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Tout étudiant d’un cours d’algorithmique de base apprend que la complexité moyenne
de l’algorithme QuickSort est en O(n log n), celle de QuickSelect est en O(n) et celle
de RadixSort est en O(n log n). De tels énoncés ont le mérite d’être simples, mais
leur simplicité est trompeuse, car ils sont fondés sur des hypothèses spécifiques à
chaque algorithme: pour les deux premiers algorithmes, le coût unitaire est la com-
paraison entre clés, tandis que, pour le troisième, le coût unitaire est la comparaison
entre symboles.

Ces études souffrent donc de deux inconvénients majeurs: il n’est pas possible
de comparer réellement ces algorithmes entre eux, car les mesures de coût sont
différentes. Ensuite, la mesure de coût adoptée pour analyser QuickSort ou Quick-
Select est peu réaliste, dès que les clés ont une structure complexe, ce qui est le cas
dans le contexte des bases de données ou de la langue naturelle, par exemple.

Pour effectuer une analyse réaliste, il faut donc d’abord travailler en théorie de
l’information pour définir un cadre adapté. En théorie de l’information, une source
est un mécanisme aléatoire qui produit des symboles d’un alphabet donné. On
construit ici un modèle de source très général, qui peut prendre en compte des
corrélations importantes entre symboles émis. Les clés considérées par l’algorithme
sont alors des mots produits (indépendamment) par la même source.

Il faut ensuite considérer un coût unitaire qui soit le même pour tous les algorithmes:
c’est la comparaison entre symboles, et le coût de l’algorithme est donc le nombre
total de comparaisons effectuées entre symboles.

Nous revisitons ainsi, dans un tel modèle, à la fois unifié et réaliste, l’analyse prob-
abiliste de trois principaux algorithmes: QuickSort, QuickSelect, et les algorithmes
de dictionnaire fondés sur la structure de trie.

Ce mini-cours est fondé sur des travaux communs avec Julien Cl ément, James
Fill, et Philippe Flajolet et, essentiellement sur les deux articles suivants, cités
dans la bibliographie en [7] et [40]:

Julien Clément, Philippe Flajolet, et Brigitte Vallée, Dynamical sources in Infor-
mation Theory: Analysis of general tries, Algorithmica (2001), vol 29 (1/2) pp
307–369
Brigitte Vallée, Julien Clément, James Fill, et Philippe Flajolet, The number of
symbol comparisons in QuickSort and QuickSelect, Proceedings of ICALP 09,
LNCS 5555, pages 750–763, 2009

Les notes qui suivent reprennent ainsi certains passages de ces deux articles, en
uniformisant les notations.
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Introduction

Sources. In information theory contexts, the two simpler models of sources are
memoryless sources, where symbols in words are each emitted independently of
the previous ones, and Markov chains, where the probability of emitting a symbol
depends solely on a bounded part of the past history.
However, as opposed to hashing, data on which tries are built or data which are
sorted with QuickSort often arise from more realistic sources that are often more
complex. We work here inside a quite general framework of sources, where a central
idea is the modelling of the source via its fundamental probabilities, namely the
probabilities that a word of the source begins with a given prefix. What we call a
probabilistic source produces infinite words on the ordered alphabet Σ. The set of
keys (words, data items) is then Σ∞, endowed with the strict lexicographic order.
Tries. Digital trees, usually called tries, are both an abstract structure and a data
structure that can be superimposed on a set of words produced by some source.
We consider here a quite general situation, since we study general tries built on a
set of words produced by a general source.
As an abstract structure, tries are based on a splitting according to symbols en-
countered in words: if X is a set of words, and Σ = {a1, a2, . . . , ar} is the alphabet,
then the trie associated to X is defined recursively by the rule:

Trie(X ) = 〈Trie(X \ a1), . . . , Trie(X \ ar)〉,
where X \α means the subset of X consisting of strings that start with α, stripped
of their initial symbol α; recursion is halted as soon as X contains less than two
elements. The advantage of the trie is that it only maintains the minimal prefix set
of characters that is necessary to distinguish all the elements of X .
Clearly the tree Trie(X ) supports the search for any word X in the set X by fol-
lowing an access path dictated by the successive symbols of X. By similar means,
the trie implements insertions and deletions, so that it is a fully dynamic dictio-
nary data type. In addition, tries efficiently support set-theoretic operations like
union and intersection, as well as partial match queries or interval search, and suit-
able adaptations make them a method of choice for complex text processing tasks.
These various applications justify considering the trie structure as one of the central
general-purpose data structures of computer science.
When it comes to implementation, several options are possible depending on the
decision structure chosen to guide descent in each node to subtrees. Three major
choices present themselves. The “array-trie” uses an array of pointers to access sub-
trees directly whereas the “list-trie” relies upon linked lists traversal. The “bst-trie”
uses binary search trees (bst) as subtree access method. Each of these structures
is then an hybridation between the trie structure and the node structure and it is
called an “hybrid trie”.
Our motivation in considering hybrid trie structures comes in fact from a paper
of Bentley and Sedgewick, who, following early ideas of Clampett, developed an
elegant implementation of bst-tries, under the name of ternary search trie, or tst
for short. The basic idea of these authors is to represent the bst-trie as a ternary
tree where search on symbols is conducted like in a standard binary search tree over
the alphabet set Σ, while trie descent is performed by following an escape pointer
whenever equality of symbols of detected. In this way, the code is especially compact
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and, in simulations, the implementation constants appear to be particularly small.
Bentley and Sedgewick report that, in practical situations, their data structure can
be more efficient than hashing while offering considerably wider functionality. Our
goal, as analysts, is to examine this claim and precisely quantify what goes on.
QuickSort and QuickSelect. We revisit the classical QuickSort and QuickSelect
algorithms under a complexity model that fully takes into account the elementary
comparisons between symbols composing the records to be processed.
Every student of a basic algorithms course is taught that, on average, the complex-
ity of Quicksort [or the path-length of a Binary Search Tree (bst)] is O(n log n), and
that of QuickSelect is O(n). Such statements are based on specific assumptions—
that the comparison of data items (for the first two) and the comparison of symbols
(for the third one) have unit cost—and they have the obvious merit of offering an
easy-to-grasp picture of the complexity landscape. However, as noted by Sedgewick,
these simplifying assumptions suffer from limitations: they do not make possible
a precise assessment of the relative merits of algorithms and data structures that
resort to different methods (e.g., comparison-based versus radix-based sorting) in a
way that would satisfy the requirements of either information theory or algorithms
engineering. Indeed, computation is not reduced to its simplest terms, namely,
the manipulation of totally elementary symbols, such as bits, bytes, characters.
Furthermore, such simplified analyses say little about a great many application
contexts, in databases or natural language processing, for instance, where informa-
tion is highly “non-atomic”, in the sense that it does not plainly reduce to a single
machine word.
First, we observe that, for commonly used data models, the mean costs S(n)
and K(n) of any algorithm under the symbol-comparison and the key-comparison
model, respectively, are connected by the universal relation S(n) = K(n) ·O(log n).
(This results from the fact that at most O(log n) symbols suffice, with high prob-
ability, to distinguish n keys; cf. the analysis of the height of tries The surprise is
that there are cases where this upper bound is tight, as in QuickSort; others where
both costs are of the same order, as in QuickSelect. In this work, we show that
the expected cost of QuickSort is O(n log2 n), not O(n log n), when all elementary
operations—symbol comparisons—are taken into account. By contrast, the cost of
QuickSelect turns out to be O(n), in both the old and the new world, albeit, of
course, with different implied constants.
Results. We consider a (finite) ordered alphabet Σ. Our main objects of study
are the QuickSort and the QuickSelect algorithms, or the main parameters of
a Trie, when the n keys are assumed to be independently drawn from the same
source S. Provided that the source S be tame (we will give later formal definitions
of this notion), the following results are established for Tries QuickSort, (or Bst
and QuickSelect. More precisely, we study the algorithm QuickSelect when it
deals with n keys and searches the key of rank bαnc: such an algorithm searches
the α-quantile, and is called QuickQuantα(n).

(i) Up to possible small fluctuations which occur in the case of a Λ–periodic
source, the average size of the trie is well approximated by a quantity of
order n

R(n) ∼ 1
h(S)

n.
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(ii) The average path length of the trie depends on the hybrid structure used
(C for array-trie, L for list-trie, A for bst-trie). For any source built on a
finite alphabet, all the average path lengths are of order n log n,

C(n) ∼ 1
h(S)

n log n, L(n) ∼ KL(S)
h(S)

n log n, A(n) ∼ KA(S)
h(S)

n log n,

with explicit constants KL(S),KA(S). However, for an infinite (denumer-
able) alphabet, the array-trie does not exist anymore, and the two average
path lengths, relative to list-tries or bst-tries, can be of different order.

(iii) The mean number B(n) of symbol comparisons of QuickSort(n) – or the
symbol-path-length of the BST built on n keys – involves the entropy h(S)
of the source:

B(n) ∼ 1
h(S)

n log2 n.

(iv) The mean number of symbol comparisons Q(α)(n) performed by the algo-
rithm QuickQuantα(n) satisfies

Q(α)(n) ∼ ρS(α)n

The mean number of symbol comparisons, M (−)(n) for QuickMin(n) and
M (+)(n) for QuickMax(n), satisfies with ε = ±,

M (ε)(n) = ρ
(ε)
S n, with ρ

(+)
S = ρS(1), ρ

(−)
S = ρS(0).

The mean number M(n) of symbol comparisons performed by QuickRand(n)
satisfies

M(n) = γS n, with γS =
∫ 1

0

ρ(α)dα.

The first three results involve the entropy h(S) of the source which always exists for
a tame source. For a periodic source, a term nP (log n) is to be added to estimates of
R(n), C(n) and B(n), where P (u) is a (computable) continuous periodic function.
This term adds to the dominant term for R(n) and to subdominant terms for C(n)
and B(n).

The results (iii) and (iv) about QuickSort andQuickSelect constitute broad ex-
tensions of earlier ones by Fill and Janson and Fill and Nakama, whose analysis is
relative to data composed of random uniform bits. The results on Tries are the
first results which are obtained on a general source, and take into account realistic
implementations of a trie. However, the analysis of the main parameters of a trie
is quite long. See the bibliography .....
Methods. We operate under a general model of source, parametrized by the unit
interval I. Our strategy comprises three main steps. The first two are essentially
algebraic, while the last one relies on complex analysis.

Step (a). We first work with the Poisson model where the number of keys, instead
of being fixed, follows a Poisson law of parameter Z. We obtain expressions for the
mean costs of interest which involve the fundamental probabilities of the source.
Step (b). Then, simple algebra yield expressions relative to the model where the
number n of keys is fixed. The exact representations of the mean costs is an
alternating sum which involves two kinds of quantities, the size n of the set of data
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to be analyzed (which tends to infinity), and the fundamental probabilities (which
tend to 0).
Step (c). We approach the corresponding asymptotic analysis by means of complex
integral representations of the Nörlund–Rice type. For each algorithm–source pair
(or data structure-source), a series of Dirichlet type encapsulates both the properties
of the source and the characteristics of the algorithm—this is the mixed Dirichlet
series, denoted by $(s), whose singularity structure in the complex plane is proved
to condition our final asymptotic estimates.

Plan of the paper. Section 1 describes the general framework of sources, and
defines fundamental probabilities. It also focuses on a subclass of sources, related
to dynamical systems of the interval, the class of dynamical sources. This class
encompasses the simple sources (memoryless sources, and Markov chains), but it
may also possess a high degree of correlation between symbols. Section 2 is devoted
to the description of the various hybrid tries, and describes their algebraic analysis.
It is shown that all of the analyses of various parameters involve the Dirichlet series
of fundamental probabilities Λ(s), or some of its close variants. Section 3 performs
the two first steps of the analysis of the mean number of symbol comparisons of
QuickSort and a dual algorithm of QuickQuantα(n). These analyses involve Λ(s)
(for QuickSort) and another Dirichlet series (for QuickQuant). Section 4 provides
a description of possible analytic behaviours of a source, which will be used in the
final step of the analysis, the analytic step, performed in Section 5.

1. A general source model.

Throughout this paper, a totally ordered (finite) alphabet Σ := {a1, a2, . . . , ar} of
“symbols” or “letters” is fixed.

1.1. The general model. We first describe a general source.

Definition 1. A probabilistic source, which produces infinite words of Σ∞, is spec-
ified by the set {pw, w ∈ Σ?} of fundamental probabilities pw, where pw is the
probability that an infinite word begins with the finite prefix w. It is furthermore
assumed that πk := sup{pw : w ∈ Σk} tends to 0, as k →∞.

For any prefix w ∈ Σ?, we denote by |w| the length of w (i.e., the number of the
symbols that it contains) and p

(−)
w , p

(+)
w , pw the probabilities that a word produced

by the source begins with a prefix α of the same length as w, which satisfies α < w,
α > w, or α = w, respectively:

p(−)
w :=

∑
α,|α]=|w|,

α<w

pα, p(+)
w :=

∑
α,|α]=|w|,

α>w

pα

Since the sum of these three probabilities equals 1, this defines two real numbers
bw, cw ∈ [0, 1] for which

bw = p(−)
w , 1− cw = p(+)

w , cw − bw = pw,

as it is explained in Figure 1. Denote by L(S) the set of (infinite) words produced
by the source S. Given an infinite word X ∈ L(S), denote by wk its prefix of
length k. The sequence (bwk

) is increasing, the sequence (cwk
) is decreasing, and

cwk
− bwk

= pwk
tends to 0. Thus a unique real P (X) ∈ [0, 1] is defined as common
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Figure 1. The parametrization of a source.

limit of (bwk
) and (cwk

), and P (X) can be viewed as the probability that an infinite
word Y be smaller than X.The mapping P : L(S) → [0, 1] is strictly increasing
outside the exceptional set formed with words which end with an infinite sequence
of the smallest letter a1 or with an infinite sequence of the largest letter ar.
Conversely, almost everywhere, except on the set {bw, w ∈ Σ?}, a mapping M :
[0, 1] → L(S) associates, to a number u of the interval I := [0, 1], a word

M(u) := (m1(u), m2(u), m3(u), . . .) ∈ L(S).

In this way, the probabilty that a word Y will be smaller than M(u) equals u. The
lexicographic order on words is compatible with the natural order on the interval
I. The interval Iw := [bw, cw] gathers (up to a denumerable set of points) all the
reals u for which M(u) begins with the prefix w. Its length equals pw. This is the
fundamental interval of the prefix w.
Our analyses involve the Dirichlet series of the source, defined as

(1) Λ(s) :=
∑

w∈Σ?

ps
w, Λ(k)(s) :=

∑
w∈Σk

ps
w. Π(s) :=

∑
k≥0

πs
k;

Since the equalities Λ(k)(1) = 1 hold, the series Λ(s) is divergent at s = 1, and the
probabilistic properties of the source can be expressed in terms of the regularity of
Λ near s = 1, as we will see it later.

For instance, the entropy h(S) relative to a probabilistic source S is defined as the
limit (if it exists) of a quantity that involve the fundamental probabilities

(2) h(S) := lim
k→∞

−1
k

∑
w∈Σk

pw log pw = − lim
k→∞

−1
k

d

ds
Λ(k)(s)|s=1

1.2. Simple sources: memoryless sources and Markov chains. A memory-
less source associated to the alphabet Σ (possibly infinite), is defined by the set
(pj)j∈Σ of probabilities, and the Dirichlet series Λ,Λ(k) are expressed with

(3) λ(s) =
∑
i∈Σ

ps
i , under the form Λ(k)(s) = λ(s)k, Λ(s) =

1
1− λ(s)

.

In this case, the entropy equals h(S) = −
∑

i pi log pi = −λ′(1).

A Markov chain associated to the finite alphabet Σ, is defined by the vector R of ini-
tial probabilities (ri)i∈Σ together with the transition matrix P := [(pi|j)(i,j)∈Σ×Σ],
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whose each column has a sum equal to 1. We denote by P (s) the matrix with
general coefficient ps

i|j , and by R(s) the vector of components rs
i . Then

(4) Λ(k)(s) =t1 · P (s)k−1 ·R(s), Λ(s) = 1 +t1 · (I − P (s))−1 ·R(s).

If, moreover, the matrix P is irreducible and aperiodic, then, for any real s, the
matrix P (s) has a unique dominant eigenvalue λ(s). For s = 1, the matrix P = P (1)
has a unique fixed vector with positive components πi, whose sum equals 1. The
entropy of the source is then equal to

h(S) = −λ′(1) = −
∑

(i,j)∈Σ2

πj pi|j log pi|j .

1.3. Dynamical sources. An important subclass of sources is formed by dynam-
ical sources, which are closely related to dynamical systems on the interval.

Definition 2. [Dynamical System of of the interval] A dynamical system of the
interval I := [0, 1] is defined by a mapping T : I → I (called the shift) for which

(a) there exists a finite alphabet Σ, and a topological partition of I with disjoint
open intervals Im, m ∈ Σ, i.e. Ī = ∪m∈ΣĪm.

(b) The restriction of T to each Im is a C2 bijection from Im to T (Im).

The system is complete when each restriction is surjective, i.e., T (Im) = I,
The system is Markovian when each interval T (Im) is a union of intervals Ij, of
the form T (Im) =

⋃
j∈Km

Ij.

Figure 2. An instance of a Markovian source

Figure 2 shows an instance of a Markovian source.

A dynamical system, together with a distribution G on the unit interval I, defines
a probabilistic source, which is called a dynamical source and is now described (See
also Figure 3). The map T is used as a shift mapping, and the mapping τ whose
restriction to each Im is equal to m, is used for coding. The words are emitted as
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follows: To each real x, (except for a denumerable set), one associates the trajectory
T (x) = (x, T (x), T 2(x), . . . T j(x), . . . ), which gives rise, via the mapping τ to the
word M(x) ∈ Σ∞ formed with the symbols

M(x) = (m1(x),m2(x), . . . ,mn(x), . . . ) with mj(x) = τ(T j−1(x)).

xT xT x2 T x3

Figure 3. A dynamical system, with Σ = {a, b, c} and a word
M(x) = (c, b, a, c . . .).

Given a prefix w ∈ Σ?, the set Iw of all reals x for which the word M(x) begins
with the prefix w is an interval, of the form [bw, cw], the fundamental interval
associated to w, and the measure of this interval (with respect to distribution G),
is the fundamental probability pw of the source, here equal to

pw := G(cw)−G(bw).

In the case of a complete system, one denotes by h[m] the local inverse of T restricted
to Im and by H the set H := {h[m],m ∈ Σ} of all local inverses. All the local
inverses of the k–th iterate T k are then associated to a word w = m1m2 . . .mk ∈ Σk

are of the form h[w] := h[m1] ◦ h[m2] . . . h[mk]. Then, the set of all the inverse
branches of T k is Hk = {h[w]; w ∈ Σk}. Then, each fundamental interval Iw is
just Iw = h[w](I) and the fundamental probability is just

(5) pw = |G(h[w](1))−G(h[w](0))|.

For h ∈ Hk, the number k is called the depth of h and it is denoted by |h|. We
denote by H? := ∪k≥0Hk the set of inverse branches of any depth.

Such sources may possess a high degree of correlations, due to the geometry of the
branches and also to the shape of branches.
The geometry of the branches is defined by the respective positions of “horizontal”
intervals Im with respect to “vertical” intervals J` := T (I`) and allows to describe
the set Sm formed with symbols which can be possibly emitted after symbol m.
The geometry of the system then provides a first access to the correlation between
successive symbols.
In a complete system, any symbol of Σ can be emitted after any symbol m, and
thus the equality Sm = Σ always holds. In a markovian system, the set Sm equals
Km, defined in Definition 2. In the case when the system is not Markovian, it is
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sometimes possible to obtain a refinement of the partition, for which the new system
becomes Markovian. But, this is not always possible, and, in the case when it is
not possible, the set Sm cannot be characterized when considering only bounded
parts of the previous history. In all the cases, the following property [always true
for a complete system] is essential:
[Topologically mixing] For any pair of symbols (b, e), there exists n0 ≥ 1 such that,
for any n ≥ n0, there is a word of length n which begins with symbol b and finishes
with symbol e [i.e., Ib ∩ T−n(Ie) 6= ∅.

The shape of the branches, and more precisely, the behavior of derivatives h′m has
also a great influence on correlations between symbols. For a fixed geometry of the
branches, a system with affine branches is “less correlated” than the other systems
with the same geometry.

1.4. Simple sources seen as dynamical sources. All memoryless sources and
all Markov chain sources belong to the general framework of dynamical sources
and correspond to a piecewise linear shift, under this angle of dynamical sources.
For instance, the standard binary system is obtained by T (x) = {2x} ({·} is the
fractional part). Here, Figure 4 provides a representation of two memoryless sources
and Markov chains. More precisely

– A complete dynamical source, with affine branches and a uniform initial
distribution, defines a memoryless source.

– A Markovian dynamical source, with affine branches and a family of uniform
initial distributions on each Jj , defines a Markov chain.

Figure 4 shows two instances of memoryless sources and one instance of a Markov
chain, viewed as dynamical sources.
However, as soon as the derivatives h′ of the branches are not constant, there exist
correlations between successive symbols, and the dynamical source is no longer
simple. Dynamical sources with a non-linear shift allow for correlations that depend
on the entire past. A main instance is the dynamical source relative to the Gauss
map, which underlyes the Euclid Algorithm and is defined on the unit interval via
the shift T

(6) T (0) = 0, T (x) =
1
x
−
⌊

1
x

⌋
(x 6= 0).

The graph of this dynamical system is represented in Figure 4.

1.5. Transfer operators. One of the main tools in dynamical system theory is the
transfer operator introduced by Ruelle, denoted by Hs. It generalizes the density
transformer H that describes the evolution of the density. Here, as in [38], we
describe a generalized version of the transfer operator –the secant operator– which
gives rise to an expression of the Dirichlet series Λ(s) as a quasi–inverse, in a way
that generalises expressions obtained in (3) or in (4).
We first consider the case of a complete dynamical system: if f = f0 denotes the
initial density on I, and f1 the density on I after one iteration of T , then f1 can
be written as f1 = H[f0], where H is defined by

H :=
∑
h∈H

H(h) with H(h)[f ](x) := |h′(x)| f ◦ h(x).
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Figure 4. Two memoryless sources and a Markov chain, viewed
as dynamical sources. The Continued fraction source.

The transfer operator extends the density transformer; it depends on a complex
parameter s, and coincides with H when s = 1,

(7) Hs =
∑
h∈H

H(h),s with H(h),s[f ](x) := |h′(x)|s · f ◦ h(x).

Multiplicative properties of derivatives then proves that the k–th iterate of the
transfer operator involves the set Hk under the form

Hk
s =

∑
h∈Hk

H(h),s.

In the case of a Markovian system, one denotes by H[k|`] the set of inverse branches
of the shift T for which h(Ik) ⊂ I`, and by H[k|`],s the operator defined as

H[k|`],s :=
∑

h∈H[k|`]

H(h),s .

The transfer operator Hs can be viewed as the matrix of operators

Hs =
(
H[k|`],s

)
(k,`)∈L2 .

Here, we are interested by the fundamental probabilities, whose expression is pro-
vided in (5) in the case of a complete dynamical system. We now introduce the
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main tool for generating these probabilities, namely, the secant transfer operator.
This operator involves the secant function of inverse branches (instead of their
derivatives), it acts on functions F of two variables; for s ∈ C, and h ∈ H, we first
define the component secant operator H(h),s as

(8) H(h),s[F ](x, y) :=
∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s F (h(x), h(y)).

Then, the transfer operator of a complete system is defined as

(9) Hs :=
∑
h∈H

H(h),s,

and, for a Markovian system, as a matrix of operators,

(10) Hs =
(
H[k|`],s

)
(k,`)∈L2 , with H[k|`],s :=

∑
h∈H[k|`]

H(h),s.

The secant operator is then an extension of the plain transfer operator, since, on
the diagonal x = y, one has

(11) Hs[F ](x, x) = Hs[diag F ](x),

where the function diag F is defined by diag F (x) := F (x, x). In the complete case,
and in the same vein as for tangent operators, multiplicative properties of secants
then entail the relation

Hk
s =

∑
h∈Hk

H(h),s so that Hk
s [F ](x, y) =

∑
h∈Hk

∣∣∣∣h(x)− h(y)
x− y

∣∣∣∣s F (h(x), h(y)).

Then, for w ∈ Σk, the probability ps
w can be written as a function of the component

H(h[w]),s of the operator Hk
s relative to the inverse branch h[w] under the form

ps
w = |G(h[w](1))−G(h[w](0))|s =

∣∣∣∣h[w](1)− h[w](0)
1− 0

∣∣∣∣s · ∣∣∣∣G(h[w](1))−G(h[w](0))
h[w](1)− h[w](0)

∣∣∣∣s .

Then, if L is the secant of the distribution G, defined by

(12) L(x, y) :=
G(x)−G(y)

x− y
,

then the series Λk(s) and Λ(s) are expressed as follows:

Λk(s) :=
∑

w∈Σk

ps
w = Hk

s [Ls](1, 0), Λ(s) = (1−Hs)−1[Ls](1, 0).

The formula extends to the Markovian case, when one replaces (12) by

(13) L = (L`)`∈L, with L`(x, y) :=
G`(x)−G`(y)

x− y
,

where G` is the initial distribution on the interval I`. Finally, we have proven:

Proposition 1. For a complete or a markovian dynamical source, relative to a
shift T and a distribution G, the Dirichlet series of the source admits an alternative
expression which involves the quasi–inverse of the secant operator, defined in (9)
(for complete case), and in (10) (for markovian case), applied to the function Ls,
where L is the secant of the distribution G, described in (12). More precisely, one
has

Λ(k)(s) = Hk
s [Ls](0, 1), Λ(s) = (I −Hs)−1[Ls](0, 1).
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1.6. Average-case analysis: various models. The purpose of average–case
analysis of structures (or algorithms) is to characterize the mean value of their
parameters under a well-defined probabilistic model that describes the initial dis-
tribution of its inputs. Here, we adopt the following quite general model: we work
with a finite sequence X of infinite words independently produced by the same
source, of cardinality n. Such a sequence X := (X1, X2, . . . , Xn) is obtained by n
independent drawings x1, x2, . . . , xn in the interval I. We then set Xi := M(xi).
This model is called the Bernoulli model and is denoted by (Bn, S) when it is
relative to cardinality n and probabilistic source S.

Rather than fixing the cardinality n of the sequence X , it proves technically conve-
nient to consider that the sequence X has a variable number N of elements that
obeys a Poisson law of parameter z,

(14) Pr{N = k} = e−z zk

k!
.

In this model, N is narrowly concentrated near its mean z with a high probability
so that the rate Z plays a rôle much similar to cardinality of X . This model is called
the Poisson model of rate z. When it is relative to probabilistic source source S, it
is denoted by (Pz, S) and is composed with two main steps:
– The number N of words is drawn according to the Poisson law
– Then, the N words are independently drawn from the source S, i.e., there are N
real numbers xi that are uniformly and independently drawn in the unit interval,
and the words Xi are chosen as Xi := M(xi).

The interest of the Poisson model is that there is complete independence on what
happens in disjoint subintervals of I. Moreover, the number of elements that fall
into any interval of measure p is itself distributed as a Poisson variable of rate zp.
More precisely:

Lemma 1. In the Poisson model (Pz, S), denote by N[b,c] the number of words
M(x) of the source S whose parameter x belongs to the interval [b, c]. Then:

(i) N[b,c] follows a Poisson law of parameter z(c− b).
(ii) For [b, c] ∩ [b′, c′] = ∅ the variables N[b,c] and N[b′,c′] are independent.

In particular, when the total number N of words drawn from a source follows a
Poisson law Pz, the number Nw of words which begin with the prefix w follows a
Poisson law of parameter zpw, where pw is the fundamental probability of prefix w,
and the two variables Nw and Nw′ , relative to two prefixes w and w′ which have no
common prefix, are independent.
These two properties will give an easy access to the expectation of basic parameters
in the model (Pz, S). It is then possible to go back from the Poisson model Pz of
rate z to a Bernoulli model Bn where n is fixed. The following formula

(15) E[γ,Pz, S] = e−z
∞∑

n=0

zn

n!
E[γ,Bn, S], E[γ,Bn, S] = n![zn] ezE[γ,Pz, S]

induces a formal dictionary

e−az 7→ (1− a)n, ze−az 7→ n(1− a)n−1.
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2. General tries

We first describe the trie and hybrid trie data structures along with their parame-
ters. We show that the expectations of studied parameters (size and various path
lengths) can be expressed as sums that involve the fundamental probabilities.

2.1. Definition of tries. We deal with two basic mappings σ and T , defined as
follows: For any (infinite) word X produced by the source, σ(X) is the first symbol
of X, and T (X) is the suffix of X, i.e., the word X stripped from its first symbol.
The (partial) map T[m] is a refinement of the map T : it is only defined on words X
which begin with the symbol m (i.e., for which σ(X) = m) and, in this case, one
has T[m](X) := T (X).
The reader may think that there already exists a mapping T , namely the shift that
defines a dynamical source. However, we explicitly choose to use the same name
for the suffix map T (defined on words Σ∞) and for the shift T of the dynamical
system (defined on the unit interval). In the case of a dynamical source, nice
relations indeed exist, between these two versions of T (at the one hand), and
between the encoding map τ of the dynamical source and the map σ (at the other
hand)

T (M(x)) = M(T (x)), σ(M(x)) = τ(x).

We consider the problem of comparing n infinite words independently produced by
the same source, we proceed by elementary comparisons between symbols, and we
use the two maps σ and T . The underlying structure is a tree, called a trie. Let
X be a sequence of words (X1, X2, . . . , Xn) ∈ (Σ∞)n. We deal with the sequence
σ(X ) formed with the first symbol σ(Xi) of each word Xi; it is called the first
“slice” of X ,

σ(X ) := (σ(X1), σ(X2), . . . , σ(Xn)).

Thus, two distinct kinds of collections of symbols will intervene in the analysis:
the infinite words produced by the source ( seen as vertical words) and also finite
sequences seen as horizontal slices). See Figure 5.
To build the tree structure, we start from the root. First one groups together all
the words which begin with the same first symbol m, along a branch labelled by
m, so that the corresponding subtree groups all the words beginning by symbol m
and stripped from their initial symbol, namely the shifted sequence

T[m](X ) := (T[m](X1), T[m](X2), . . . , T[m](Xn)).

This process of splitting will continue until all words have been separated. More
formally:

Definition 3. One associates to a sequence X of words produced by the same
source, a digital tree, called a trie, denoted by Trie(X ), and defined by the following
recursive rules:

(R0) If X = ∅, then Trie(X ) is the empty tree.
(R1) If X = (X) has cardinality equal to 1, then Trie(X ) consists of a single

leaf node that contains the word X.
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Figure 5. The infinite words (“vertical words”) and the finite
slices (“horizontal words”)

(R2) If X has cardinality |X | at least equal to 2, then Trie(X ) is an internal
node represented by ◦ to which are attached all the subtries built on the set
T[m](X ). Then Trie(X ) is defined by

(16) Trie(X ) =
〈
σ(X ),

{
Trie(T[m](X ))

}
m∈Σ

〉
.

Such a tree structure underlies classical radix sorting methods. It can be built by
following the recursive rules R0, R1, R2. There, any prefix w which is common to at
least two words of X is associated to an internal node of the trie. This internal node,
which can be labelled by this common prefix w, is the root of the subtrie relative
to the shifted sequence T[w](X ). Here, for any prefix w = m1m2 . . .mk ∈ Σ?, the
mapping

(17) T[w] := T[mk] ◦ T[mk−1] ◦ . . . ◦ T[m1]
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is only defined on words which begin with the prefix w, and it associates to any
such word the word stripped from its prefix w. See an instance of a trie in Figure
6.

� �

�

�����������

�

� �

�	�������
�

�������������

�

������������

� �

�������������

�

�

��������������

�

����������������

�

����������������

�

����������������

�

�����������������

�

������������������

�

������������������

�

��

� �

��

�

����������������

�

�

� �

����������������

��

����������������

�

� ��������������

�

Figure 6. A trie built from the memoryless source
pa = 1/3, pb = 2/3 on a set of words of sixteen words

A = abbbbbaaabab B = abbbbbbaabaa C = baabbbabbbba
D = bbbababbbaab E = bbabbaababbb F = abbbbbbbbabb
G = bbaabbabbaba H = ababbbabbbab I = bbbaabbbbbbb
J = abaabbbbaabb K = bbbabbbbbbaa L = aaaabbabaaba

M = bbbaaabbbbbb N = abbbbbbabbaa O = abbabababbbb
P = bbabbbaaaabb

The underlined symbols are those which are used for building the trie.

2.2. Various implementations of tries. In the abstract tree structure repre-
senting the trie, each internal node has links to its children. They are three main
implementations of such a node, each of them is based on classical data structures
like arrays, ordered lists and binary search trees. There result “hybrid tries” which
are the hybridation of an overall trie structure with another data structure to ac-
cess children of a node. Then, three kinds of hybrid tries are considered depending
on the method chosen to access children of a node. Figure 7 shows these three
representations for the trie built on a given set of words.

(i) The more natural implementation uses arrays whose cardinality equals the
size of the alphabet. Then one accesses children directly through an array
of pointers; note that it is impossible for infinite alphabets, and space-
wasting for large alphabets (too much null pointers are allocated). This
classical solution which gives raise to “array-tries” is adequate only when
the cardinality of the alphabet is small (typically for binary words).
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(ii) The “list-trie” structure remedies the high storage cost of array-tries by
linking sister subtrees at the expense of replacing direct array access by a
linked list traversal.

(iii) The “bst-trie” uses binary search trees (bst) as subtree access method,
with the goal of combining advantages of array-tries in terms of time cost,
and list-tries in terms of storage cost. As stated in the introduction, this
hybrid trie obtained is strictly equivalent to the ternary search trie structure
proposed recently. Indeed, the bst-trie can be viewed as a ternary tree where
search on symbols is conducted like in a standard binary search tree over
the alphabet set Σ, while trie descent is performed by following an escape
pointer whenever equality of symbols of detected.

The structure of a classical trie does not depend on the order of insertion of the
words i.e. the order inside the sequence X , but only on the set of words itself.
However, when mixing the trie structure with node structures for which it is not
the case (like binary search trees), it is no longer true.
The structure of the classical trie does not depend either on the order relation
between symbols. Here, since structure nodes need an ordered alphabet, we consider
an order on the symbols of the alphabet.

2.3. Parameters. The level of a node in a trie is the number of edges that connect
it to the root. The height of the trie is the maximum level of any leaf. It is then
a measure of distance between the two closest elements of X . It is the minimum
number of comparisons to separate without question any pair (Xi, Xj) of elements
of X . The path length of the trie is the sum of the levels of all leaves. The path
length equals the total number of symbols that need to be examined in order to
distinguish all elements of X . Divided by the number of elements, it is also by
definition the cost of a positive search (i.e. searching for a word that is present
in the trie). The size of the tree is the number of its internal nodes. Adding to
the size, the cardinality of X gives the number of prefixes necessary to isolate all
elements of X ). It gives also a precise estimate of the place needed in memory,
concerning elementary node structures to allocate, to store the trie in a real-life
implementation.
In an hybrid trie, the external length path decomposes in two parts: the first is
linked to the trie structure, the second is the extra-cost due to the traversal of
internal node structures. It is this overhead which is analysed here for hybrid tries.
If we are interested in a global external path length, we just have to combine our
results with those about tries. interest for the hybrid trie.

2.4. Additive parameters. Let us consider now an “additive” parameter γ on
Trie(X ) that decomposes recursively into a parameter δ over the root that contains
the slice σ(X ) and the parameter γ on all the possible subtries relative to sequences
T[m](X ). Such a parameter has a recursive definition quite similar as the definition
of the structure itself (16)

γ[Trie(X )] = 0 if |X | ≤ 1,

γ[Trie(X )] = δ(σ(X )) +
∑
m∈Σ

γ[Trie(T[m](X ))] if |X | ≤ 2.
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Figure 7. The three possible implementations of a trie: array
trie on the top – list-trie on the middle– bst-trie on the bottom.
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The recurrence relation can be unwinded, by using the mappings T[w] defined in
(17), and the parameter γ on Trie(X) is expressed as

γ[Trie(X )] =
∑

w∈Σ∗

δ[σT[w](X )],

provided that δ(s) is zero on slices s that contain at most one symbol.
Our analysis needs keeping track of the process of construction of internal nodes.
Even if the elements contained in each internal node labelled by prefix w are only
the different symbols of the slice

σT[w](X ) := (σT[w](X1), σT[w](X2), . . . , σT[w](Xn)),

we need (solely for the analysis) remembering the totality of the information con-
tained in the slice σT[w](X ), in particular the order in which the symbols are inserted
(defined by the function ord, the number of occurences Ni of each symbol ai, and
the total number N of the symbols in the slice.

2.5. Probabilistic model at nodes. We describe now the probabilistic model
that is induced by the Poisson model on each possible node of the trie relative to
a prefix w. Since the probability that a word begins with prefix w is equal to the
fundamental probability pw, the probability that the following symbol m is emitted
is equal to

(18) pm|w =
pw·m

pw
.

Here, the notation w · m denotes the string obtained by concatenation of string
w and symbol m. Furthermore, since all elements of X are independently drawn,
the symbols that compose each slice are independent. Thus, at the internal node
labelled by w, symbols are then emitted by a memoryless source Bw associated to
probabilities {pm|w}m∈Σ. The (horizontal) slices are then very simple objects, even
if the vertical (infinite words) may be emitted by a complex source.
Moreover, if the length of X is a random Poisson variable of rate z, the length of
the string σT[w](X ) is also a random Poisson variable of rate zpw. This implies
that the expectation of parameter γ can be expressed as a sum of expectations of
parameter δ,

(19) E[γ,Pz, S] =
∑

w∈Σ∗

E[δ,Pzpw
, Bw],

where w ranges over all finite prefixes and Bw denotes a memoryless source relying
on the set of probabilities {pm|w}m∈Σ defined in (18).

2.6. Node search costs. We consider here four parameters of interest that lie in
the scope of additive parameters: the size, and the various path lengths (relative
to each kind of hybrid trie). For example, the toll δR associated to size equals 1
provided that the internal node indexed by w exists or equivalently that the slice
σT[w](X ) has at least two symbols. The toll δC for path length of an array-trie is
simply the number of symbols in the slice, provided that the node exists. Then, if
we denote by N(s) the cardinality of the slice s,

δR = 1[N≥2], δC = N 1[N≥2].
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The parameters δL(s) and δA(s) (relative respectively to path lengths for list-tries
and bst-tries) are exactly traversal costs through associated node-structures built
over a slice s. The symbols of s (with repetitions allowed) are inserted in order
in a structure (a list or a binary search tree), and then the toll is the cost due to
retrieve in the structure each occurence of each symbol of s. Then, if we denote by
Ni(s) the number of elements of s whose value equals ai, and by N[i,j] the number
of elements of s whose value equals ak, with k ∈ [i, j], we have

δL =
∑
i∈Σ

Ni

∑
j<i

1[Nj≥1], δA =
∑
i∈Σ

Ni

∑
j 6=i

1[aj ancestor of ai in bst]

Remark that aj is an ancestor of ai in bst(s) if and only if there exists x in s that
satisfies

val(x) = aj , ord(x) = min{ord(z); z ∈ s, val(z) = ak, k ∈ [i, j]}.

Then, when one considers all the slices τ(s) obtained with a permutation τ of
[1..N(s)], the probability of the event [aj is an ancestor of ai in bst(s)] is equal to
the ratio Nj/N[i,j]. Then, the average value δA of δA on the set of all the slices
τ(s) obtained with a permutation τ of [1..N(s)] is

δA = 2
∑
i∈Σ

Ni

∑
j>i

Nj

N[i,j]
= 2

∑
i∈Σ

∑
j>i

NiNj

Ni + Nj + N]i,j[
.

Remark that the two parameters δA and δA have the same expectations in the
Bernoulli model (and thus in the Poisson model). Remark also that the formulae
which express δL and δA involve independent variables which all follow Poisson
laws. This allows easy computations and we obtain:

Proposition 2. [Toll parameters] Let B be a memoryless source relying on a set
of probabilities {pi}i∈Σ and Pz the Poisson model of rate z. Then, in the model
(Pz, B), expectations of the toll parameters relative to the size of a trie and the path
length of an array-trie are respectively

E[δR,Pz, B] = 1− (1 + z)e−z, E[δC ,Pz, B] = z(1− e−z).

In the model (Pz, B), the expectations of traversal costs for ordered lists and binary
search trees are respectively

E[δL,Pz, B] =
∑
j∈Σ

P[>j] z (1− e−pjz),

E[δA,Pz, B] = 2
∑

(i,j)∈Σ2

i<j

pi pj

P[i,j]
2

[
e−zP[i,j] − 1 + zP[i,j]

]
,

where P[i,j] =
∑j

k=i pk and P[>j] =
∑

k>j pk.

Remark: the expression of the expectation of parameter δA is useful to recover
in a simple way the result of Burge about the average path length in a Bst with
repeated keys.
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2.7. Size and path length in the Poisson model. The form of the recurrence
(19), the form of the probabilities at each node (18) and the expressions obtained
in Theorem 1 insures great simplification on formulae during the unwinding process
of the recursion, so that the expectations of the four additive parameters can be
solely expressed with fundamental measures.

Theorem 1. [Mean trie costs in the Poisson Model ] Let S be a source and Pz

the Poisson model of rate z. Then expectations in the model (Pz, S) of the toll
parameters respectively relative to the size of a trie, path length of an array-trie
trie, path length of an ordered-list trie, path length of a bst-trie are

R̃(z) =
∑

w∈Σ∗

[
1− (1 + zpw)e−zpw

]
,

C̃(z) =
∑

w∈Σ∗

zpw

[
1− e−zpw

]
L̃(z) =

∑
w∈Σ∗

∑
i∈Σ

z Pw·[>i] (1− e−zpw·i)

Ã(z) = 2
∑

w∈Σ∗

∑
(i,j)∈Σ2

i<j

pw·i pw·j

Pw·[i,j]
2

[
e−zPw·[i,j] − 1 + zPw·[i,j]

]
,

where Pw·[i,j] =
∑j

k=i pw·k, and Pw·[>j] =
∑

k>j pw·k.

2.8. Size and path lengths in the Bernoulli model. We can now return to the
Bernoulli model with Equation (15). So, the expectations of the four additive pa-
rameters in the Bernoulli model (Bn, S) can be also be expressed with fundamental
probabilities:
Let (Bn, S) be the Bernoulli model relative to a fixed number n of words indepen-
dently drawn from a source S. Then the expectations for the size of a trie, path
length of an array-trie, path length of an ordered-list trie, path length of a bst trie
are

R(n) =
∑

w∈Σ∗

[
1− (1− pw)n − npw (1− pw)n−1

]
C(n) =

∑
w∈Σ∗

npw[1− (1− pw)n−1]

L(n) =
∑

w∈Σ∗

∑
i∈Σ

nPw·[>i](1− (1− pw·i)n−1)

A(n) = 2
∑

w∈Σ∗

∑
(i,j)∈Σ2

i<j

pw·i pw·j

Pw·[i,j]
2

[
(1− Pw·[i,j])n − 1 + nPw·[i,j]

]
,

where Pw·[i,j] =
∑j

k=i pw·k and Pw·[>j] =
∑

k>j pw·k as before.

With the use of binomial expansions, the expectations in the Bernoulli model with
n fixed all follow the same pattern:

Theorem 2. [Mean trie costs in the Bernoulli model] Let (Bn, S) be the Bernoulli
model relative to a fixed number n of words independently drawn from a source S.
Then the expectations for the size of a trie, path length of an array-trie, path length
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of an ordered-list trie, path length of a bst trie are all expressed as an expression of
the form

T (n) =
n∑

k=2

(−1)k

(
n

k

)
$T (k)

where the function $T (s) is a Dirichlet series which depends on the parameter T
and the source S and is defined as

$R(s) = (s− 1)
∑

w∈Σ∗

ps
w $C(s) = s

∑
w∈Σ∗

ps
w

$L(s) =
∑

w∈Σ∗

ps
w KL(s, w) with KL(s, w) =

∑
i∈Σ

P[>i]|w ps−1
i|w

$A(s) = 2
∑

w∈Σ∗

ps
w KA(s, w) with KA(s, w) =

∑
(i,j)∈Σ2

i<j

pi|w pj|w P s−2
[i,j]|w

where pi|w is the probability of emitting the symbol ai when the prefix w was pre-
viously emitted, P[i,j]|w is the probability of emitting a symbol ak with k ∈ [i, j]
when the prefix w was previously emitted, and P[>j]|w is the probability of emitting
a symbol ak with k > j when the prefix w was previously emitted.
Remark that the Dirichlet series $R and $C are expressed with the Dirichlet series
of the source as

$R(s) = (s− 1)Λ(s), $C(s) = sΛ(s).

3. Analysis of QuickSort and QuickSelect

We first recall the (informal) recursive definitions of the algorithms QuickSort and
QuickSelect, when they operate on a sequence X formed with distinct elements,
placed in a array B of size n. The algorithm QuickSort(B,n) sorts the array B,
whereas the algorithm QuickSelect (B,m, n) finds the value of the key of rank m
in the array B. We also describe a third algorithm named QuickVal(B, b, n) which
finds the rank of the key b inside the array B of size n. The algoritthm QuickVal is
dual of QuickSelect since, for a given key b, the roles of the rank and of the value
are exchanged. We study a randomized version of the algorithms, when the pivot
is chosen at random in B.
The execution of the QuickSort algorithm builds a Binary Search Tree [BST in
shorthand], the Binary Search Tree formed with the pivots chosen in the recursive
calls. This is why the QuickSort algorithm is closely related to the BST structure.

QuickSort (n, B): sorts the array B
Randomly choose a pivot in B;
(k,B−, B+) := Partition(B);
QuickSort (k − 1, B−);
QuickSort (n− k,B+).
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QuickSelect (n, m,B): returns the value of the element of rank m in B.
Randomly choose a pivot in B;
(k, B−, B+) := Partition(B);
If m = k then QuickSelect := pivot

else if m < k then QuickSelect (k − 1,m, B−)
else QuickSelect (n− k, m− k, B+);

QuickVal (n, b,B). : returns the rank of the element a in C = B ∪ {b}
C := B ∪ {b}
QV (n, b, C);

QV (n, b, C).
Choose a pivot in C;
(k, C−, C+) := Partition(C);
If b = pivot then QV := k

else if b < pivot then QV := QV (k − 1, b, C−)
else QV := k+ QV (n− k, b, C+);

3.1. Mean number of key-comparisons. These algorithms deal with a sequence
X formed with n distinct keys X1, X2, . . . , Xn of the same ordered set Ω. They
perform comparisons and exchanges between keys, and the (usual) unit cost is the
key–comparison. The behaviour of the algorithm (wrt to key–comparisons) only
depends on the relative order between the keys. It is then sufficient to restrict to
the case when Ω = [1..n]. The input set is then the permutation group Sn, endowed
with uniform probability.

Then, the analysis of all these algorithms is very well known, with respect to the
number of key–comparisons performed in the worst-case, or in the average case.
Figure 8 recalls these results in the average-case, for various values of rank m.

3.2. Coincidence and fundamental triangles. Here, we are interested by a
more realistic cost, the number of symbol comparaisons performed by these algo-
rithms, when the keys are words independently produced by the same source. The
keys are ordered with respect to the lexicographic order, and the cost for compar-
ing two words (measured as the number of symbol comparisons needed) is equal
to 1+ the length of the longest common prefix of the two words. For instance,
for the associated BST, the path-length of interest is now a weighted path-length,
called in the following the symbol-path-length, which measures the total number of
comparisons needed to build this BST. See Figure 9 for an example.
This is why the following definition will be useful.

Definition 4. The coincidence function γ(u, t) is the length of the largest common
prefix of M(u) and M(t), namely,

γ(u, t) := max{` : mj(u) = mj(t), ∀j ≤ `}.

The coincidence γ(u, t) is at least ` if and only if the two words M(u) and M(t) have
the same common prefix w of length `: The parameters u and t belong to the same
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QuickSort (n) sorts Kn ∼ 2n log n
or Path-Length-BST(n)

QuickMin(n) minimum m = 1 Kn ∼ 2n
QuickMax(n) maximum m = n Kn ∼ 2n
QuickRand(n) m ∈ [1..n]R Kn ∼ 3n

QuickQuantα(n) α–quantile m = bαnc Kn ∼ κ(α) n
QuickMed(n) median m = bn/2c Kn ∼ 2(1 + log 2)n

On the right, the function

κ : α 7→ 2 [1 + h(α)]

where h(·) is the entropy function

h(α) = α| log α|+ (1− α)| log(1− α)|

Figure 8. The mean number of key-comparisons for the main
algorithms of interest.

fundamental interval Iw relative to a prefix of length `, as it is defined in Section 1.1.
Since any pair of words of the source is of the form (M(u),M(t)) with 0 ≤ u ≤ t ≤ 1,
it is convenient to introduce the triangle T := {(u, t) : 0 ≤ u ≤ t ≤ 1}, and the
domain T ∩ [γ ≥ `] is written as a union

(20) [γ ≥ `] =
⋃

w∈Σ`

(Iw × Iw) so that T ∩ [γ ≥ `] =
⋃

w∈Σ`

Tw,

where Tw = (Iw × Iw) ∩ T . This motivates the definition:

Definition 5. We set T := {(u, t) : 0 ≤ u ≤ t ≤ 1}. For each w ∈ Σ?, the funda-
mental triangle of prefix w, denoted by Tw, is the triangle built on the fundamental
interval Iw := [bw, cw] corresponding to w,

Tw := {(u, t) : bw ≤ u ≤ t ≤ cw} = (Iw × Iw) ∩ T .

Figure 10 represents the fundamental triangles for two memoryless sources.

3.3. An expression for the mean number of symbol comparisons. The
second object of our analysis is the density of the algorithm A, which measures the
number of key–comparisons performed by the algorithm.
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Number of symbol
comparisons needed
for inserting F= 16

= 7 for comparing to A
+ 8 for comparing to B

+ 1 for comparing to C

Figure 9. The BST built on the set described in Figure 6 – The
cost for inserting key F .

Figure 10. The fundamental triangles for two memoryless
sources- on the left the unbiased source on {a, b}– on the right,
the memoryless source with pa = 1/2, pB = 1/6, pc = 1/3.

Definition 6. The density of an algorithm A which compares words from the same
probabilistic source S is defined as follows, in each probabilistic model of interest:
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(i) In the model Bn,
φn(u, t) du dt := “the mean number of key–comparisons performed by A between

words M(u′),M(t′), with u′ ∈ [u, u + du] and t′ ∈ [t, t + dt], when
the input sequence X is any sequence of the model (Bn,S) which con-
tains two words M(u′),M(t′).”

(ii) In the model Pz,
φ̃z(u, t) du dt := “the mean number of key–comparisons performed by A between

words M(u′),M(t′), with u′ ∈ [u, u + du] and t′ ∈ [t, t + dt], when
the input sequence X is any sequence of the model (Pz,S) which con-
tains two words M(u′),M(t′).”

Our first result establishes a relation between the mean numbers of symbol-comparisons,
the densities and the fundamental triangles

Proposition 3. Fix a source on alphabet Σ, with fundamental triangles Tw. For
any integrable function g on the unit triangle T , define the integral transform

J [g] :=
∑

w∈Σ?

∫
Tw

g(u, t) du dt.

Then the mean numbers S(n), S̃(z) of symbol comparisons performed by A in the
Bernouli model and in the Poisson model are equal to

S(n) = J [φn], S̃(z) = J [φ̃z]

where φn, φ̃z are the densities of algorithm A.

Proof. The number of symbol comparisons needed to compare two words M(u)
and M(t), is γ(u, t) + 1 and the mean numbers S(n), S̃(z) of symbol comparisons
performed by A satisfy

S(n) =
∫
T

[γ(u, t) + 1]φn(u, t) du dt, S̃(z) =
∫
T

[γ(u, t) + 1] φ̃z(u, t) du dt

where φn(u, t), φ̃Z(u, t) are the densities of the algorithm. The useful identity∑
`≥0

(` + 1)1[γ=`] =
∑
`≥0

1[γ≥`]

holds for any integer-valued random variable γ (1A is the indicator of A). With
(20), this ends the proof. �

3.4. Computation in the Poisson model. It is then essential to characterize
the words which are compared by each algorithm. For a given algorithm, we define
the level of an element b of the array B (denoted by lev(b)), as the level of the
recursion where it is chosen as the pivot. This is thus the level of the pivot in the
BST associated. If it is never chosen as a pivot, we let lev(b) = +∞. The following
property will be important in our study:

Lemma 2. Two elements a, c (with a < c) of the array B are compared by
QuickSort(B) if and only if a or c is the pivot of smallest level in the set {x ∈
B; x ∈ [a, c]}. Two elements a, c (with a < c) of the array B are compared
by QuickVal(B, b) if and only if a or c is the pivot of smallest level in the set
{x ∈ B; x ∈ [min(a, b),max(b, c)]}.
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There is no such characterization for QuickSelect. But we will “replace” the al-
gorithm QuickSelect by the algorithm QuickVal previously described. More pre-
cisely, we call QuickValα the QuickVal algorithm, when used to seek the rank of the
word M(α). As the α–quantile of a random set of words of large enough cardinality
is, with high probability, close to the word M(α), the behaviours of QuickValα(n)
and QuickQuantα(n) should be asymptotically similar. This is indeed the case, as
we will see it later.
The following statement shows that the Poissonized densities relative to QuickSort
and QuickValα admit simple expressions, which in turn entail nice expressions for
the mean value S̃(Z) in this Poisson model, via the equality S̃(Z) = J [φ̃Z ].

Theorem 3. [Mean costs for QuckSort and QuickVal in the Poisson model] Set
f1(θ) := θ−2[e−θ − 1 + θ]. The mean numbers of comparisons of QuickSort and
QuickValα in the Poisson model Pz satisfy

B̃(z) = 2z2J [f1(z(t− u))], Ṽ (α)(z) = 2z2 J [f1(z(max(t, α)−min(u, α)))]

Proof. We begin with the case of QuickSort. The probability that M(u′) and
M(t′) are both keys for some u′ ∈ [u, u + du] and v′ ∈ [v + dv] is zdu · zdt, since
the two intervals are disjoint. Conditionnally, given that M(u′) and M(t′) are
both keys of a fixed sequence X , they are compared if and only if M(u′) or M(t′)
is chosen as the first pivot (with respect to the recursion level) amongst the set
M := {M(z) ∈ X ; z ∈ [u′, t′]}. The cardinality of the “good” set {M(u′),M(t′)}
is 2, while the total cardinality ofM equals 2+N [u′, t′](X ), where N [u′, t′](X ) is the
number of keys of the sequence X strictly between M(u′) and M(t′). Then, for any
fixed sequence X of words which contains the words M(u′),M(t′), the probability
that M(u′) and M(t′) are compared is

2
2 + N [u′, t′](X )

≈ 2
2 + N [u, t](X )

.

To evaluate the mean value of this ratio in the Poisson model (when the sequence
X now varies), Lemma 1 states that, if we draw Pz i.i.d. random variables uni-
formly distributed over [0, 1], the number N(λ) of those that fall in an interval of
(Lebesgue) measure λ is Pλz distributed, so that

E
[

2
N(λ) + 2

]
=
∑
k≥0

2
k + 2

e−λz (λz)k

k!
=

2
λ2z2

f1(λz).

In the case of QuickValα, the proof is in the same vein. But, now, given that M(u′)
and M(t′) are both keys of a fixed sequence X , they are compared if and only if
M(u′) or M(t′) is chosen as the first pivot (with respect to the recursion level)
amongst the set

M := {M(z) ∈ X ; z ∈ [x′, y′]}, with x′ = min(u′, α), y′ := max(t′, α)

Then, the proof is the same as for QuickSort, when one replaces u by min(u, α)
and t by max(t, α). �
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3.5. Exact formula in the Bernoulli model. We now return to the model of
prime interest, where the number of keys is a fixed number n.

Theorem 4. [Mean costs of QuickSort and QuickVal in the Bernoulli model]
Assume that the Dirichlet series Λ(s) converges at s = 2. Then the mean values
associated with QuickSort and QuickValα can be expressed as

S(n) =
n∑

k=2

(
n

k

)
(−1)k$S(k), for n ≥ 2,

where $S(s) is a series of Dirichlet type, defined for <s ≥ 2. It depends on the
algorithm and the source and is called the mixed Dirichlet series. It is given by

$B(s) = 2J [(t−u)s−2)] = 2
Λ(s)

s(s− 1)
, $

(α)
V (s) = 2J [(max(t, α)−min(α, u))s−2)].

Proof. We let
x(u, t) := u, y(u, t) := t for QuickSort

x(u, t) := min(u, α), y(u, t) := max(t, α) for QuickValα.

By expanding f1, then exchanging the order of summation and integration, one
obtains

S̃(z) =
∞∑

k=2

(−1)k$(k)
zk

k!
, with $(k) := 2

∑
w∈Σ?

∫
Tw

(y(u, t)− x(u, t))k−2dudt.

Analytically, the previous form is justified as soon as the integral defining $(2) is
convergent. Remark that, in the case of Quicksort, each integral on each funda-
mental triangle can be easily easily computed∫

Tw

(t− u)k−2dudt =
1

k(k − 1)
pk

w so that $B(k) =
2

k(k − 1)
Λ(k).

Then, in both cases, since S(n) is related to S̃(z) via the relation of algebraic
depoissonisation

S(n) = n! Coeff of znin
(
ezS̃(z)

)
,

it can be easily recovered by a binomial convolution. �

4. General scheme for the analytical step.
Different classes of sources.

4.1. Two main ways towards the asymptotics. In the previous two sections,
we have obtained exact expressions for the mean values of parameters of interest,
in the Poisson model [Theorems 1 and 3] or in Bernoulli model [Theorems 2 and 4].
We wish to obtain now an asymptotic form for these mean values in the Bernoulli
model. There are two possible ways described in Figure 11. We have already
performed the Algebraic DePoissonisation (AlgDePo in shorthand) in Theorems 2
and 4, and we choose in this paper the way which uses the Rice Formula. If we
have chosen the alternative way, we should perform an analytic Depoissonisation
(AnDePo in shorthand).
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Mean Value AlgDePo Mean Value
in the Poisson model =⇒ in the Bernoulli model

Mellin

wwww�
wwww� Rice

Asymptotic Mean Value AnDePo Asymptotic Mean Value
in the Poisson model =⇒ in the Bernoulli model

Figure 11. Possible ways to obtain the asymptotic mean value in
the Bernoulli model from the exact mean value in the Poisson
model.

4.2. Rice formula. It transforms an alternate sum into an integral of the complex
plane.

Proposition 4. Let S(n) be a numerical sequence which can be written as

S(n) =
n∑

k=2

(
n

k

)
(−1)k$(k), for n ≥ 2.

Assume that the function $(s) is analytic in <(s) > C, with 1 < C < 2, and is
there of polynomial growth with order at most r. Then the sequence S(n) admits a
Nörlund–Rice representation, for n > r + 1 and any C < d < 2.

S(n) =
1

2iπ

∫ −d+i∞

−d−i∞
$(−s)

n!
s(s + 1) · · · (s + n)

ds

(21) =
1

2iπ

∫ −d+i∞

−d−i∞
$(−s)

Γ(n + 1)Γ(s)
Γ(n + 1 + s)

ds.

Proof. The residue theorem justifies the form

(22) S(n) =
1

2iπ

∫
R

$(−s)
n!

s(s + 1) · · · (s + n)
ds,

where R is a rectangle enclosing the points −2, . . . ,−n, whose right vertical line
<s = −d satisfies d > C. This representation is a priori valid for n ≥ 2. For n large
enough, i.e., n > r + 1, it is legitimate to push first the horizontal boundaries of R
to ±i∞, then the left-most boundary to −∞. We obtain in this way an integral
representation, now along the vertical line <s = −d. This concludes the proof. �

4.3. Possible behaviours for $(s). The idea is now to push the contour of inte-
gration in (21) to the right, past −1. This is why we have to consider the possible
behaviours for the function $(s) near <s = 1; more precisely on the left of the line
<s = 1. We will later show why the behaviours that are described in the following
definition arise in a natural way in the present study related to sources.

Definition 7. A function $(s) is
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Figure 12. Three possible domains where the function $(s) is
analytic and of polynomial growth.

(a) strongly–tame (S–tame in shorthand) if $(s) is meromorphic in <(s) >
1 − δ for some δ > 0, has only a pole (of order k0 ≥ 0) at s = 1 and is of
polynomial growth in <(s) > 1− δ as |s| → +∞.

(b) Hyperbolically tame (H–tame in shorthand) if there exists an hyperbolic
region R, defined as, for some A,B, β > 0

R := {s = σ + it; |t| ≥ B, σ > 1− A

tβ
}
⋃
{s = σ + it; σ > 1− A

Bβ
, |t| ≤ B},

where $(s) has only a pole (of order k0 ≥ 0) at s = 1 and is of polynomial
growth in R as |s| → +∞.

(c) periodic if $(s) is meromorphic in <(s) > 1− δ for some δ > 0, has a pole
(of order k0 ≥ 0) at s = 1 and a family (sk) ( for k ∈ Z, k 6= 0) of simple
poles at points sk = 1 + 2kiπt with t 6= 0 and is of polynomial growth
in <(s) > 1− δ as |s| → +∞1.

In all the cases, the integer k0 is called the order, and, when they exist, the real δ
is the abscissa, and the real β is the exponent. Figure 12 shows the three possible
behavious.

4.4. Possible asymptotics behaviours for the mean costs. The sequence of
numerical values $(k) lifts into an analytic function $(s), whose singularities es-
sentially determine the asymptotic behaviour of the mean costs of interest. We
describe now a dictionary which transfers the analytical properties of $(s) near
<s = 1 into asymptotic properties of the mean cost.

Proposition 5. The following asymptotics hold for the sequence S(n), when it is
related to $(s) by the Rice formula (21):

(a) If $(s) is S–tame with order k0 and abscissa δ0, then, for any δ < δ0, one
has

S(n) = −Res
(

n!$(−s)
s(s− 1) · · · (s− n)

; s = −1
)

+ O(n1−δ)

= n

(
k0∑

k=0

ak logk n

)
+ O(n1−δ) (n → +∞),

1More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines

t = tk with tk →∞, and on vertical lines <(s) = 1− δ′ with some δ′ < δ
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(b) If $(s) is H–tame with order k0 and exponent β0, then, for any β with
β < 1/(β0 + 1), one has:

S(n) = −Res
(

n!$(−s)
s(s− 1) · · · (s− n)

; s = −1
)

+ n ·O(exp[−(log n)β ])

= n

(
k0∑

k=0

ak logk n

)
+ n ·O(exp[−(log n)β ])

(c) If $(s) is periodic with abscissa δ0 and order k0, then, for any δ < δ0, one
has:

S(n) = −
k=+∞∑
k=−∞

Res
(

n!$(−s)
s(s− 1) · · · (s− n)

; s = −sk

)
+ O(n1−δ)

= n

(
k0∑

k=0

ak logk n

)
+ n · Φ(n) + O(n1−δ),

where n ·Φ(n) is the part of the expansion brought by the family of the non
real poles located on the vertical line <s = 1.

Proof. The proof relies on the residue theorem, upon pushing the contour of inte-
gration in (21) to the right, past −1. More precisely, if $(s) is of moderate growth
in a region U , the line of integration <(s) = −d can be moved to the right until a
curve ρ, which lies inside the region U , with residues inside the region U taken into
account. If $(s) has a pôle of order k0 at s = 1, then $(−s)/(s + 1) has a pôle of
order k0 + 1, and this pole contributes with a quantity of the form

= n

(
k0∑

k=0

ak logk n

)
.

In cases (a) or (c), the curve ρ can be chosen as a vertical line of equation σ+1 = δ
with δ < δ0. In case (b), the curve ρ can be chosen as the curve of equation
σ + 1 = (A/2)t−β0 . The remainder of the proof is devoted to the computation of
the integral∫

ρ

$(−s)
n!

s(s + 1) · · · (s + n)
ds =

∫
ρ

$(−s)
Γ(n + 1)Γ(s)
Γ(n + 1 + s)

ds

More precisely, we wish to prove that, if $(−s) is of polynomial growth on the
curve ρ as |s| → ∞, this integral is O(n1−δ) in cases (a) and (c) and of order
O(n exp[−(log n)β ]) with β < 1/(1 + β0) in case (b). This part of the proof can be
found in the appendix. �

In our analyses, the main Dirichlet series of interest are closely related to two Dirich-
let series, Λ(s) or Π(s) which are both expressed with the fundamental probabilities
pw of the source:

Λ(s) :=
∑

w∈Σ?

ps
w,

Π(s) :=
∞∑

k=0

πs
k, with πk := sup{pw; w ∈ Σk}..
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There are two types of problems: for QuickSelect and QuickVal, the last analytic
step will be based on analytical properties of the function Π(s), whereas, for all
the other analyses, this step will be based on analytical properties of the function
Λ(s). Many probabilistic properties of the source can be expressed as regularity
properties of these functions Λ(s) or Π(s), when <s is close to 1.

4.5. Π-tame sources. This type of sources will intervene in the analysis of the
algorithms QuickSelect and QuickVal.

Definition 8. A source is Π-tame of abscissa δ (with δ > 0) if the function Π(s)
is S–tame, of order k0 = 0 and of abscissa δ.
A sufficient condition for a source to be Π-tame is : There exist constants (A, γ)
with A > 0, γ > 1 for which πk ≤ Ak−γ . In this case, the abscissa δ satisfies
δ < 1 − (1/γ). This condition is weak, so that most of the natural sources are
Π–tame.
The following result describes the nice analytic behaviour of the mixed Dirichlet
series of QuickVal as soon as the source is Π–tame:

Proposition 6. The mixed series $(s) of QuickValα relative to a Π–tame source
with abscissa δ0 is analytic and bounded in <(s) ≥ 1 − δ where δ is any strictly
positive real which satisfies δ < δ0

4.6. Λ-tame sources. This type of sources will intervene in all the other analyses,
where the function $(s) is closely related to Λ(s).
In the following definition, we describe possible behaviours of this function Λ.

Definition 9. [Tame Sources.] A source is

(a) tame if the function s 7→ Λ(s) is analytic on <s > 1 and meromorphic on
<s ≥ 1.

(b) entropic, if the function s 7→ Λ(s) admits at s = 1 a simple pole, with a
residue equal to 1/h(S), where h(S) is the entropy of the source already
defined in (2)

h(S) := lim
k→∞

−1
k

∑
w∈Σk

pw log pw = − lim
k→∞

−1
k

d

ds
Λ(k)(s)|s=1

A source, which is tame and entropic is

(c) S–tame if Λ(s) is S–tame.
(d) H–tame if Λ(s) is H–tame.
(e) Λ–periodic if Λ(s) is periodic

The following two propositions show that all the simple sources fulfill properties
(a) and (b). They also discuss the case of a subclass of dynamical sources, the
dynamical sources of the Good Class. See the appendix.

Proposition 7. Any simple source (memoryless source or irreducible aperiodic
Markov chain) or any dynamical source of the Good Class is tame and entropic.

Proof. We study the first two properties of the previous definition for simple sources
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(a) Tame. First, for any γ > 0, and for any s with <s ≥ 1 + γ, one has

|λ(s)| ≤ λ(1 + γ) < 1, ‖P k(s)‖ ≤ ‖P k(1 + γ)‖ so that r(s) ≤ r(1 + γ)

where r(s) denotes the spectral radius of the matrix P (s). Furthermore, the spectral
radius r(1 + γ) is equal to the dominant eigenvalue λ(1 + γ), since the matrix
P (1 + γ) is positive, irreducible and aperiodic. Since the matrix P (1 + γ) satisfies
P (1 + γ) ≤ pγP (1), with p := min{pij , pi,j > 0}, the inequality r(1 + γ) ≤ pγ < 1
holds.
Since the functions s 7→ λ(s) (for memoryless sources) or s 7→ P (s) (for Markov
chain) define analytic functions, the function Λ(s) is meromorphic, with a set of
poles, equal to

Z = {s; 1− λ(s) = 0} (memoryless case)

Z = {s; det(I − P (s)) = 0} (Markov chain).

(b) Entropic. For any real s, the matrix P (s) is positive, irreducible and aperiodic,
and it has a dominant eigenvalue denoted by λ(s). Furthermore, in both cases
(memoryless source or Markov chain), the derivative map λ′(1) is not zero, and the
equality λ(1) = 1 holds.

�

4.7. Tameness of simple sources. Always for simple sources, we now describe
the possible location of poles of the function Λ and we are more precisely interested
in the possible existence of regions (of hyperbolic shape) which contain no other
poles than the pole s = 1.

Proposition 8. The simple sources may have three different possible behaviours.
They are never S–tame, but they may be Λ–periodic, or H–tame. There exists a
precise characterization for each situation.

Proof. To a family of probabilities P = (p1, p2, . . . , pr), we associate the logarithms
wi := | log pi| and, for each pair (k, j) which satisfies 1 ≤ k, j ≤ r, the ratio
αk,j := wj/wk. The following classical result proves that a memoryless source of
probabilities P is Λ-periodic if and only all the real numbers αk,j are rational. More
precisely

The following conditions are equivalent:

(a) All the real numbers αk,j are rational
(b) The intersection Z

⋂
{<s = 1} contains a point s 6= 1.

(c) There exists τ > 0 for which the following equality holds

Z
⋂
{<s = 1} = 1 + iτZ

(d) The function λ(s) is periodic of period iτ .

The classification periodic/aperiodic depends on the arithmetic properties of P.

– A memoryless source is periodic if and only there exists an algebraic integer
a < 1 for which all the probabilities pi belong to the semi-group generated
by a.
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– A Markov chain irreducible and aperiodic, whose transition matrix is P , is
periodic if there exists an algebraic integer a and a vector of positive reals
(ν1, ν2, . . . νr) for which the matrix P is written as P = D−1QD, where D is
the matrix whose diagonal is (ν1, ν2, . . . νr) and all the nonzero coefficients
of the matrix Q belong to the group generated by a.

We focus now on memoryless sources, defined by the vector P = (p1, p2, . . . , pr),
which are not Λ-periodic. The intersection Z ∩{s; <s = 1} only contains the point
s = 1, but there exist points of Z which are arbitrary close to the vertical line
<s = 1. This entails that a simple source is never strongly tame. In the aperiodic
case, there is, amongst all the reals αk,j , at least one real αk,j which is irrational,
and it is then possible to define the irrationnality exponent of the family αk,j , which
is denoted by µ(P). Such an exponent measures the degree of approximability of
the family α by rationals. A source for which µ(P) is finite is called diophantine.
In particular, an irrational number α is diophantine if there exist η > 0 and M > 0
for which

∀(p, q) ∈ Z× N?,

∣∣∣∣α− p

q

∣∣∣∣ > M

q2+η
.

The second characterisation is as follows:
A memoryless source is H–tame if and only it is diophantine. Moreover, there is
a relation between the exponent β of H–tameness and the irrationnality exponent
µ(P): one can choose as β any real strictly greater than 2µ(P)− 2. �

4.8. Tameness of dynamical sources. There exist natural instances of dynam-
ical sources which are S–tame, or H–tame. A dynamical source can be Λ–periodic
only if it “resembles” a memoryless sources. See the appendix for definitions of
these notions.

Theorem 5. All the sources of the Good-UNI Class are S–tame. All the sources of
the Good-DIOP Class are H–tame. The only sources of the Good Class which are
periodic are the sources which are conjugated to sources with affine branches.

5. Precise statements and final proofs of the main results.

We return to the initial problems –obtaining the asymptotic mean values of the
main parameters of interest. We conclude the study and state the precise results.

5.1. Analysis of the QuickSelect Algorithm. We begin by analysing QuickVal,
then we return to QuickQuant.
Analysis of QuickValα. In this case, the Dirichlet series of interest is

$(s)
s− 1

=
2

s− 1
J [(max(α, t)−min(α, u))s−2)] .

Proposition 6 entails that $(s) is analytic at s = 1. Then, the integrand in (21) has
a simple pole at s = 1, brought by the factor 1/(s + 1) and Proposition 4 applies
as soon as the source S is Π–tame. Thus, for δ < δ0 (where δ0 is the abscissa of
Π–tameness), one has :

(23) V (α)
n = ρS(α)n + O(n1−δ).
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The three possible expressions of the function (u, t) 7→ max(α, t)−min(α, u) on the
unit triangle give rise to three intervals of definition for the function H defined in
Theorem 6 (respectively, ]−∞,−1/2], [−1/2,+1/2], [1/2,∞[).
Analysis of QuickQuantα. The main chain of arguments connecting the asymptotic
behaviours of QuickValα(n) and QuickQuantα(n) is the following.
(a) The algorithms are asymptotically “similar enough”: if X1, . . . , Xn are n i.i.d
random variables uniform over [0, 1], then the α–quantile of set X is with high
probability close to α. For instance, it is at distance at most (log2 n)/

√
n from α

with an exponentially small probability (about exp(− log2 n)).
(b) The function α 7→ ρS(α) is Hölder with exponent c > δ.
(c) The error term in the expansion (23) is uniform with respect to α.

Theorem 6. [Analysis of QuickQuant [40] (2009)] For any Π–tame source of
abscissa δ0, the mean number of symbol comparisons used by QuickQuantα(n) sat-
isfies, with any δ < δ0,

Q(α)
n = ρS(α) n + O(n1−δ), with ρS(α) =

∑
w∈Σ?

pw L

(
|α− µw|

pw

)
.

The real µw is the middle of the fundamental interval µw = (1/2)(p(+)
w + p

(−)
w ).

The function L is an even function given by L(y) = 2[1 + H(y)], which involves a
modified entropy function H expressed with y+ := (1/2) + y, y− = (1/2)− y under
the form

H(y) =

 −(y+ log y+ + y− log y−), if 0 ≤ y < 1/2
0, if y = 1/2

y+(log |y+| − log |y−|), if y > 1/2.

There are some particular cases for the constant ρS(α).

Constants for QuickMin (α = 0 → ε = +) and QuickMax (α = 1 → ε = −)

c
(ε)
S := 2

∑
w∈Σ?

pw

[
1− p

(ε)
w

pw
log

(
1 +

pw

p
(ε)
w

)]
.

Constant for QuickRand cS =
∫ 1

0

ρS(α)dα

cS =
∑

w∈Σ?

p2
w

2 +
1
pw

+
∑
ε=±

log

(
1 +

p
(ε)
w

pw

)
−

(
p
(ε)
w

pw

)2

log

(
1 +

pw

p
(ε)
w

) .

The constants of the analysis for the binary source are

c
(+)
B = c

(−)
B = c

(ε)
B

c
(ε)
B = 4 + 2

∑
`≥0

1
2`

+ 2
∑
`≥0

1
2`

2`−1∑
k=1

[
1− k log

(
1 +

1
k

)]

cB =
14
3

+ 2
∞∑

`=0

1
22`

2`−1∑
k=1

[
k + 1 + log(k + 1)− k2 log

(
1 +

1
k

)]
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The plot of α 7→ κ(α)

.....

To be compared

to the plots of α 7→ ρ(α)

for four memoryless sources

– three unbiased, r = 2, 3, 4

– one biased (1/3, 2/3)

Figure 13. The curve α 7→ ρ(α) is a fractal deformation of the
curve α 7→ κ(α), where κ(α) is the constant relative to the number
of key–comparisons in QuickQuantα.

Numerically, c
(ε)
B = 5.27937......, cB = 8.20731......

To be compared to the constants of the number of key–comparisons κ = 2 or κ = 3.

We now conclude our discussion for tree parameters : size of a Trie, and various
path lengths for Trie and the path length for Bst. We first begin by the three
parameters –size, path-length of an array–trie, path-length of a Bst – whose series
$(s) directly expresses with the Dirichlet series Λ(s).

5.2. Analysis of the parameters for Trie and Bst: Size and (plain) path-
lengths. Recall that in these cases, the Dirichlet series $(s) of interest are

(s− 1)Λ(s), sΛ(s), 2
Λ(s)

s(s− 1)
.

Then, if the source is tame and entropic, the integer k0 equal 0 for the size R, 1
for the path length C of the array–trie, and finally 2 for the path-length B of the
BST. Moreover, the dominant term in the asymptotic expansion equals

1
h(S)

n,
1

h(S)
n log n,

1
h(S)

n log2 n.

If the source is Λ-periodic, the other poles located on <s = 1 provide the periodic
term nP (log n), in the form of a Fourier series. This term adds to the dominant
term for the size R, whereas it intervenes in a subdominant term for the two path-
lengths C(for the array-trie) and B (for the BST). This leads to the following
result:

Theorem 7. [Analysis of the size of a trie, the path-length of the array–trie, the
path-length for the BST, [7] (2001) – [40] (2009)] Consider n words independently
drawn from a Λ-tame source S with entropy h(S). Then, the mean size R(n) of
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the trie, the mean path-length C(n) of the trie, the mean symbol-path-length B(n)
of the BST satisfy, for some constants a, b, c which depend on the source

R(n) =
1

h(S)
n + R1(n) C(n) =

1
h(S)

n log n + an + C1(n)

B(n) =
1

h(S)
n log2 n + b n log n + c n + B1(n).

and the remainder terms R1(n), C1(n), B1(n) satisfy the following:

(a) If the source is S-tame, with abcsissa δ0, then, they are of order O(n1−δ) ,
for any δ < δ0.

(b) If the source is H-tame, with exponent β0, then they are are of order O(n ·
exp[−(log n)β ]), for any β < 1/(1 + β0).

(c) If the source is Λ-periodic, with abcsissa δ0, then, they are of the form
n ·P (log n) + O(n1−δ), for any δ < δ0. Here P (u) is a periodic function of
small amplitude.

5.3. Analysis of the Trie parameters: path-lengths of the list–trie and the
bst–trie. Here, Theorem 4 provides the exact expressions of the mixed Dirichlet
series

$L(s) =
∑

w∈Σ∗

ps
w KL(s, w) with KL(s, w) =

∑
i∈Σ

P[>i]|w ps−1
i|w

$A(s) = 2
∑

w∈Σ∗

ps
w KA(s, w) with KA(s, w) =

∑
(i,j)∈Σ2

i<j

pi|w pj|w P s−2
[i,j]|w

An interesting (and easy) case arises when the source is stationary.

Definition 10. A source is stationary if for any prefixes (w,w′) the probabilities
pw′|w do not depend on w and are equal to pw′ .
A memoryless case, and a Markov chain where the initial probability is chosen as
the eigenvector of the matrix P are stationary. More generally, a dynamical source
of the Good Class is stationary if one chooses as initial density the unique density
which is fixed by the density transformer.
In this case, the expressions KL(s, w) and KA(s, w) do not depend on w, are denoted
by KL(s) and KA(s) and at s = 1, one has

KL(1) =
∑
i∈Σ

P[>i], KA(1) = 2
pipj

P[i,j]

and the mixed Dirichlet series $L(s) and $A(s) satisfy near s = 1

$L(s) ∼ KL(1) · Λ(s), $A(s) ∼ KA(1) · Λ(s).

In the case when the dynamical source belongs to the Good Class, and, even if the
initial density is not chosen as the invariant density ϕ, if one lets

K̂L(1) :=
∑
i∈Σ

P̂[>i], K̂A(1) = 2
p̂ip̂j

P̂[i,j]

with p̂w =
∫
Iw

ϕ(t)dt,

the mixed Dirichlet series $L(s) and $A(s) satisfy near s = 1

$L(s) ∼ K̂L(1) · Λ(s), $A(s) ∼ K̂A(1) · Λ(s).
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Theorem 8. [Analysis of path-lengths of the hybrid tries : list-trie and bst-trie
[7](2001)] Consider n words independently drawn from a Λ-tame source S with
entropy h(S). Assume moreover that the source is stationary. Then, the mean
path-lengths of the hybrid tries, L(n) for the list-trie, A(n) for the bst-trie satisfy

L(n) =
KL(S)
h(S)

n log n + bLn + L1(n) A(n) =
KA(S)
h(S)

n log n + bAn + C1(n).

Here, the constants KL(S) and KA(S) are defined as

KL(S) =
∑
i∈Σ

P[>i], KA(S) = 2
pipj

P[i,j]

the constants bL, bA depend both on the source and the structure, and the remainder
terms L1(n), A1(n) satisfy the following:

(a) If the source is S-tame, with abcsissa δ0, then, they are of order O(n1−δ) ,
for any δ < δ0.

(b) If the source is H-tame, with exponent β0, then they are are of order O(n ·
exp[−(log n)β ]), for any β < 1/(1 + β0).

(c) If the source is Λ-periodic, with abcsissa δ0, then, they are of the form
n ·P (log n) + O(n1−δ), for any δ < δ0. Here P (u) is a periodic function of
small amplitude.

6. Appendix

We gather in the appendix some technical results about the Rice integral (useful
for the proof of Proposition 5. We also describe results about dynamical sources of
the Good Class.

6.1. Estimates for the Rice integral. This section is concerned with two esti-
mates of the quantity

(24)
n!

s(s + 1) · · · (s + n)
,

which are central in the analysis of Nörlund–Rice integrals2.

Lemma 3. For s outside of a fixed sector containing the negative real axis in its
interior, and under the condition

|s| ≤
√

n,

one has, as n →∞:

(25)
n!

s(s + 1) · · · (s + n)
= n−sΓ(s)

(
1 + O

(
1√
n

)
+ O

(
s2

n

))
.

Also. for any s fixed with s 6∈ Z≥0, one has

(26)
n!

s(s + 1) · · · (s + n)
= n−sΓ(s)

(
1 + O

(
1
n

))
.

2Thanks to Philippe Flajolet for this subsection.
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Proof. As it is well known, Stirling’s formula holds in the complex plane, provided
a sector around the negative real axis is avoided.Under this condition, one has

(27) Γ(w + 1) = wwe−w
√

2πw

(
1 + O

(
1
n

))
, |w| → +∞.

Regarding (25), we have

(28)
n!

s(s + 1) · · · (s + n)
=

Γ(n + 1)
Γ(s + n + 1)

Γ(s),

so that it suffices to study the first factor of (28). By Stirling:

Γ(n + 1)
Γ(s + n + 1)

=
nne−n

√
2πn

(s + n)s+ne−s−n
√

2π(s + n)

(
1 + O

(
1
n

))
= exp [n log n− (s + n) log(s + n)− s]

(
1 + O

(
1√
n

))
= exp [−s log n− (s + n) log(1 + s/n)− s]

(
1 + O

(
1√
n

))
.

In the region under consideration, we have s/n = O(1/
√

n), which is a small quan-
tity, so that log(1 + s/n) = s/n + O(s2/n2). Consequently,

Γ(n + 1)
Γ(s + n + 1)

= n−s exp
[
O

(
s2

n

)](
1 + O

(
1√
n

))
= n−s

(
1 + O

(
1√
n

)
+ O

(
s2

n

))
,

and the estimate (25) results. The proof of (26) is similar, even simpler, via the
relation s/n = O(1/n). �

The asymptotic study requires estimates valid for both large n and large |s|, this in
a way that should exhibit a suitable decay in both variables. We state:

Lemma 4. Fix any number m > 0. Then there exists a computable constant
Km > 0 such that for n large enough, s = b + it, b fixed and t ≥

√
n, one has

n!
s(s + 1) · · · (s + n)

≤ Km

tm
e−L

√
n,

with L = log(2/
√

3) .= 0.14384.

Proof. The proof is done for b = 0, but it extends to any value b fixed. Choose an
integer m > 0 and set

A =
⌊√

n
⌋
.

We write

(29)
n!

s(s + 1) · · · (s + m)
=

1
s

m∏
a=1

a

s + a

m+A∏
a=m+1

a

s + a

n∏
a=m+A+1

a

s + a
.

For the first product in (29), we have by trivial bounds:

(30)

∣∣∣∣∣
m∏

a=1

a

s + a

∣∣∣∣∣ ≤ m!
tm

.
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For the second product in (29), we consider the right triangle with vertices at
−a, 0, s. The angle at a varies from nearly π/2 when a is close to the lower
bound m + 1 to nearly π/4 when a is close to its upper limit m + A; at any
rate, this angle is, for n large enough, at least π/6. Consequently, we have∣∣∣∣ a

s + a

∣∣∣∣ ≤ cos
π

6
=
√

3
2

,

resulting in

(31)

∣∣∣∣∣
m+A∏

a=m+1

a

s + a

∣∣∣∣∣ <
(√

3
2

)A

.

For the third product in (29), we plainly use the triangle inequality, which gives
|a/(s + a)| < 1 and

(32)

∣∣∣∣∣
n∏

a=m+A+1

a

s + a

∣∣∣∣∣ < 1.

The collection of the three bounds (30), (31), and (32) yields the statement with,
additionally, Km = 3

2m!. �

Here is finally a consequence of this estimates regarding Nörlund–Rice integrals
applied to functions of at most polynomial growth.

Proposition 9. (i) Consider a vertical line <(s) = α with α 6∈ Z≤0 and assume
that ω(s) be continuous on <(s) = α and be of at most polynomial growth there:
ω(s) = O(sr) as |s| → ∞ on <(s) = α. Then, the integral on the vertical <s = α
admits the following estimate, as n →∞,∫

<s=α

ω(s)
n!

s(s + 1) · · · (s + n)
ds = O

(
n−α

)
.

(ii) Consider a curve ρ of hyperbolic type, namely of the form

ρ := {s = σ + it; |t| ≥ B, σ + 1 =
A

tβ0
}
⋃
{s = σ + it; σ + 1 =

A

Bβ0
, |t| ≤ B},

for some strictly positive constants (A,B, β0) and assume that ω(s) be continuous
on ρ and be of at most polynomial growth there: ω(s) = O(sr) as |s| → ∞. Then
the integral on the curve ρ admits the following estimate, as n →∞,∫

ρ

ω(s)
n!

s(s + 1) · · · (s + n)
ds = n ·O

(
exp[−(log n)β

)
, with β <

1
1 + β0

Proof. We only need to consider the upper half-plane. We use T =
√

n as a cut-off
point and decompose earch of the curves –the vertical line or the hyperbolic curve
ρ– into two parts.
Let us begin with the case of the vertical line <s = α, and decompose∫ α+i∞

α

=
∫ α+iT

α

+
∫ α+i∞

α+iT

.
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First, near the real axis, Lemma 3 applies to give

(33)
∫ α+iT

α

ω(s)
n!

s(s + 1) · · · (s + n)
ds =

∫ α+iT

α

n−sΓ(s)ω(s)
(
1 + O(n−1)

)
ds.

Taking into account the fact that |n−s| = n−α, the last integral is O(n−α), given
the fast decay of Γ(s) which more than compensates for the polynomial growth
of ω(s).
Second, near imaginary infinity, Lemma 4 gives

(34)

∣∣∣∣∫ α+i∞

α+iT

ω(s)
n!

s(s + 1) · · · (s + n)
ds

∣∣∣∣ < Km

∫ ∞

T

O(tr) ·O(t−m) · e−L
√

ndt

= O
(
e−L

√
n
)

,

for n large enough, provided m has been chosen such that m > r + 2. The com-
bination of (36) and (35) yields the claimed estimate in the case of the vertical
line.
Consider now the case of an hyperbolic curve, and consider the two parts of the
curve ρ−T (near the real axis) and ρ+

T (near imaginary infinity). In the case of the
curve ρ+

T , which can be compared to a vertical line, Lemma 4 gives

(35)

∣∣∣∣∣
∫

ρ+
T

ω(s)
n!

s(s + 1) · · · (s + n)
ds

∣∣∣∣∣ < Km

∫ ∞

T

O(tr) ·O(t−m) · e−L
√

ndt

= O
(
e−L

√
n
)

,

for n large enough, provided m has been chosen such that m > r + 2.
Now, near the real axis, Lemma 3 applies to give

(36)
∫

ρ−T

ω(s)
n!

s(s + 1) · · · (s + n)
ds =

∫
ρ−T

n−sΓ(s)ω(s)
(
1 + O(n−1)

)
ds.

Taking into account the fact that (we let s := σ + it)

|n−s| = n−σ = n exp[−At−β0 ], |$(s)Γ(s)| ≤ exp[−Kt],

for some K > 0, given the fast decay of Γ(s) which more than compensates for the
polynomial growth of ω(s). If we let L := log n, the modulus of the integrand is at
most n exp[−Kt − ALt−β0 ]. When n (and then L) is fixed, the maximum of this
function is reached for t = O(L1/(1+β0)) and the maximum is of order exp[−(log n)β ]
with β < 1/(1+β0). Using the same principles as in the Laplace method, we obtain
the estimate∫

ρ−T

ω(s)
n!

s(s + 1) · · · (s + n)
ds = nO(exp[−(log n)β ]) with β < 1/(1 + β0)

�

6.2. Tameness of dynamical sources of the Good Class. Properties of
the Good-UNI Class and Good-DIOP Class. Here, we consider particular
complete dynamical systems, for which it will be possible to prove that the quasi-
inverse has nice spectral properties. This will entail nice properties on the function
Λ(s), from which one deduces that the associated dynamical source will be S– tame.

We first define the Good Class:
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Definition 11. [Good Class] A dynamical system of the interval (I, T ) belongs to
the good class if it is complete, with a set H of inverse branches which satisfies the
following:

(G1) The set H is uniformly contracting, i.e., there exists a constant ρ < 1, for
which

∀h ∈ H, ∀x ∈ I, |h′(x)| ≤ ρ.

(G2) There is a constant A > 0, so that every inverse branch h ∈ H satisfies
|h′′| ≤ A|h′|.

(G3) There exists σ0 < 1 for which the series
∑

h∈H βs
h converges on <s > σ0.

The bounded distortion property (G2) and the property (G3) are always fulfilled
for a finite alphabet Σ. Properties (G1) and (G2) together imply the existence of
a constant K > 0 for which the following inequalities are true for all x, y ∈ I and
all h ∈ H?:

(37) |h′′(x)| ≤ K|h′(x)| |h′(x)| ≤ K|h′(y)|
∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ ≤ K|h′(x)|.

When the dynamical system belongs to the Good Class, these operators admit
dominant spectral properties for s near the real axis, together with a spectral gap.
This implies that, for s near 1, the function Λ(s) is meromorphic for s with a small
imaginary part, and admits a simple pôle at s = 1. This proves that any system of
the Good Class gives rise to a source, which is both tame and entropic.

The UNI Condition. We first define a probability Prn on each set Hn ×Hn, in
a natural way: we let

Prn{(h, k)} := |h(I)| · |k(I)|,
where |J | denotes the length of the interval J . Furthermore, ∆(h, k) denotes the
“distance” between two inverse branches h and k of same depth, defined as

(38) ∆(h, k) = inf
x∈I

|Ψ′
h,k(x)| with Ψh,k(x) = log

∣∣∣∣h′(x)
k′(x)

∣∣∣∣ .
The distance ∆(h, k) is a measure of the difference between the “form” of the two
branches h, k. The UNI Condition, stated as follows, is a geometric condition which
expresses that the probability that two inverse branches have almost the same form
is very small:

Definition 12. [Condition UNI] A dynamical system (I, T ) satisfies the UNI
condition if its set H of inverse branches satisfies the following

(U1) For any a ∈]0, 1[, and for any integer n, one has Prn[ ∆ ≤ ρan] << ρan.
(U2) Each h ∈ H is of class C3 and for each integer n, there exists Bn for which

|h′′′| ≤ Bn|h′| for any h ∈ Hn.

Dynamical sources with affine branches and the UNI Condition. A source
with affine branches never satisfies the Condition UNI : in this case, the “distance”
∆ is always zero, and the probabilities of Assertion (U1) are all equal to 1. Con-
versely, a dynamical source of the Good Class which satisfies the condition UNI
cannot be conjugated to a source with affine branches, as it is proven by Baladi
and Vallée.
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Then, the condition UNI excludes all the simple sources, which cannot be S–tame.
The strength of the Condition UNI is due to the fact that this condition is sufficient
to imply strong tameness :

Theorem 9. [Dolgopyat, Baladi-Vallée, Cesaratto-Vallée] When the dynamical sys-
tem of the Good Class satisfies the condition UNI, it gives rise to a source which is
S–tame.
There are natural instances of sources that belong to the Good-UNI Class, for
instance the Euclidean dynamical system defined in (6), together with two other
dynamical systems, of the Euclidean type.

The Diophantine condition. The Good-UNI Class gathers systems which are
quite different from systems with affine branches. The DIOP Condition “copies”
the behaviour of memoryless sources, when they are H–tame. In this case, we recall
that the quotients

αk,j :=
log pi

log pk

define diophantine reals, namely reals whose irrationnality exponent is finite.
The DIOP condition is an arithmetical condition, which generalises this condition
to a system of the Good Class. For an inverse branch h?, one denotes by h? its
unique fixed point (It is easy to prove that such a point exists and is unique for a
system of the Good Class), by p(h) its depth, and one lets, for h, k, ` in H?,

a(h) := log |h′(h?)|, b(h) =
a(h)
p(h)

, c(h, k) =
b(h)
b(k)

d(h, k, `) =
b(h)− b(k)
b(h)− b(`)

.

We can now state the definition of diophantine dynamical systems:

Definition 13. [2DIOP and 3DIOP] An irrational number α is diophantine if there
exist η > 0 and M > 0 for which

∀(p, q) ∈ Z× N?,

∣∣∣∣α− p

q

∣∣∣∣ > M

q2+η
.

A dynamical source is 2– diophantine ([2DIOP] in shorthand) f there exist two
branches h et k of H? for which the ratio c(h, k) is diophantine .
A dynamical source is 3– diophantine ([3DIOP] in shorthand) f there exist three
branches h, k and ` of H? for which the ratio d(h, k, `) is diophantine
These conditions are sufficient to entail H–tameness of associated sources:

Theorem 10. [Dologopyat-Naud-Melbourne- Roux - Vallée] A dynamic system of
the Good Class, with a finite number of branches, which is moreover 2DIOP gives
rise to a H–tame source. A dynamic system of the Good Class, with an infinite
number of branches, which is moreover 3DIOP gives rise to a H–tame source.

A little piece of history. Dolgopyat, in two seminal papers, introduces the Con-
ditions UNI and 2DIOP. He proves that, under these conditions, the quasi-inverse
of the plain transfer operator has nice properties in a region on the left of the line
{<s = 1}. When the UNI Condition holds, the region is a vertical strip, and when
the DIOP Condition holds, the region is of hyperbolic type. However, he does not
consider the case of an infinite number of branches, and his results are extended
to this case by Baladi and Vallée for the UNI condition, and by Melbourne in the
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case of the DIOP condition, who introduces the 3DIOP Condition. However, in
order to deal with the Dirichlet series Λ(s), one needs to extend the previous proofs
to the secant operator. This habe been done by Cesaratto and Vallée for the UNI
Condition, and there are works of progress of Roux and Vallée which extend the
results of Dolgopyat and Melbourne to the secant operator.
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