Chemins dans le quart de plan II

Kilian Raschel

Universität Bielefeld

Journées ALÉA 2011
1 Introduction and main results
 - Introduction
 - Results

2 Proofs
 - Explicit expression of the counting generating functions
 - Reduction to boundary value problems
 - Conformal gluing and uniformization
 - Nature of the counting generating functions

3 Conclusion
1 Introduction and main results
 • Introduction
 • Results

2 Proofs
 • Explicit expression of the counting generating functions
 • Reduction to boundary value problems
 • Conformal gluing and uniformization
 • Nature of the counting generating functions

3 Conclusion
1 Introduction and main results
 • Introduction
 • Results

2 Proofs
 • Explicit expression of the counting generating functions
 • Reduction to boundary value problems
 • Conformal gluing and uniformization
 • Nature of the counting generating functions

3 Conclusion
Counting the numbers of walks confined to the quarter plane

Let S be a step set

and let $q(i, j; n)$ be the number of paths:

- with increments in S;
Counting the numbers of walks confined to the quarter plane

Let S be a step set

and let $q(i, j; n)$ be the number of paths:

- with increments in S;
- confined to the quarter plane;
Counting the numbers of walks confined to the quarter plane

Let S be a step set

and let $q(i, j; n)$ be the number of paths:

- with increments in S;
- confined to the quarter plane;
Counting the numbers of walks confined to the quarter plane

Let S be a step set

and let $q(i, j; n)$ be the number of paths:

- with increments in S;
- confined to the quarter plane;
- having length n, starting from $(0, 0)$ and ending at (i, j).

Kilian Raschel

Chemins dans le quart de plan
Let S be a step set

and let $q(i,j;n)$ be the number of paths:
- with increments in S;
- confined to the quarter plane;
- having length n, starting from $(0,0)$ and ending at (i,j).

Let

$Q(x, y; t) = \sum_{i,j,n \geq 0} q(i,j;n)x^i y^j t^n$.

Kilian Raschel
Chemins dans le quart de plan
Counting the numbers of walks confined to the quarter plane

Let \(\mathcal{S} \) be a step set

and let \(q(i, j; n) \) be the number of paths:
- with increments in \(\mathcal{S} \);
- confined to the quarter plane;
- having length \(n \), starting from \((0, 0)\) and ending at \((i, j)\).

Let

\[
Q(x, y; t) = \sum_{i, j, n \geq 0} q(i, j; n)x^i y^j t^n.
\]

\(Q(x, y; t) \): explicit expression;
Counting the numbers of walks confined to the quarter plane

Let S be a step set

and let $q(i, j; n)$ be the number of paths:
- with increments in S;
- confined to the quarter plane;
- having length n, starting from $(0, 0)$ and ending at (i, j).

Let

$$Q(x, y; t) = \sum_{i,j,n \geq 0} q(i, j; n)x^i y^j t^n.$$

- $Q(x, y; t)$: explicit expression;
- $Q(x, y; t)$: dependence on S, e.g., its nature (rational, algebraic, (non-)holonomic).
Class of the walks with small steps

\[S \subset \{-1, 0, 1\}^2 \setminus \{(0, 0)\}. \]

There are \(2^8\) such problems.
Class of the walks with small steps

\[S \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}. \]

There are \(2^8\) such problems.

Some of these \(2^8\) models are:

trivial;
Class of the walks with small steps

\[S \subset \{-1, 0, 1\}^2 \setminus \{(0, 0)\}. \]

There are \(2^8\) such problems.

Some of these \(2^8\) models are:

- trivial;
- simple;
Class of the walks with small steps

$S \subset \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$. There are 2^8 such problems.

Some of these 2^8 models are:

- trivial;
- simple;
- intrinsic to a half plane;
Class of the walks with small steps

\[S \subset \{-1, 0, 1\}^2 \setminus \{(0, 0)\}. \]

There are \(2^8\) such problems.

Some of these \(2^8\) models are:

- trivial;
- simple;
- intrinsic to a half plane;
- symmetrical.
Class of the walks with small steps

\[S \subset \{-1, 0, 1\}^2 \setminus \{(0, 0)\}. \]

There are \(2^8\) such problems.

Some of these \(2^8\) models are:

- trivial;
- simple;
- intrinsic to a half plane;
- symmetrical.

Finally, it remains 79 problems! [BMM]
The functional equation

The kernel:

\[K(x, y; t) = \sum_{(k, \ell) \in S} x^k y^\ell - \frac{1}{t} \]

The functional equation for \(Q(x, y; t) \):

\[K(x, y; t)Q(x, y; t) = K(x, 0; t)Q(x, 0; t) + K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]
The functional equation

The kernel:

\[K(x, y; t) = xyt \left[\sum_{(k, \ell) \in S} x^k y^\ell - 1/t \right] . \]

The functional equation for \(Q(x, y; t) \):

\[K(x, y; t)Q(x, y; t) = \]
\[K(x, 0; t)Q(x, 0; t) + K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]
The group of the walk

\[
\sum_{(k, \ell) \in S} x^k y^\ell = \begin{cases}
B_{-1}(y)x^{-1} + B_0(y) + B_{+1}(y)x^{+1} \\
A_{-1}(x)y^{-1} + A_0(x) + A_{+1}(x)y^{+1}
\end{cases}
\]
The group of the walk

\[\sum_{(k, \ell) \in S} x^k y^\ell = \begin{cases}
B_{-1}(y)x^{-1} + B_0(y) + B_{+1}(y)x^{+1} \\
A_{-1}(x)y^{-1} + A_0(x) + A_{+1}(x)y^{+1}
\end{cases} \]

is left unchanged by

\[\psi(x, y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y} \right), \quad \Phi(x, y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y \right) \]
The group of the walk

\[
\sum_{(k,\ell) \in S} x^k y^\ell = \begin{cases}
B_{-1}(y)x^{-1} + B_0(y) + B_{+1}(y)x^{+1} \\
A_{-1}(x)y^{-1} + A_0(x) + A_{+1}(x)y^{+1}
\end{cases}
\]
is left unchanged by \(\psi(x, y) = (x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y})\), \(\phi(x, y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y\right)\)
and thus by any element of the group \(\langle \psi, \phi \rangle\).
Examples

<table>
<thead>
<tr>
<th>Order 4;</th>
</tr>
</thead>
</table>

```latex
\text{Order 4;}
```

<table>
<thead>
<tr>
<th>Order 4;</th>
</tr>
</thead>
</table>

```latex
\text{Order 4;}
```
Examples

Order 4; order 6;
Examples

- Order 4;
- order 6;
- order 8;
Examples

Order 4; order 6; order 8; order ∞.

Kilian Raschel
Chemins dans le quart de plan
Examples

Order 4;
order 6;
order 8;
order ∞.

Classification of the 79 models [BMM]

- For 23 walks, $\langle \Psi, \Phi \rangle$ is finite;
- For 56 walks, $\langle \Psi, \Phi \rangle$ is infinite.
Existing results for the 23 finite group cases

<table>
<thead>
<tr>
<th>Group</th>
<th>Covariance</th>
<th>Walks</th>
<th>$Q(x, y; t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$= 0$</td>
<td>and 14 others</td>
<td>holonomic [BMM]</td>
</tr>
<tr>
<td>6</td>
<td>< 0</td>
<td></td>
<td>holonomic [BMM]</td>
</tr>
<tr>
<td>8</td>
<td>< 0</td>
<td></td>
<td>holonomic [BMM]</td>
</tr>
<tr>
<td>6</td>
<td>> 0</td>
<td></td>
<td>algebraic [BMM]</td>
</tr>
<tr>
<td>8</td>
<td>> 0</td>
<td></td>
<td>algebraic [BK]</td>
</tr>
</tbody>
</table>
Existing results for the 56 infinite group cases

- $5 = 2 + 3$ singular walks:
Existing results for the 56 infinite group cases

- $5 = 2 + 3$ singular walks:

Expression & nature (non-holonomic) of $Q(x, y; t)$ in [MR].
Existing results for the 56 infinite group cases

- $5 = 2 + 3$ singular walks:

Expression & nature (non-holonomic) of $Q(x, y; t)$ in [MR].

In progress.
Existing results for the 56 infinite group cases

- $5 = 2 + 3$ singular walks:

Expression & nature (non-holonomic) of $Q(x, y; t)$ in [MR].

In progress.

- 51 non-singular walks?
Existing results for the 56 infinite group cases

- $5 = 2 + 3$ singular walks:

 Expression & nature (non-holonomic) of $Q(x, y; t)$ in [MR].

 In progress.

- 51 non-singular walks [KR].
1 Introduction and main results
 • Introduction
 • Results

2 Proofs
 • Explicit expression of the counting generating functions
 • Reduction to boundary value problems
 • Conformal gluing and uniformization
 • Nature of the counting generating functions

3 Conclusion
For all walks,

\[K(x,0;t)Q(x,0;t) - K(0,0;t)Q(0,0;t) = \]
For all walks,

\[K(x,0; t) Q(x,0; t) - K(0,0; t) Q(0,0; t) = x Y_0(x; t) + \]
\[\frac{1}{2\pi i} \int_{x_1(t)}^{x_2(t)} u [Y_0(u; t) - Y_1(u; t)] \left[\frac{\partial_u w(u; t)}{w(u; t) - w(x; t)} - \frac{\partial_u w(u; t)}{w(u; t) - w(0; t)} \right] du, \]

where:

* \(Y_0(x; t) \) and \(Y_1(x; t) \) are the two roots of the kernel \(y \mapsto K(x,y; t) \).

* \(x_1(t) \) and \(x_2(t) \) are branch points of the algebraic function \(Y(x; t) \).

* \(w \) will be defined soon.
For all walks,

$$K(x, 0; t) Q(x, 0; t) - K(0, 0; t) Q(0, 0; t) = x Y_0(x; t) +$$

$$\frac{1}{2\pi i} \int_{x_1(t)}^{x_2(t)} u [Y_0(u; t) - Y_1(u; t)] \left[\frac{\partial_u w(u; t)}{w(u; t) - w(x; t)} - \frac{\partial_u w(u; t)}{w(u; t) - w(0; t)} \right] du,$$

where:

- $Y_0(x; t)$ and $Y_1(x; t)$ are the two roots of the kernel $y \mapsto K(x, y; t)$;
- $x_1(t)$ and $x_2(t)$ are branch points of the algebraic function $Y(x; t)$;
- w will be defined soon.
For all walks,

\[K(x,0; t)Q(x,0; t) - K(0,0; t)Q(0,0; t) = x Y_0(x; t) + \]

\[\frac{1}{2\pi i} \int_{x_1(t)}^{x_2(t)} u [Y_0(u; t) - Y_1(u; t)] \left[\frac{\partial_u w(u; t)}{w(u; t) - w(x; t)} - \frac{\partial_u w(u; t)}{w(u; t) - w(0; t)} \right] du, \]

where:

- \(Y_0(x; t) \) and \(Y_1(x; t) \) are the two roots of the kernel \(y \mapsto K(x, y; t) \);
- \(x_1(t) \) and \(x_2(t) \) are branch points of the algebraic function \(Y(x; t) \);
- \(w \) will be defined soon.
For all walks,

\[K(x,0; t)Q(x,0; t) - K(0,0; t)Q(0,0; t) = xY_0(x; t) + \]
\[\frac{1}{2\pi i} \int_{x_1(t)}^{x_2(t)} u [Y_0(u; t) - Y_1(u; t)] \left[\frac{\partial_u w(u; t)}{w(u; t) - w(x; t)} - \frac{\partial_u w(u; t)}{w(u; t) - w(0; t)} \right] du, \]

where:

- \(Y_0(x; t) \) and \(Y_1(x; t) \) are the two roots of the kernel \(y \mapsto K(x, y; t) \);
- \(x_1(t) \) and \(x_2(t) \) are branch points of the algebraic function \(Y(x; t) \);
- \(w \) will be defined soon.
A similar identity holds for

\[K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t); \]
A similar identity holds for

\[K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t); \]

\(Q(0, 0; t) \) is deduced by evaluation;
A similar identity holds for

\[K(0, y; t) Q(0, y; t) - K(0,0; t) Q(0,0; t); \]

- \(Q(0,0; t) \) is deduced by evaluation;

- \(Q(x, y; t) \) is obtained thanks to the functional equation:

\[
K(x, y; t) Q(x, y; t) = K(x, 0; t) Q(x, 0; t) + K(0, y; t) Q(0, y; t) - K(0,0; t) Q(0,0; t) - xy.
\]
A similar identity holds for

\[K(0, y; t)Q(0, y; t) - K(0,0; t)Q(0,0; t); \]

\(Q(0,0; t) \) is deduced by evaluation;

\(Q(x, y; t) \) is obtained thanks to the functional equation:

\[K(x, y; t)Q(x, y; t) = K(x,0; t)Q(x,0; t) + K(0, y; t)Q(0, y; t) - K(0,0; t)Q(0,0; t) - xy. \]

It remains to find \(w \)!
Results (3/4)

\[\langle \Psi, \Phi \rangle \text{ finite } \]
\[\sum_{(k, \ell) \in S} k\ell \leq 0 \] \[\Rightarrow \] \[w \text{ rational} \]
\[\langle \Psi, \Phi \rangle \text{ finite } \left\{ \sum_{(k,\ell) \in S} k\ell \leq 0 \right\} \Rightarrow w \text{ rational} \]
\[\langle \Psi, \Phi \rangle \text{ finite } \left\{ \sum_{(k, \ell) \in S} k \ell \leq 0 \right\} \Rightarrow w \text{ rational} \]

\[\langle \Psi, \Phi \rangle \text{ finite } \left\{ \sum_{(k, \ell) \in S} k \ell > 0 \right\} \Rightarrow w \begin{cases} \text{algebraic} \\ \text{non-rational} \end{cases} \]
Results (3/4)

\[\langle \Psi, \Phi \rangle \text{ finite } \sum_{(k, \ell) \in S} k\ell \leq 0 \Rightarrow w \text{ rational} \]

\[\langle \Psi, \Phi \rangle \text{ finite } \sum_{(k, \ell) \in S} k\ell > 0 \Rightarrow w \begin{cases} \text{algebraic} \\ \text{non-rational} \end{cases} \]
Results (3/4)

\[\langle \Psi, \Phi \rangle \text{ finite } \quad \sum_{(k, \ell) \in S} k\ell \leq 0 \] \Rightarrow \ w \text{ rational}

\[\langle \Psi, \Phi \rangle \text{ finite } \quad \sum_{(k, \ell) \in S} k\ell > 0 \] \Rightarrow \ w \begin{cases} \text{ algebraic} \\ \text{ non-rational} \end{cases}

\[\langle \Psi, \Phi \rangle \text{ infinite } \Rightarrow \ w \text{ non-holonomic} \]
Results (3/4)

- \(\left\langle \Psi, \Phi \right\rangle \) finite \(\sum_{(k, \ell) \in S} k\ell \leq 0 \) \(\Rightarrow \) \(w \) rational

- \(\left\langle \Psi, \Phi \right\rangle \) finite \(\sum_{(k, \ell) \in S} k\ell > 0 \) \(\Rightarrow \) \(w \) \(\{ \) algebraic non-rational \(\} \)

- \(\left\langle \Psi, \Phi \right\rangle \) infinite \(\Rightarrow \) \(w \) non-holonomic
Results (3/4)

\[\langle \Psi, \Phi \rangle \text{ finite } \sum_{(k,\ell) \in S} k\ell \leq 0 \Rightarrow w \text{ rational} \]

\[\langle \Psi, \Phi \rangle \text{ finite } \sum_{(k,\ell) \in S} k\ell > 0 \Rightarrow w \begin{cases} \text{algebraic} \\ \text{non-rational} \end{cases} \]

\[\langle \Psi, \Phi \rangle \text{ infinite } \Rightarrow w \text{ non-holonomic} \]

\[w \text{ explicit } [\wp\text{-Weierstrass functions}] \]
Comparison between the nature of Q and that of w & \tilde{w}:

<table>
<thead>
<tr>
<th>Group</th>
<th>Covariance</th>
<th>$Q(x, y; t)$</th>
<th>$w(x; t) & \tilde{w}(y; t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$= 0$</td>
<td>holonomic [BMM]</td>
<td>rational [KR]</td>
</tr>
<tr>
<td>6</td>
<td>< 0</td>
<td>holonomic [BMM]</td>
<td>rational [KR]</td>
</tr>
<tr>
<td>8</td>
<td>< 0</td>
<td>holonomic [BMM]</td>
<td>rational [KR]</td>
</tr>
<tr>
<td>6</td>
<td>> 0</td>
<td>algebraic [BMM]</td>
<td>algebraic [KR]</td>
</tr>
<tr>
<td>8</td>
<td>> 0</td>
<td>algebraic [BK]</td>
<td>algebraic [KR]</td>
</tr>
<tr>
<td>∞</td>
<td>$= 0, < 0, > 0$</td>
<td>?</td>
<td>non-holonomic [KR]</td>
</tr>
</tbody>
</table>
Comparison between the nature of Q and that of w & \tilde{w}:

<table>
<thead>
<tr>
<th>Group</th>
<th>Covariance</th>
<th>$Q(x, y; t)$</th>
<th>$w(x; t)$ & $\tilde{w}(y; t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$= 0$</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>6</td>
<td>< 0</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>8</td>
<td>< 0</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>6</td>
<td>> 0</td>
<td>algebraic</td>
<td>algebraic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>8</td>
<td>> 0</td>
<td>algebraic</td>
<td>algebraic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BK]</td>
<td>[KR]</td>
</tr>
<tr>
<td>∞</td>
<td>$= 0, < 0, > 0$</td>
<td>?</td>
<td>non-holonomic</td>
</tr>
</tbody>
</table>

Conjecture of Bousquet-Mélou and Mishna: “? = non-holonomic”
Comparison between the nature of Q and that of w & \tilde{w}:

<table>
<thead>
<tr>
<th>Group</th>
<th>Covariance</th>
<th>$Q(x, y; t)$</th>
<th>$w(x; t)$ & $\tilde{w}(y; t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$= 0$</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>6</td>
<td>< 0</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>8</td>
<td>< 0</td>
<td>holonomic</td>
<td>rational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>6</td>
<td>> 0</td>
<td>algebraic</td>
<td>algebraic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BMM]</td>
<td>[KR]</td>
</tr>
<tr>
<td>8</td>
<td>> 0</td>
<td>algebraic</td>
<td>algebraic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BK]</td>
<td>[KR]</td>
</tr>
<tr>
<td>∞</td>
<td>$= 0, < 0, > 0$</td>
<td>?</td>
<td>non-holonomic</td>
</tr>
</tbody>
</table>

Conjecture of Bousquet-Mélou and Mishna: "? = non-holonomic"

Proof of the conjecture: [KR]
1 Introduction and main results
 • Introduction
 • Results

2 Proofs
 • Explicit expression of the counting generating functions
 • Reduction to boundary value problems
 • Conformal gluing and uniformization
 • Nature of the counting generating functions

3 Conclusion
1. Introduction and main results
 - Introduction
 - Results

2. Proofs
 - Explicit expression of the counting generating functions
 - Reduction to boundary value problems
 - Conformal gluing and uniformization
 - Nature of the counting generating functions

3. Conclusion
A 3-steps method

- Continuation of the generating functions $Q(x, 0; t)$ and $Q(0, y; t)$

- Boundary value problems

\[KQ(x, 0; t) - KQ(x, 0; t) = [...] \]
\[KQ(x, 0; t) = [...] \]

- Analysis of $w(x; t)$ [uniformization]
A 3-steps method

- Continuation of the generating functions $Q(x, 0; t)$ and $Q(0, y; t)$

- Boundary value problems [Unit circle: topic of an exercise]

\[KQ(x, 0; t) - \\ KQ(\overline{x}, 0; t) = [\ldots] \]

- Analysis of $w(x, t)$ [uniformization]
A 3-steps method

- Continuation of the generating functions \(Q(x,0; t) \) and \(Q(0,y; t) \)
- Boundary value problems

\[
KQ(x,0; t) - KQ(x,0; t) = [...]
\]

\[
KQ(x,0; t) - KQ(x,0; t) = [...]
\]

- Analysis of \(w(x; t) \) [uniformization]
A 3-steps method

- Continuation of the generating functions \(Q(x, 0; t) \) and \(Q(0, y; t) \)
- Boundary value problems

\[
KQ(x, 0; t) - KQ(\overline{x}, 0; t) = [\ldots]
\]

\[
KQ([w^{-1}]^+(u), 0; t) - KQ([w^{-1}]^-(u), 0; t) = [\ldots]
\]
A 3-steps method

- Continuation of the generating functions $Q(x, 0; t)$ and $Q(0, y; t)$
- Boundary value problems

- Analysis of $w(x; t)$ [uniformization]
Introduction and main results

- Introduction
- Results

Proofs

- Explicit expression of the counting generating functions
 - Reduction to boundary value problems
 - Conformal gluing and uniformization
- Nature of the counting generating functions

Conclusion
Boundary value problem of Riemann-Carleman type

There exists a curve \mathcal{M}_t, symmetrical w.r.t. the horizontal axis,

such that: $\forall u \in \mathcal{M}_t$,

$$K(u, 0; t) Q(u, 0; t) - K(\overline{u}, 0; t) Q(\overline{u}, 0; t) = uX_0^{-1}(u; t) - \overline{u}X_0^{-1}(\overline{u}; t),$$

X_0 being a root of the kernel $x \mapsto K(x, y; t) = xyt \left[\sum_{(k, \ell) \in S} x^k y^\ell - 1/t \right]$.

Kilian Raschel

Chemins dans le quart de plan
How to obtain this Riemann-Carleman problem? (1/2)

The functional equation:

\[K(x, y; t)Q(x, y; t) = K(x, 0; t)Q(x, 0; t) \]
\[+ K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]
How to obtain this Riemann-Carleman problem? (1/2)

The functional equation:

\[K(x, y; t)Q(x, y; t) = K(x, 0; t)Q(x, 0; t) + K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]

Roots of the kernel:

\[K(x, y; t) = xyt \left(\sum_{(k, \ell) \in S} x^k y^\ell - 1/t \right) = 0 \iff x = X_0(y; t) \text{ or } X_1(y; t). \]
How to obtain this Riemann-Carleman problem? (1/2)

The functional equation:

\[K(x, y; t)Q(x, y; t) = K(x, 0; t)Q(x, 0; t) \]

\[+ K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]

Roots of the kernel:

\[K(x, y; t) = xyt \left[\sum_{(k, \ell) \in S} x^k y^\ell - 1/t \right] = 0 \iff x = X_0(y; t) \text{ or } X_1(y; t). \]

A new functional equation:

\[0 = K(X_\ell(y; t), 0; t)Q(X_\ell(y; t), 0; t) \]

\[+ K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - X_\ell(y; t)y. \]
How to obtain this Riemann-Carleman problem? (1/2)

The functional equation:

\[K(x, y; t)Q(x, y; t) = K(x, 0; t)Q(x, 0; t) \]
\[+ K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - xy. \]

Roots of the kernel:

\[K(x, y; t) = xyt \left[\sum_{(k,\ell) \in S} x^k y^\ell - 1/t \right] = 0 \iff x = X_0(y; t) \text{ or } X_1(y; t). \]

A new functional equation:

\[0 = K(X_\ell(y; t), 0; t)Q(X_\ell(y; t), 0; t) \]
\[+ K(0, y; t)Q(0, y; t) - K(0, 0; t)Q(0, 0; t) - X_\ell(y; t)y. \]

We get:

\[K(X_0(y; t), 0; t)Q(X_0(y; t), 0; t) - K(X_1(y; t), 0; t)Q(X_1(y; t), 0; t) \]
\[= X_0(y; t)y - X_1(y; t)y. \]
How to obtain this Riemann-Carleman problem? (2/2)

\[K(X_0(y; t), 0; t)Q(X_0(y; t), 0; t) - K(X_1(y; t), 0; t)Q(X_1(y; t), 0; t) \]

\[= X_0(y; t)y - X_1(y; t)y. \]
How to obtain this Riemann-Carleman problem? (2/2)

\[K(X_0(y; t), 0; t)Q(X_0(y; t), 0; t) - K(X_1(y; t), 0; t)Q(X_1(y; t), 0; t) \]

\[= X_0(y; t)y - X_1(y; t)y. \]

\(X_0(y; t) \) and \(X_1(y; t) \) are complex conjugate

\(Y_1(t) \) \(Y_2(t) \) \(Y_3(t) \) \(Y_4(t) \)

\(X_0(y; t) \) and \(X_1(y; t) \) are real
How to obtain this Riemann-Carleman problem? (2/2)

\[K(X_0(y; t), 0; t)Q(X_0(y; t), 0; t) - K(X_1(y; t), 0; t)Q(X_1(y; t), 0; t) = X_0(y; t)y - X_1(y; t)y. \]

\(X_0(y; t) \) and \(X_1(y; t) \) are complex conjugate

\(X_0(y; t) \) and \(X_1(y; t) \) are real

\(X_0([y_1(t), y_2(t)]; t) \)

\(X_1([y_1(t), y_2(t)]; t) \)
Boundary value problem of Riemann-Carleman type

There exists a curve \mathcal{M}_t, symmetrical w.r.t. the horizontal axis, such that: $\forall u \in \mathcal{M}_t$,

$$K(u, 0; t)Q(u, 0; t) - K(\bar{u}, 0; t)Q(\bar{u}, 0; t) = uX_0^{-1}(u; t) - \bar{u}X_0^{-1}(\bar{u}; t),$$

X_0 being a root of the kernel $x \mapsto K(x, y; t) = xyt \left[\sum_{(k,\ell) \in S} x^k y^\ell - 1/t \right]$.

\mathcal{M}_t
Conformal gluing function

\[w(x; t) \]
Conformal gluing function

Resolution of this boundary value problem of Riemann-Carleman type

\[K(x, 0; t)Q(x, 0; t) - K(0, 0; t)Q(0, 0; t) = \]
\[\frac{1}{2\pi i} \int_{\mathcal{M}_t} uX_0^{-1}(u; t) \left[\frac{\partial_u w(u; t)}{w(u; t) - w(x; t)} - \frac{\partial_u w(u; t)}{w(u; t) - w(0; t)} \right] du. \]
1. Introduction and main results
 - Introduction
 - Results

2. Proofs
 - Explicit expression of the counting generating functions
 - Reduction to boundary value problems
 - Conformal gluing and uniformization
 - Nature of the counting generating functions

3. Conclusion
Example: the unit circle
Example: the unit circle

\[w(x) = \frac{1}{2} \left(x + \frac{1}{x}\right) \text{ is a good CGF} \]
Example: the unit circle

\[w(x) = \frac{1}{2} \left(x + \frac{1}{x}\right) \] is a good CGF:

\[w(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} = w(e^{-i\theta}). \]
Example: the unit circle

\[w(x) = \frac{1}{2} \left(x + \frac{1}{x} \right) \] is a good CGF: \[w(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} = w(e^{-i\theta}). \]

Main idea: transforming the curve \(M_t \) into a simple curve

In our case:

\[\begin{array}{c}
\omega_1^t \\
\omega_1^t / 2 \\
0 \\
\omega_2^t / 2 + \omega_3^t / 2 \\
\omega_2^t \\
\end{array} \]
Different formulations for \mathcal{K}_t

$$\mathcal{K}_t = \{ (x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0 \}$$

$$= \{ (u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - gt^2 - 2u - 2 \}.$$
Different formulations for \mathcal{K}_t

$$\mathcal{K}_t = \{(x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0\}$$

$$= \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2^t u - g_3^t\}.$$
Different formulations for \mathcal{K}_t

\[\mathcal{K}_t = \{(x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0\}\]

\[= \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2^t u - g_3^t\}.\]

Riemann surface of the square root of a third degree polynomial

Let $g_2^3 - 27g_3^2 \neq 0$ and $\mathcal{L} = \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2 u - g_3\}.$
Different formulations for \mathcal{K}_t

$$\mathcal{K}_t = \{(x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0\}$$

$$= \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2^t u - g_3^t\}.$$

Riemann surface of the square root of a third degree polynomial

Let $g_2^3 - 27g_3^2 \neq 0$ and $\mathcal{L} = \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2 u - g_3\}$.

- $\mathcal{L} \cong \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$.
- $\mathcal{L} \cong \{(1/n, \text{ph}(1/n)) : n \in \mathbb{Z}/(2 \mathbb{Z} + 3 \mathbb{Z})\}$.
- If $e_1 < e_2 < e_3$ are the roots of $4u^3 - g_2 u - g_3$, then

$$\mathcal{L} \text{ is stable by } (u, v) \mapsto (u, -v) \iff \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}) \text{ is stable by } \phi(u) = -u \iff [u + \omega_1] = 0.$$
Different formulations for \mathcal{K}_t

\[
\mathcal{K}_t = \{(x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0\}
= \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g^t_2 u - g^t_3\}.
\]

Riemann surface of the square root of a third degree polynomial

Let $g^3_2 - 27g^2_3 \neq 0$ and $\mathcal{L} = \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g^t_2 u - g^t_3\}$.

- $\mathcal{L} \cong \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$.
- $\mathcal{L} = \{(\varphi(\omega; \omega_1, \omega_2), \varphi'(\omega; \omega_1, \omega_2)) : \omega \in \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})\}$.
 - If $\omega_1 < \omega < \omega_2$ are the roots of $4u^3 - g^t_2 u - g^t_3$, then
 \[
 \omega_1 \quad \omega_2
 \]
 \[
 0
 \]

- \mathcal{L} is stable by $(u, v) \mapsto (u, -v)$, $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$ is stable by \[
\psi(\omega) = -\omega + [\omega_1 + \omega_2].
\]
Different formulations for \mathcal{K}_t

$$\mathcal{K}_t = \{(x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0\}$$

$$= \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2^t u - g_3^t\}.$$

Riemann surface of the square root of a third degree polynomial

Let $g_2^3 - 27g_3^2 \neq 0$ and $\mathcal{L} = \{(u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2 u - g_3\}$.

- $\mathcal{L} \cong \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$.
- $\mathcal{L} = \{(\wp(\omega; \omega_1, \omega_2), \wp'(\omega; \omega_1, \omega_2)) : \omega \in \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})\}$.
- If $e_3 < e_2 < e_1$ are the roots of $4u^3 - g_2 u - g_3$, then

$$\begin{array}{|c|c|}
\hline
\omega_1/2 & \omega_1/2 \\
\hline
\hline
0 & \omega_2/2 \\
\hline
\hline
\omega_2 & \omega_2 \\
\hline
\hline
0 & \omega_2/2 \\
\hline
\end{array}$$

- \mathcal{L} is stable by $(u, v) \mapsto (u, -v)$ and $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$ is stable by $\wp(\omega) = -\omega + \omega_1 + \omega_2$.

Kilian Raschel
Chemins dans le quart de plan
Different formulations for \mathcal{K}_t

\[
\mathcal{K}_t = \left\{ (x, y) \in \mathbb{C}^2 : \sum_{(k, \ell) \in S} x^k y^\ell - 1/t = 0 \right\} = \left\{ (u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2^t u - g_3^t \right\}.
\]

Riemann surface of the square root of a third degree polynomial

Let $g_2^3 - 27g_3^2 \neq 0$ and $\mathcal{L} = \left\{ (u, v) \in \mathbb{C}^2 : v^2 = 4u^3 - g_2 u - g_3 \right\}$.

- $\mathcal{L} \cong \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$.
- $\mathcal{L} = \left\{ (\wp(\omega; \omega_1, \omega_2), \wp'(\omega; \omega_1, \omega_2)) : \omega \in \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}) \right\}$.
- If $e_3 < e_2 < e_1$ are the roots of $4u^3 - g_2 u - g_3$, then

\[
\begin{array}{c|c|c}
\omega_1 & \psi(\omega) \\
\hline
\omega_1/2 & e_3 & e_2 \\
\hline
\omega_2/2 & \omega & e_1 \\
\hline
0 & \infty & \omega_2
\end{array}
\]

- \mathcal{L} is stable by $(u, v) \mapsto (u, -v) \iff \mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$ is stable by $\psi(\omega) = -\omega + [\omega_1 + \omega_2]$.
A symmetric view point

\[\psi(\omega) \]

\[x_3(t) \]

\[x_4(t) \]

\[x_2(t) \]

\[x_1(t) \]

\[0 \quad \omega_t^2 / 2 \quad \omega_t^2 \]

\[\omega_1^t \quad \omega_1^t / 2 \]
A symmetric view point

\begin{align*}
\omega_1^t & \quad \psi(\omega) \\
\omega_1^t/2 & \quad \omega \\
\omega_2^t/2 & \quad x_2(t)
\end{align*}

\begin{align*}
\omega_1^t & \quad \phi(\omega) \\
\omega_1^t/2 & \quad \omega \\
\omega_2^t/2 & \quad y_2(t)
\end{align*}

\begin{align*}
\omega_1^t & \quad x_3(t) \\
\omega_1^t/2 & \quad x_4(t)
\end{align*}

\begin{align*}
\omega_1^t & \quad y_3(t) \\
\omega_1^t/2 & \quad y_4(t)
\end{align*}
Explicit expression of the counting generating functions

Nature of the counting generating functions

Kilian Raschel
Chemins dans le quart de plan
Explicit expression of the counting generating functions

Nature of the counting generating functions

A symmetric view point

\[\psi(\omega) = -\omega + [\omega_1^t + \omega_2^t] \]
A symmetric view point

\[\psi(\omega) = -\omega + [\omega_1^t + \omega_2^t]\]

\[\phi(\omega) = -\omega + [\omega_1^t + \omega_2^t]\]
Explicit expression of the counting generating functions

\[\psi(\omega) = -\omega + [\omega_1^t + \omega_2^t] \]

\[\phi(\omega) = -\omega + [\omega_1^t + \omega_2^t] \]

\[\psi(\omega) = -\omega + [\omega_1^t + \omega_2^t + \omega_3^t] \]

\[\phi \circ \psi(\omega) = \omega + \omega_3^t \]
Conformal gluing function

\[X_0([y_1(t), y_2(t)]; t) \]

\[X_1([y_1(t), y_2(t)]; t) \]

\[w(u; t) = w(u; t) \]

\[w(u; t) = w(u; t) \]

\[w(u; t) = w(u; t) \]
Conformal gluing function

\[X_0([y_1(t), y_2(t)]; t) \]

\[X_1([y_1(t), y_2(t)]; t) \]

\[w(u; t) = w(\bar{u}; t) \]

\[w(x(\omega); t) \parallel w(x(-\omega + [\omega_1^t + \omega_2^t + \omega_3^t]); t) \]
Expression of the CGFs w & \tilde{w}

We have

$$w(x(\omega); t) = \varphi(\omega - \frac{\omega_1^t + \omega_2^t}{2}; \omega_1^t, \omega_3^t).$$
Expression of the CGFs w & \tilde{w}

We have

$$w(x(\omega); t) = \varphi(\omega - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

By projection:

$$w(u; t) = \varphi(x^{-1}(u) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$
Expression of the CGFs w & \tilde{w}

We have

$$w(x(\omega); t) = \phi(\omega - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

By projection:

$$w(u; t) = \phi(x^{-1}(u) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

Nature of the CGFs w & \tilde{w}

- $x^{-1}(u) = \phi^{-1}(f(u); \omega_1^t, \omega_2^t)$, f affine function;
Expression of the CGFs w & \tilde{w}

We have

$$w(x(\omega); t) = \varphi(\omega - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

By projection:

$$w(u; t) = \varphi(x^{-1}(u) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

Nature of the CGFs w & \tilde{w}

- $x^{-1}(u) = \varphi^{-1}(f(u); \omega_1^t, \omega_2^t)$, f affine function;

- Nature of $\varphi(\varphi^{-1}(u; \omega_1^t, \omega_2^t) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t)$;
Expression of the CGFs \(w \) & \(\tilde{w} \)

We have

\[
 w(x(\omega); t) = \wp(\omega - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).
\]

By projection:

\[
 w(u; t) = \wp(x^{-1}(u) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).
\]

Nature of the CGFs \(w \) & \(\tilde{w} \)

- \(x^{-1}(u) = \wp^{-1}(f(u); \omega_1^t, \omega_2^t), \) \(f \) affine function;
- Nature of \(\wp(\wp^{-1}(u; \omega_1^t, \omega_2^t) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t); \)
- Nature of \(\sin^2 \left(\frac{\omega_2^t}{\omega_3^t} \arcsin(u) \right) \)
Expression of the CGFs w & \tilde{w}

We have

$$w(x(\omega); t) = \varphi(\omega - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

By projection:

$$w(u; t) = \varphi(x^{-1}(u) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t).$$

Nature of the CGFs w & \tilde{w}

- $x^{-1}(u) = \varphi^{-1}(f(u); \omega_1^t, \omega_2^t)$, f affine function;

- Nature of $\varphi(\varphi^{-1}(u; \omega_1^t, \omega_2^t) - [\omega_1^t + \omega_2^t]/2; \omega_1^t, \omega_3^t)$;

- Nature of $\sin^2 \left(\frac{\omega_2^t}{\omega_3^t} \arcsin(u) \right)$ [Topic of an exercise].
1. Introduction and main results
 - Introduction
 - Results

2. Proofs
 - Explicit expression of the counting generating functions
 - Reduction to boundary value problems
 - Conformal gluing and uniformization
 - Nature of the counting generating functions

3. Conclusion
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + \imath \arg(x) \]

is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + \Im \arg(x) \]
 is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
- \(\log_0 \) doesn't admit a direct meromorphic continuation through \(\mathbb{R}_- \);
An enlightening example: the logarithm function

The function

$$
\log_0(x) = \log(|x|) + \mathbf{i} \arg(x)
$$

is holomorphic for $x \in \mathbb{C} \setminus \mathbb{R}_-$;

\log_0 doesn’t admit a direct meromorphic continuation through \mathbb{R}_-;

\log_0 has a meromorphic continuation along a path going through \mathbb{R}_-, say \log_1.
An enlightening example: the logarithm function

The function

\[\log_0(x) = \log(|x|) + \imath \arg(x) \]

is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);

\(\log_0 \) doesn't admit a \textbf{direct} meromorphic continuation through \(\mathbb{R}_- \);

\(\log_0 \) has a meromorphic continuation \textbf{along a path} going through \(\mathbb{R}_- \), say \(\log_1 \);

\(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and

\[\log_1 = \log_0 + 2\pi \imath; \]
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + \imath \arg(x) \]
 is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
- \(\log_0 \) doesn’t admit a **direct** meromorphic continuation through \(\mathbb{R}_- \);
- \(\log_0 \) has a meromorphic continuation **along a path** going through \(\mathbb{R}_- \), say \(\log_1 \);
- \(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and
 \[\log_1 = \log_0 + 2\pi \imath; \]
- **Similarly**, we can define \(\log_\ell \) for any \(\ell \in \mathbb{Z} \), and
 \[\log_\ell = \log_0 + 2\ell \pi \imath; \]
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + i \arg(x) \]
 is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
- \(\log_0 \) doesn’t admit a direct meromorphic continuation through \(\mathbb{R}_- \);
- \(\log_0 \) has a meromorphic continuation along a path going through \(\mathbb{R}_- \), say \(\log_1 \);
- \(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and
 \[\log_1 = \log_0 + 2\pi i; \]
- Similarly we can define \(\log_\ell \) for any \(\ell \in \mathbb{Z} \), and
 \[\log_\ell = \log_0 + 2\ell \pi i; \]
- \(\log_0 \) is holonomic, with vanishing differential equation \(xy' - 1 = 0 \);
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + \iota \arg(x) \]

is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
- \(\log_0 \) doesn’t admit a direct meromorphic continuation through \(\mathbb{R}_- \);
- \(\log_0 \) has a meromorphic continuation along a path going through \(\mathbb{R}_- \), say \(\log_1 \);
- \(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and
 \[\log_1 = \log_0 + 2\pi \iota; \]
- Similarly we can define \(\log_\ell \) for any \(\ell \in \mathbb{Z} \), and
 \[\log_\ell = \log_0 + 2\ell \pi \iota; \]
- \(\log_0 \) is holonomic, with vanishing differential equation \(xy' - 1 = 0 \);
- For all \(\ell \in \mathbb{Z} \), \(\log_\ell \) is also holonomic, with the same equation.
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + i \arg(x) \]
 is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);
- \(\log_0 \) doesn’t admit a **direct** meromorphic continuation through \(\mathbb{R}_- \);
- \(\log_0 \) has a meromorphic continuation **along a path** going through \(\mathbb{R}_- \), say \(\log_1 \);
- \(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and
 \[\log_1 = \log_0 + 2\pi i; \]
- Similarly we can define \(\log_\ell \) for any \(\ell \in \mathbb{Z} \), and
 \[\log_\ell = \log_0 + 2\ell \pi i; \]
- \(\log_0 \) is holonomic, with vanishing differential equation \(xy' - 1 = 0 \);
- For all \(\ell \in \mathbb{Z} \), \(\log_\ell \) is also holonomic, with the same equation:
 - **Expression of \(\log_\ell \) in terms of \(\log_0 \);**
An enlightening example: the logarithm function

- The function
 \[\log_0(x) = \log(|x|) + \imath \arg(x) \]

 is holomorphic for \(x \in \mathbb{C} \setminus \mathbb{R}_- \);

- \(\log_0 \) doesn’t admit a direct meromorphic continuation through \(\mathbb{R}_- \);

- \(\log_0 \) has a meromorphic continuation along a path going through \(\mathbb{R}_- \), say \(\log_1 \);

- \(\log_1 \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_- \) and

 \[\log_1 = \log_0 + 2\pi \imath; \]

- Similarly we can define \(\log_\ell \) for any \(\ell \in \mathbb{Z} \), and

 \[\log_\ell = \log_0 + 2\ell \pi \imath; \]

- \(\log_0 \) is holonomic, with vanishing differential equation \(xy' - 1 = 0 \);

- For all \(\ell \in \mathbb{Z} \), \(\log_\ell \) is also holonomic, with the same equation:
 - Expression of \(\log_\ell \) in terms of \(\log_0 \);
 - Reasoning via a meromorphic continuation along a path.
Our reasoning

The branches of $Q(x, 0; t)$:

$Q_0(x, 0; t)$

$Q_1(x, 0; t)$

$Q_2(x, 0; t)$

$Q_3(x, 0; t)$
Our reasoning

- The branches of $Q(x, 0; t)$:

$$Q_0(x, 0; t) \quad Q_1(x, 0; t) \quad Q_2(x, 0; t) \quad Q_3(x, 0; t)$$
Our reasoning

- The branches of $Q(x, 0; t)$:

 \[Q_0(x, 0; t) \]

 \[Q_1(x, 0; t) \]

 \[Q_2(x, 0; t) \]

 \[Q_3(x, 0; t) \]
Our reasoning

- The branches of $Q(x, 0; t)$:

 - $Q_0(x, 0; t)$
 - $Q_1(x, 0; t)$
 - $Q_3(x, 0; t)$
 - $Q_2(x, 0; t)$
Our reasoning

- The branches of $Q(x, 0; t)$:

 $Q_0(x, 0; t)$

 $Q_1(x, 0; t)$

 $Q_2(x, 0; t)$

 $Q_3(x, 0; t)$
Our reasoning

- The branches of $Q(x, 0; t)$:

 \[Q_0(x, 0; t) \]

 \[Q_1(x, 0; t) \]
Our reasoning

- The branches of $Q(x, 0; t)$:

 \[Q_0(x, 0; t) \]
 \[Q_1(x, 0; t) \]
 \[Q_3(x, 0; t) \]
 \[Q_2(x, 0; t) \]
Our reasoning

- The branches of $Q(x, 0; t)$:

 $Q_0(x, 0; t)$

 $Q_1(x, 0; t)$

 $Q_2(x, 0; t)$
Our reasoning

- The branches of $Q(x, 0; t)$:

 - $Q_0(x, 0; t)$
 - $Q_1(x, 0; t)$
 - $Q_2(x, 0; t)$

Kilian Raschel
Chemins dans le quart de plan
Our reasoning

The branches of \(Q(x, 0; t) \):

\[Q_0(x, 0; t) \]

\[Q_1(x, 0; t) \]

\[Q_2(x, 0; t) \]

\[Q_3(x, 0; t) \]
Our reasoning

- The branches of \(Q(x, 0; t) \):

 - \(Q_0(x, 0; t) \)
 - \(Q_1(x, 0; t) \)
 - \(Q_2(x, 0; t) \)
 - \(Q_3(x, 0; t) \)

- There are infinitely many poles.
Our reasoning

- The branches of $Q(x, 0; t)$:

 \[
 Q_0(x, 0; t) \quad Q_1(x, 0; t) \\
 Q_3(x, 0; t) \quad Q_2(x, 0; t)
 \]

- There are infinitely many poles.
- If $Q(x, 0; t)$ satisfies a differential equation, all its branches satisfy the same equation.
The universal covering

<table>
<thead>
<tr>
<th></th>
<th>ω_1^t</th>
<th>$\omega_1^t / 2$</th>
<th>$\omega_3^t / 2$</th>
<th>$\omega_2^t / 2$</th>
<th>ω_2^t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_3(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_3(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_4(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_4(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_2(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_2(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_1(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_1(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The universal covering

The diagram illustrates the universal covering of a specific portion of the plane, with axes labeled as follows:

- The vertical axis is labeled from 0 to $2\omega^t_1$, with intermediate labels $\omega^t_1/2$.
- The horizontal axis is labeled from 0 to $2\omega^t_2$, with intermediate labels $\omega^t_3/2, \omega^t_2/2, \omega^t_2$.

Key points and labels include:
- $x_3(t)$, $y_3(t)$
- $x_2(t)$, $y_2(t)$
- $x_4(t)$, $y_4(t)$
- $x_1(t)$, $y_1(t)$

These labels indicate the coordinates or values associated with specific points on the plane.
A functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$ on the universal covering

We have: $q_x(\omega + \omega_3^t) = q_x(\omega) + xy(\omega + \omega_3^t) - xy(-\omega)$.
Consequence of the functional equation for \(q_x(\omega) = Q(x(\omega), 0; t) \)

Remember: \(q_x(\omega + \omega_3 t) = q_x(\omega) + xy(\omega + \omega_3 t) - xy(-\omega) \).
Consequence of the functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$

Remember: $q_x(\omega + \omega_3^t) = q_x(\omega) + xy(\omega + \omega_3^t) - xy(-\omega)$.

- Known results in the finite group case;
Consequence of the functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$

Remember: $q_x(\omega + \omega_3^t) = q_x(\omega) + xy(\omega + \omega_3^t) - xy(-\omega)$.

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.
Consequence of the functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$

Remember: $q_x(\omega + \omega_3^t) = q_x(\omega) + xy(\omega + \omega_3^t) - xy(-\omega)$.

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.

Proof of the functional equation on the universal covering

$$KQ(x, y; t) = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy.$$
Consequence of the functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$

Remember: $q_x(\omega + \omega_3^t) = q_x(\omega) + xy(\omega + \omega_3^t) - xy(-\omega)$.

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.

Proof of the functional equation on the universal covering

$$KQ(x, y; t) = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy.$$

If $K(x, y; t) = 0$,

$$0 = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy,$$
$$0 = KQ(\Phi(x, 0); t) + KQ(0, y; t) - KQ(0, 0; t) - \Phi(xy).$$
Consequence of the functional equation for \(q_x(\omega) = Q(x(\omega), 0; t) \)

Remember: \(q_x(\omega + \omega^t_3) = q_x(\omega) + xy(\omega + \omega^t_3) - xy(-\omega) \).

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.

Proof of the functional equation on the universal covering

\[
KQ(x, y; t) = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy.
\]

If \(K(x, y; t) = 0 \),

\[
0 = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy,
0 = KQ(\Phi(x, 0); t) + KQ(0, y; t) - KQ(0, 0; t) - \Phi(xy).
\]

Making the difference gives

\[
KQ(\Phi(x, 0); t) - KQ(x, 0; t) = \Phi(xy) - xy.
\]
Consequence of the functional equation for $q_x(\omega) = Q(x(\omega), 0; t)$

Remember: $q_x(\omega + \omega t^3) = q_x(\omega) + xy(\omega + \omega t^3) - xy(-\omega)$.

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.

Proof of the functional equation on the universal covering

\[KQ(x, y; t) = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy. \]

If $K(x, y; t) = 0$,

\[0 = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy, \]
\[0 = KQ(\Phi(x, 0); t) + KQ(0, y; t) - KQ(0, 0; t) - \Phi(xy). \]

Making the difference gives

\[KQ(\Psi \circ \Phi(x, 0); t) - KQ(x, 0; t) = \Phi(xy) - xy. \]
Consequence of the functional equation for \(q_x(\omega) = Q(x(\omega), 0; t) \)

Remember: \(q_x(\omega + \omega^t_3) = q_x(\omega) + xy(\omega + \omega^t_3) - xy(-\omega). \)

- Known results in the finite group case;
- Poles and non-holonomy in the infinite group case.

Proof of the functional equation on the universal covering

\[
KQ(x, y; t) = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy.
\]

If \(K(x, y; t) = 0 \),

\[
0 = KQ(x, 0; t) + KQ(0, y; t) - KQ(0, 0; t) - xy,
\]

\[
0 = KQ(\Phi(x, 0); t) + KQ(0, y; t) - KQ(0, 0; t) - \Phi(xy).
\]

Making the difference gives

\[
KQ(\Psi \circ \Phi(x, 0); t) - KQ(x, 0; t) = \Phi(xy) - xy.
\]

Remember:

\[
\Psi \circ \Phi \longleftrightarrow \omega \mapsto \omega - \omega^t_3, \quad \Phi \longleftrightarrow \omega \mapsto -\omega + [\omega^t_2 + \omega^t_3].
\]
1 Introduction and main results
 • Introduction
 • Results

2 Proofs
 • Explicit expression of the counting generating functions
 • Reduction to boundary value problems
 • Conformal gluing and uniformization
 • Nature of the counting generating functions

3 Conclusion
Perspectives

- Non-holonomy of the counting generating functions in the variable z;
Perspectives

- Non-holonomy of the counting generating functions in the variable z;
- Slight extensions of the model (like weighted paths or more general behavior on the boundary);
Perspectives

- Non-holonomy of the counting generating functions in the variable z;
- Slight extensions of the model (like weighted paths or more general behavior on the boundary);
- More general jumps;
Perspectives

- Non-holonomy of the counting generating functions in the variable z;
- Slight extensions of the model (like weighted paths or more general behavior on the boundary);
- More general jumps;
- Higher dimension.
Thanks for your attention!