si, pour tout $n\geq 0$, $M_n\geq \mathbb{E}_n M_{n+1}$.
- On dit qu'une variable T est un temps d'arrêt pour $(M_n)_{n\geq 0}$ si $\{T\leq n\}$ est (M_0,\ldots,M_n) -mesurable pour tout n.

Soit $(M_n)_{n\geq 0}$ une sur-martingale et T un temps d'arrêt pour $(M_n)_{n\geq 0}$. Montrer que $(M_{n\wedge T})_{n\geq 0}$ est une sur-martingale.

Exercice 2 : martingale*

Pour le contexte, voir page 15.

Soit $(M_n)_{n\geq 0}$ une martingale. On pose $\Delta M_{n+1} = M_{n+1} - M_n$ pour tout $n\geq 0$. Montrer que si $\sum_{n\geq 1}\mathbb{E}\big[(\Delta M_n)^2\big]<+\infty$, alors $(M_n)_{n\geq 0}$ est uniformément bornée dans L^2 .

Exercice 3: L'urne originelle (1/2)*

On considère l'urne de composition initiale $\binom{1}{1}$ et de matrice de remplacement $R = \mathrm{Id}_2$. On note B_n le nombre de boules de couleur 1 (blanc) et W_n le nombre de boules de couleur 2 (wengé) que l'on a piochées avant l'étape n. ¹

- Montrer que $(M_n = (B_n + 1)/(n + 2))_{n \ge 0}$ est une martingale. En déduire qu'elle converge presque sûrement quand $n \to \infty$. Notons sa limite W.
- Ocalculer $\mathbb{P}(B_n = k)$ pour tout entier $1 \le k \le n$ et en déduire la distribution de la limite de W.
- Montrer que, pour tout $\theta \in [0, 1]$,

$$\left(N_n(\theta) = \frac{(n+1)!}{B_n!(n-B_n)!}\theta^{B_n}(1-\theta)^{n-B_n}\right)_{n\geq 0}$$

66/71

est aussi une martingale.

^{1.} If y a donc $B_n + 1$ boules blanches dans I'urne au temps n.

Exercice 3: L'urne originelle (2/2)***

Questions supplémentaires pour les experts :

[Williams '91]

- Soit W une variable aléatoire tirée uniformément au hasard dans [0,1]. Conditionnellement à W, on définit une suite $(X_n)_{n\geq 1}$ de v.a. i.i.d. à valeurs dans $\{0,1\}$ telles que $\mathbb{P}(X_n=1|W)=W$. On note $A_n=\sum_{i=1}^n X_i$. Montrer que $A_n=B_n$ en loi pour tout $n\geq 1$.
- Montrer que $N_n(\theta)$ est la densité de W étant donnés B_1, \ldots, B_n .

^{2.} Il faudra utiliser que pour toute martingale bornée uniformément dans L^1 dont on note la limite p.s. M_{∞} , $\mathbb{E}_n M_{\infty} = M_n$ ($\forall n$).

Exercice 4 : Arbre à attachement préférentiel

L'arbre à attachement préférentiel est défini comme suit : AAP_0 est réduit à sa racine. À l'étape n+1, on ajoute le nœud numéro n+1 (ν_{n+1}) à l'arbre, on le relie à un nœud $\nu_{\xi(n+1)}$ choisi au hasard comme suit parmi les n premiers nœuds :

$$\mathbb{P}(\xi(n+1)=i)=\frac{\deg_n(i)}{2n},$$

où $\deg_n(i)$ et le degré de ν_i dans AAP_n .

- **1** Pourquoi a-t-on, pour tout n, $\sum_{i=1}^{n} \deg_n(i) = 2n$?
- Notons $X_i(n)$ le nombre de nœuds de degré i dans AAP_n . Utiliser une urne de Pólya (à une infinité de couleurs?) pour montrer que $X_i(n)/n \to \frac{4}{i(i+1)(i+2)}$ pour tout i > 1, $X_1(n)/n \to 2/3$.

Notez que $\lim_{n\to\infty} \frac{X_i(n)}{n} = \frac{\kappa}{i(i+1)(i+2)} \sim \kappa i^{-3}$. Un graphe vérifiant cette propriété est dit "scale-free". C'est une propriété typique des grands réseaux (type internet, réseaux sociaux, etc).

Ex. 5 : Urnes de Pólya et quasi-stationarité**** (1/2)

[Aldous, Flannery & Palacios '88]

Soit $R = (R_{i,j})_{1 \le i,j \le d}$ une matrice à coefficients positifs. On note $M = \max_{1 \le i \le d} \sum_{j=1}^d R_{i,j}$. Soit $(X_n)_{n \ge 0}$ la chaîne de Markov sur $\{0,1,\ldots,d\}$ absorbée en 0 et telle que

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \begin{cases} R_{i,j}/M & \text{si } j \neq 0 \\ 1 - \sum_{j=1}^d R_{i,j}/M & \text{si } j = 0. \end{cases}$$

Théorème [Darroch et Seneta '65] :

Il existe une distribution de probabilité $\alpha=(\alpha_1,\ldots,\alpha_d)$ tel que $\sum_i \alpha_i=1$ et $\lim_{n\to\infty} \mathbb{P}(X_n=i|X_n\neq 0)=\alpha_i$. Aussi, α est un vecteur propre à gauche de R pour sa plus grande valeur propre.

Ex. 5 : Urnes de Pólya et quasi-stationarité**** (2/2)

On définit $(V_n)_{n\geq 1}$ le processus de Markov définit comme suit : $V_1 = 1$ et, conditionnellement à V_1, \ldots, V_n ,

$$\mathbb{P}_n\big(\,V_{n+1}=j\big)=R_{V_n,j}\big/M+\left(1-\sum_{\ell=1}^d R_{V_n,\ell}\big/M\right)\frac{1}{n}\sum_{i=1}^n \mathbf{1}_{V_i=j}.$$

Informellement V_n évolue comme la chaîne de Markov X, sauf quand elle est absorbée à 0 ; quand cela arrive, elle sélectionne un temps uniforme dans son passé et recommence là où elle était à cet instant aléatoire.

Montrer que $\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{e}_{V_i} \rightarrow \alpha$ p.s.

Exercice 6 : Cas irréductible, condition pour le TCL**

On considère une urne à deux couleurs de matrice de remplacement R irréductible. On suppose que l'urne est équilibrée et on note S sa "balance". On note M la seconde valeur propre de R et π_2 la projection sur la deuxième direction propre.

Rappel: Nous avons montré dans le cours (cf. page 4) que

$$M_n = \prod_{i=0}^{n-1} \left(1 + \frac{m}{\|U(0)\|_1 + iS} \right)^{-1} \pi_2 U(n)$$

est une martingale.

Question: Montrer qu'il existe c > 0 telle que

$$\mathbb{E}_n[(M_{n+1}-M_n)^2]\sim cn^{-2m/S}.$$

(Voir page 17 pour le contexte!)