
Algorithmic Methods for Enumerative Combinatorics

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

17 + 18 March 2025
ALEA Days @ CIRM, Luminy



Algorithmic Methods for Enumerative Combinatorics

1 / 90



Algorithmic Methods for Enumerative Combinatorics

1 / 90



Algorithmic Methods for Enumerative Combinatorics

1 / 90



Plan of the Talk

1. Cylindrical Algebraic Decomposition (CAD)
I unimodality of q-binomial coefficients
I exact lower bounds for monochromatic Schur triples
I proving inequalities among sequences

2. Lattice Reduction (LLL)
I finding integer relations
I guessing with little data

3. Creative Telescoping
I D-finite functions and P-recursive sequences
I proving special function identities
I recurrences for balanced / pattern-avoiding matrices
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Part 1
Cylindrical Algebraic Decomposition
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Quantifier Elimination over the Reals

Tarski–Seidenberg theorem. Every set in Rn+1 defined by
polynomial equations and inequalities can be projected down
onto Rn such that the resulting set is still definable in terms of
polynomial equations and inequalities.

Consequence. The theory of real-closed fields is decidable.

BUT: its proof, despite being constructive, leads to an algorithm
with impractical complexity.

Cylindrical algebraic decomposition:

I The concept was introduced by George E. Collins in 1975,
together with an algorithm for computing it.

I Nowadays this is a fundamental algorithm for computer
algebra and real algebraic geometry.

I It has much better complexity (but still doubly exponential).
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Tarski Formulas

Definition. A Tarski formula is constructed from

I polynomials in Q[x1, . . . , xn]

I relational symbols <,6, >,>, 6=,=
I logical connectives ¬,∧,∨, =⇒ , ⇐⇒
I quantifiers ∀, ∃

Examples.

x2 + y2 + z2 6 1 ∧ 2x− 3y + 5z > 0

∀x ∈ R : ∃y > 0: y3 + xy2 − 3xy > x2(2y − 1)

∀x ∈ R : x4 + ax2 + 2x+ a > 1
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Cylindrical Algebraic Decomposition
Algebraic decomposition: A set
p1, . . . , pm ∈ Q[x1, . . . , xn] induces
a partition of Rn into sign-invariant
cells, i.e., connected sets in which the
signs (+,−, 0) of all pi don’t change.

Example. p1(x, y) = x2 + (6y)2− 9,
p2(x, y) = (2x)2 + (12(y − 4))2 − 9.
How many cells do we get? Five.

Cylindrical algebraic decomposition (CAD):

I An algebraic decomposition of Rn is cylindrical if for any two
cells their projections to Rn−1 are either equal or disjoint

,
and if the projections of all cells to Rn−1 form a cylindrical
algebraic decomposition of Rn−1.

I Base case: any algebraic decomposition of R is cylindrical.

How many cells do we get? 13 (2D) + 20 (1D) + 8 (0D) = 41.
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Structure of CAD Formulas

A formula in a single variable x is in CAD format if it is of the form

Φ1 ∨ Φ2 ∨ · · · ∨ Φm,

where each Φk is either x < α or α < x < β or x > β or x = γ for
some real algebraic numbers α, β, γ with α < β, such that any two
Φk are inconsistent.

A formula in n variables x1, . . . , xn is in CAD format if it is of the
form

(Φ1 ∧Ψ1) ∨ (Φ2 ∧Ψ2) ∨ · · · ∨ (Φm ∧Ψm),

where the Φk are such that Φ1 ∨ Φ2 ∨ · · · ∨ Φm is in CAD format
with respect to x1 and the Ψk are satisfiable formulas which are in
CAD format with respect to x2, . . . , xn whenever x1 is replaced by
a real algebraic number satisfying Φk.
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Examples
Example 1. Find all values x ∈ R for which the inequality holds:

2 <
3x2 − 15x+ 16

x2 − 4x+ 3
< 3.

CylindricalDecomposition[

2 < (3 x^2 - 15 x + 16)/(x^2 - 4 x + 3) < 3, x]

2 < x < 7
3 ∨ x > 5

Example 2. If a, b, c, d are real numbers satisfying ad− bc = 1,
then a2 + b2 + c2 + d2 + ac+ bd > 1.

CylindricalDecomposition[

Implies[a d - b c == 1,

a^2 + b^2 + c^2 + d^2 + a c + b d > 1],

{a, b, c, d}]

True
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Examples

Example 3. If the sum of four positive numbers equals 4w and
the sum of their squares equals 8w2, then none of the four
numbers can be greater than

(
1 +
√

3
)
w.

CylindricalDecomposition[

Exists[{b, c, d},

a >= b >= c >= d > 0 &&

a + b + c + d == 4 w &&

a^2 + b^2 + c^2 + d^2 == 8 w^2],

{w, a}]

w > 0 ∧ 2w < a 6 w +
√

3w
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Exercises

Exercise 1. Prove that the inequality a2 + b2 + c2 > |bc+ ca+ ab|
holds for arbitrary real numbers a, b, c.

Exercise 2. Is the bound given in Example 2 sharp? If not,
determine such a sharp bound.
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Unimodality of Gaussian Polynomials
(joint work with Ali Uncu and Elaine Wong)

Definition. A finite sequence of real numbers a1, . . . , an is called
d-strictly increasing (resp. decreasing) if ak+1 − ak > d (resp.
ak − ak+1 > d) holds for all 1 6 k < n.

Definition. A sequence is called unimodal if for some m ∈ N we
have non-decreasing (i.e., 0-strictly increasing) behavior up to m
and subsequently non-increasing behavior:

a1 6 a2 6 · · · 6 am > am+1 > · · · > an.

It is called strictly unimodal if all inequalities are strict.
It is called d-strictly unimodal if the subsequence a1, . . . , am
is d-strictly increasing and am, . . . , an is d-strictly decreasing.
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Gaussian Polynomials
Definition. For `,m ∈ N, the q-binomial coefficient, defined by[

`+m

m

]
q

:=

m∏
i=1

1− q`+i

1− qi
=

`m∑
k=0

pk(`,m) · qk,

is a polynomial in q.

Pak and Panova (2013) proved that the sequence pk(`,m),
1 6 k 6 `m− 1, is strictly unimodal for `,m > 5 with the
following finite list of exceptional (`,m) resp. (m, `) pairs:

(5, 6), (5, 10), (5, 14), (6, 6), (6, 7), (6, 9), (6, 11), (6, 13), (7, 10).

Example. For (`,m) = (6, 5) we have that
[
11
5

]
q

=
[
11
6

]
q

equals

q30 + q29 + 2q28 + 3q27 + 5q26 + 7q25 + 10q24 + 12q23 + 16q22 + 19q21 + 23q20
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General Setup
I Let D ∈ Z[q] be a univariate polynomial, all of whose zeros

are roots of unity, i.e., D(q) =
∏r
i=1

(
1− qei

)
, e1, . . . , er ∈ N.

I Let N ∈ Q[q,X, q−1, X−1] be a multivariate Laurent
polynomial with X = X1, . . . , Xn.

I For `1, . . . , `n ∈ Z, let ck(`1, . . . , `n) be the coefficient of qk

in the series expansion of the rational function

ck := ck(`1, . . . , `n) :=
〈
qk
〉N(q, q`1 , . . . , q`n)

D(q)
.

Example. For concrete integer m ∈ N and X = q` one can define

N
(
q, q`

)
=
(
1− q`+1

)(
1− q`+2

)
· · ·
(
1− q`+m

)
D(q) = (1− q)(1− q2) · · · (1− qm)

and obtain for ck the partition numbers from before:

ck =
〈
qk
〉N(q, q`)

D(q)
=
〈
qk
〉[`+m

m

]
q

= pk(`,m).
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Strategy for Proving Unimodality

Goal. For a set Ω ⊆ Zn defined by polynomial inequalities, and for
given d ∈ Z, the goal is to prove that for all (`1, . . . , `n) ∈ Ω the
sequence (ck) is d-strictly increasing in a certain range a 6 k 6 b,
where the bounds a and b may depend on `1, . . . , `n.

Strategy.

1. Derive a closed form for ck as an exponential polynomial in k
and `1, . . . , `n, with bases being the roots of D(q).

2. Take the difference ck+1 − ck and perform an appropriate case
distinction such that all complex roots of unity are eliminated.
Each case is reduced to a polynomial in k and `1, . . . , `n.

3. Apply CAD to each case to show that ck+1 − ck > d for all k
in the corresponding range of interest.
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Expanding the Denominator
Coefficients dk in the Taylor expansion of the denominator

1

D(q)
=

∞∑
k=0

dkq
k

with dk =

s∑
i=1

pi(k) · ωki ,

where ω1, . . . , ωs are the distinct roots of D(q), and where
pi ∈ Q(ω1, . . . , ωs)[k] of degree less than the multiplicity of ωi.

Let L ∈ N be the smallest integer such that ωL1 = · · · = ωLs = 1,
and let ω = exp(2πi/L). Then Q(ω) ⊇ Q(ω1, . . . , ωs).

Example. Consider the q-binomial coefficient
[
`+3
3

]
q
, hence

D(q) = (1− q)(1− q2)(1− q3).

All roots of D(q) can be expressed as powers of ω = exp(2πi/6):

ω0 = 1, ω3 = −1, ω2 =
(
−1 + i

√
3
)
/2, ω4 =

(
−1− i

√
3
)
/2.

We get the closed form dk =
47

72
+
k

2
+
k2

12
+
ω3k

8
+
ω2k

9
+
ω4k

9
.
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Including the Numerator

By expanding, we find certain ai,j , bi ∈ Z such that

N
(
q, q`1 , . . . , q`n

)
D(q)

=

r∑
i=1

γiq
ai,1`1+···+ai,n`n+bi · 1

D(q)
=

∞∑
k=0

ckq
k.

This translates into a representation of ck in terms of dk:

ck =

r∑
i=1

γidk−ai,1`1−···−ai,n`n−bi .

Caveat: although dk = 0 for all k < 0 by definition, this need not
be the case for its derived closed form!

Divide into finitely many regions such that in each region the
expressions k − ai,1`1 − · · · − ai,n`n − bi, 1 6 i 6 r, are
sign-invariant (< 0 or > 0).
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Including the Numerator

Example (cont’d). The expanded form of the numerator is

N
(
q, q`

)
=
(
1− q`+1

)(
1− q`+2

)(
1− q`+3

)
= 1− q`+1 − q`+2 − q`+3 + q2`+3 + q2`+4 + q2`+5 − q3`+6.

By the symmetry of the Gaussian polynomial, we focus on k 6 3
2`:

pk(`, 3) = dk − dk−`−1 − dk−`−2 − dk−`−3
(
0 6 k 6 3

2`
)
.

Using the closed form for dk, we get the piecewise expression

pk(`, 3) =


47
72 + 1

2k + 1
12k

2 + 1
8ω

3k + 1
9ω

2k + 1
9ω

4k, 0 6 k < `,

19
36 + 1

2`−
1
6k

2 + 1
2k`−

1
4`

2

+ 1
8ω

3k + 1
8ω

3k+3` + 1
9ω

2k + 1
9ω

4k, ` 6 k < 2`.
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Including the Numerator

Example (cont’d). The expanded form of the numerator is
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By the symmetry of the Gaussian polynomial, we focus on k 6 3
2`:

pk(`, 3) = dk − dk−`−1 − dk−`−2 − dk−`−3
(
0 6 k 6 3

2`
)
.

Using the closed form for dk, we get the piecewise expression
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Proving d-Strict Monotonicity

We now have a closed-form for the difference ∆ := ck+1 − ck.

Goal. Show that ∆ > d.

I We cannot apply CAD directly: closed form not only involves
complex numbers, but also symbolic powers ωk, ω`1 , . . . , ω`n .

I Using ωL = 1, these powers can be eliminated by substituting

k → Lk′ + κ and `i → L`′i + λi

where k′, `′1, . . . , `
′
n are new variables taking integral values,

and κ, λ1, . . . , λn ∈ {0, . . . , L− 1} are concrete integers.

I All possible choices for κ and λi yield Ln+1 case distinctions.

I Apply CAD to each of these (n+ 1)-variate polynomials, in
order to show that it is > d under the given assumptions.
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Proving d-Strict Monotonicity
Example (cont’d). The difference ∆ := pk+1(`, 3)− pk(`, 3) is

∆ =


7
12 + k

6 −
1
4ω

3k + 1
9(ω − 2)ω2k − 1

9(ω + 1)ω4k, 0 6 k < `,

−1
6 −

1
3k + 1

2 l −
1
4ω

3k − 1
4ω

3k+3l

+ 1
9(ω − 2)ω2k − 1

9(ω + 1)ω4k, ` 6 k < 2`.

The case distinction for k and ` modulo 6 yields 36 cases.

For instance, substituting k → 6k′ + 4 and `→ 6`′ + 2 gives

∆4,2 =

k
′ + 1, 0 6 6k′ + 4 6 6`′ + 1,

3`′ − 2k′ − 1, 6`′ + 2 6 6k′ + 4 6 12`′ + 3.

Assume we want to prove strict monotonicity for k 6 3
2`.

The second line of ∆4,2 translates into the formula:

k′ > 0 ∧ `′ > 0 ∧ 6`′ 6 6k′ + 2 6 9`′ =⇒ 3`′ − 2k′ − 1 > 1.
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Proving d-Strict Monotonicity
Applying CAD to the input formula

k′ > 0 ∧ `′ > 0 ∧ 6`′ 6 6k′ + 2 6 9`′ =⇒ 3`′ − 2k′ − 1 > 1

yields the output

`′ < 2
9 ∨

(
2
9 6 `

′ 6 1
3 ∧

(
k′ < 0 ∨ k′ > 1

6(9`′ − 2)
))

∨
(
1
3 < `′ < 4

3 ∧
(
k′ < 1

3(3`′ − 1) ∨ k′ > 1
6(9`′ − 2)

))
∨
(
`′ > 4

3 ∧
(
k′ 6 1

2(3`′ − 2) ∨ k′ > 1
6(9`′ − 2)

))
.

I First and third clause: special cases `′ = 0 and `′ = 1

I Second clause: no integer `′, not relevant

I Last line says the formula is false if 3
2`
′ − 1 < k′ 6 3

2`
′ − 1

3 .

There is no such k′ if `′ is even, but there is for odd `′.

We get the infinite family (k, `) = (18j + 10, 12j + 8), j > 0,
of pairs where pk(`, 3) is not strictly increasing.
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Unimodality Results for Gaussian Polynomials

Theorem. Let d, `,m ∈ N such that 1 6 d 6 5 and 3 6 m 6 7,
and let pk(`,m) be as before. Then there exist positive integers
L(m, d) and U(m, d) such that pk+1(`,m)− pk(`,m) > d holds
for all

L(m, d) 6 k 6 b`m/2c − 1− U(m, d)

and almost all ` > 1, with only a finite number of exceptions.

d m L(m, d) U(m, d) Exceptions (`)

1

3 1 3 None
4 1 2 4
5 1 0 1, . . . , 4, 6, 10, 14
6 1 0 1, . . . , 7, 9, 11, 13
7 1 0 1, . . . , 4, 6, 10

21 / 90



Unimodality Results for Gaussian Polynomials

Theorem. Let d, `,m ∈ N such that 1 6 d 6 5 and 3 6 m 6 7,
and let pk(`,m) be as before. Then there exist positive integers
L(m, d) and U(m, d) such that pk+1(`,m)− pk(`,m) > d holds
for all

L(m, d) 6 k 6 b`m/2c − 1− U(m, d)

and almost all ` > 1, with only a finite number of exceptions.

d m L(m, d) U(m, d) Exceptions (`)

2

3 7 6 None
4 5 2 5, . . . , 8, 10
5 3 0 1, . . . , 10, 14
6 3 0 1, . . . , 9, 11, 13, 15, 17
7 3 0 1, . . . , 5, 6, 10

21 / 90



Unimodality Results for Gaussian Polynomials

Theorem. Let d, `,m ∈ N such that 1 6 d 6 5 and 3 6 m 6 7,
and let pk(`,m) be as before. Then there exist positive integers
L(m, d) and U(m, d) such that pk+1(`,m)− pk(`,m) > d holds
for all

L(m, d) 6 k 6 b`m/2c − 1− U(m, d)

and almost all ` > 1, with only a finite number of exceptions.

d m L(m, d) U(m, d) Exceptions (`)

3

3 13 9 None
4 7 2 5, . . . , 14, 16
5 5 0 1, . . . , 12, 14, 18, 22, 26
6 5 0 1, . . . , 11, 13, 15, 17, 19
7 5 0 1, . . . , 4, 6, 10

21 / 90



Unimodality Results for Gaussian Polynomials

Theorem. Let d, `,m ∈ N such that 1 6 d 6 5 and 3 6 m 6 7,
and let pk(`,m) be as before. Then there exist positive integers
L(m, d) and U(m, d) such that pk+1(`,m)− pk(`,m) > d holds
for all

L(m, d) 6 k 6 b`m/2c − 1− U(m, d)

and almost all ` > 1, with only a finite number of exceptions.

d m L(m, d) U(m, d) Exceptions (`)

4

3 19 12 None
4 9 2 6, . . . , 20, 22
5 7 0 1, . . . , 15, 18, 22, 26, 30
6 7 0 1, . . . , 11, 13, 15, 17, 19, 21
7 7 0 1, . . . , 8, 10

21 / 90



Unimodality Results for Gaussian Polynomials

Theorem. Let d, `,m ∈ N such that 1 6 d 6 5 and 3 6 m 6 7,
and let pk(`,m) be as before. Then there exist positive integers
L(m, d) and U(m, d) such that pk+1(`,m)− pk(`,m) > d holds
for all

L(m, d) 6 k 6 b`m/2c − 1− U(m, d)

and almost all ` > 1, with only a finite number of exceptions.

d m L(m, d) U(m, d) Exceptions (`)

5

3 25 15 None
4 11 2 7, . . . , 26, 28
5 7 0 1, . . . , 18, 22, 26, 30, 34
6 7 0 1, . . . , 13, 15, 17, 19, 21, 23
7 7 0 1, . . . , 10, 14
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Monochromatic Schur triples
(joint work with Elaine Wong)

Schur triple:
(x, y, z) ∈ N3 with x+ y = z

Consider a 2-coloring χ of [n] = {1, . . . , n}. E.g., for n = 6:

χ(2) = χ(4) = red, χ(1) = χ(3) = χ(5) = χ(6) = blue

Short notation: BRBRBB, or graphically:{
1 , 2 , 3 , 4 , 5 , 6

}
There are exactly 4 monochromatic Schur triples (MSTs):(

1 , 5 , 6
)
,
(

2 , 2 , 4
)
,
(

3 , 3 , 6
)
,
(

5 , 1 , 6
)
.

We write M(6, χ) = 4.
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Problem
Minimal number: Determine the minimal number M(n) of
MSTs among all possible 2-colorings of [n]

M(n) := min
χ : [n]→{R,B}

M(n, χ).

Example. Consider again [6] = {1, 2, 3, 4, 5, 6}.
I What is M(6)?

I Which coloring χ : [6]→ {R,B} yields the least number of
monochromatic Schur triples (MSTs)?

Answer: Choose the coloring χ = R2B3R = RRBBBR:{
1 , 2 , 3 , 4 , 5 , 6

}
Then there exists only one single MST, namely

(
1 , 1 , 2

)
,

hence M(6) = 1.
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monochromatic Schur triples (MSTs)?

Answer: Choose the coloring χ = R2B3R = RRBBBR:{
1 , 2 , 3 , 4 , 5 , 6

}
Then there exists only one single MST, namely

(
1 , 1 , 2

)
,

hence M(6) = 1.
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Three blocks
It has been shown previously (RobertsonZeilberger 98, Schoen 99)
that the number M(n, χ) is minimized when χ is of the form

RsBt−sRn−t, where s ≈ 4
11n, t ≈

10
11n.

Lemma. Let n, s, t ∈ N be such that 1 6 s 6 t 6 n. Moreover,
assume that the inequalities t > 2s and s > n− t hold. Then the
number of monochromatic Schur triples on [n] under the coloring
RsBt−sRn−t is exactly

M(n, s, t) =
s(s− 1)

2
+

(t− 2s)(t− 2s− 1)

2
+ (n− t)(n− t− 1).

The optimal values for s and t are then easily derived using the
techniques of multivariable calculus (assuming n→∞).
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Example

M(n, s, t) =
s(s− 1)

2
+

(t− 2s)(t− 2s− 1)

2
+ (n− t)(n− t− 1).

✷ ✹ ✻ ✽ ✶� ✶✷ ✶✹ ✶✻ ✶✽ ✷� ✷✷ ✷✹ ✷✻ ✷✽ ✸� ✸✷
①

✷

✹

✻

✽

✶�

✶✷

✶✹

✶✻

✶✽

✷�

✷✷

✷✹

✷✻

✷✽

✸�

✸✷

②

I χ = R12B18R3

I s = 12, t = 30

I M(33, 12, 30) =
66 + 15 + 6 = 87

I Actually we have
M(33) = 87
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Optimal values for discrete s and t

Lemma. For fixed n ∈ N, the integers s0 and t0 that minimize the
function M(n, s, t) are given by

s0 =
⌊4n+ 2

11

⌋
and t0 =

⌊10n

11

⌋
.

Proof. By case distinction, according to n mod 11.

I We want to show that among all integers i, j ∈ Z the
expression M(n, s0 + i, t0 + j) is minimal for i = j = 0.

I Such a task can, in principle, be routinely executed by
cylindrical algebraic decomposition (CAD).

I Small adaptions to take into account that i, j are integers.
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Proof (cont.)
Show that M(n, s0 + i, t0 + j) is minimal for i = j = 0:

M(11k + 5, 4k + 2 + i, 10k + 4 + j) =

1

2

(
2 + 5i+ 5i2 − 3j − 4ij + 3j2 + 12k + 22k2

)
.

This is equivalent to showing that the polynomial

p(i, j) = 5i+ 5i2 − 3j − 4ij + 3j2

is nonnegative for all (i, j) ∈ Z2.

I Such a task can, in principle, be routinely executed by
cylindrical algebraic decomposition (CAD).

I In this method, the variables i and j are treated as real
variables, which causes some problems here. . .
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CAD

CylindricalDecomposition[

5 i + 5 i^2 - 3 j - 4 i j + 3 j^2 >= 0, {i, j}]

does not yield True.

12

8

10

18

32

10

2

0

4

14

18

6

0

0

6

36

20

10

6

8

64

44

30

22

20

-2 -1 0 1 2

-2

-1

0

1

2

I Show that p(i, j) > 0 for all
integer points that are close
to (0, 0), e.g., for all (i, j)
with −2 6 i 6 2 and
−2 6 j 6 2.

I Invoke cylindrical algebraic
decomposition on the
following formula

∀i, j ∈ R : (−2 6 i 6 2 ∧ −2 6 j 6 2) ∨ p(i, j) > 0,
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Exact lower bound
Theorem. The minimal number of monochromatic Schur triples
that can be attained under any 2-coloring of [n] is

M(n) =
⌊n2 − 4n+ 6

11

⌋
.

Proof.

` = 0:M(11k, 4k, 10k) = 11k2 − 4k = 1
11
(n2 − 4n)

` = 1:M(11k + 1, 4k, 10k) = 11k2 − 2k = 1
11
(n2 − 4n+ 3)

` = 2:M(11k + 2, 4k, 10k + 1) = 11k2 = 1
11
(n2 − 4n+ 4)

` = 3:M(11k + 3, 4k + 1, 10k + 2) = 11k2 + 2k = 1
11
(n2 − 4n+ 3)

` = 4:M(11k + 4, 4k + 1, 10k + 3) = 11k2 + 4k = 1
11
(n2 − 4n)

...
...

...

` = 9:M(11k + 9, 4k + 3, 10k + 8) = 11k2 + 14k + 4 = 1
11
(n2 − 4n− 1)

` = 10:M(11k + 10, 4k + 3, 10k + 9) = 11k2 + 16k + 6 = 1
11
(n2 − 4n+ 6)
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Generalized Schur triples
I For a ∈ N, a generalized Schur triple is a triple (x, y, z) ∈ N3

that satisfies x+ ay = z.

I Extend this to a ∈ R+ by imposing x+ bayc = z.

✶✶✶

✶✶�

�✶�

✶��

✵✁✂ ✵✁✄ ✵✁☎ ✵✁✆ ✝✁✵
①

✵✁✂

✵✁✄

✵✁☎

✵✁✆

✝✁✵

②

Example.
s = 1

2 , t = 3
5 , a = 3

2

Theorem. The minimal number of monochromatic generalized
Schur triples of the form (x, y, x+ 4y) that can be attained under
any 2-coloring of [n] of the form RsBt−sRn−t is

M(4)(n) =

⌊
n2 − 28n+ 245

216

⌋
−

{
1, if n = 108k + i for i ∈ I,
0, otherwise,

where the set I is given by

{0, 1, 27, 28, 43, 47, 48, 53, 58, 63, 67, 68, 69, 73, 78, 83, 88, 89, 93}.
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The Gerhold–Kauers Method

Aim. Prove inequalities both sides of which are polynomial
expressions in sequences defined by recurrences.

Example. For the Fibonacci polynomials Fn(x), defined by
Fn(x) = xFn−1(x) + Fn−2(x) and F1(x) = 1, F2(x) = x, prove(

Fn(x)
)2
6
(
x2 + 1

)2(
x2 + 2

)n−3
(for n > 3).

Note. CAD is not applicable, due to the occurrences of Fn(x) and

the symbolic power
(
x2 + 2

)n−3
.

Idea. Set up an induction with respect to n, replace all
non-polynomial expressions by new (real) variables, and try to
prove the resulting formula by CAD (Gerhold, Kauers, 2005).
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Algorithm Sketch
Input. Let F (n) := F

(
n,x, f1(n,x), . . . , fj(n,x)

)
and let

C(n,x) be (polynomial) constraints and n0 ∈ N a bound.

Goal. Prove F (n) > 0 for all n ∈ N under the constraints C.

For increasing integer values of m > 0 do

1. Try to prove the base case F (m) > 0; if this inequality is
wrong, return FALSE.

2. Set up the formula C(n,x) ∧ F (n) > 0 ∧ F (n+ 1) > 0 ∧
· · · ∧ F (n+m) > 0 =⇒ F (n+m+ 1) > 0.

3. Rewrite each occurrence of fi(n+ k,x) in terms of
fi(n,x), . . . , fi(n+ di − 1,x) where di denotes the order of
the recurrence that fi satisfies.

4. Replace each fi(n+ k,x) by a new real variable yi,k.
5. Apply CAD to the resulting formula, where all variables are

assumed to be real and all-quantified; if CAD returns TRUE,
then return TRUE.

6. If m = n0, then return FAIL, otherwise, increase m and loop.
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· · · ∧ F (n+m) > 0 =⇒ F (n+m+ 1) > 0.

3. Rewrite each occurrence of fi(n+ k,x) in terms of
fi(n,x), . . . , fi(n+ di − 1,x) where di denotes the order of
the recurrence that fi satisfies.

4. Replace each fi(n+ k,x) by a new real variable yi,k.
5. Apply CAD to the resulting formula, where all variables are

assumed to be real and all-quantified; if CAD returns TRUE,
then return TRUE.

6. If m = n0, then return FAIL, otherwise, increase m and loop.
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Example: Bernoulli’s inequality

We apply the Gerhold–Kauers method to the inequality

1 + nx 6 (x+ 1)n (x > −1, n ∈ N).

We have f(n, x) = (x+ 1)n, F (n, x, y) = y − nx− 1, and the
constraint C(n, x) is n > 0 ∧ x > −1.

For m = 0 the induction base is verified and a formula is set up:

n > 0∧x > −1∧1+nx 6 (x+1)n =⇒ 1+(n+1)x 6 (x+1)n+1.

Using the recurrence f(n+ 1, x) = (x+ 1)f(n, x) and substituting
f(n, x) = y, one arrives at the formula ∀n, x, y ∈ R :

(n > 0 ∧ x > −1 ∧ 1 + nx 6 y) =⇒ 1 + (n+ 1)x 6 (x+ 1)y.

This is fed into CAD, yielding True almost instantaneously.
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Exercise

Exercise 3. Prove the previously stated inequality for Fibonacci
polynomials:(

Fn(x)
)2
6
(
x2 − 1

)2(
x2 + 2

)n−3
(for n > 3).
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Part 2
Lattice Reduction and Guessing

-5 5

-4

-2

2

4
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The Not-Alone Puzzle

Published by Presanna Seshadri in the New York Times magazine
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Make it an Enumeration Problem

The puzzle can be turned into different enumeration problems:

I binary matrices without any restrictions (boring)

I (2k × 2n) binary matrices with the balancing condition

I binary matrices with pattern avoidance

I balanced binary matrices avoiding some patterns

Let bk(n) be the number of 2k × 2n balanced binary matrices.

George Pólya: First guess, then prove!

Exercise 4. Compute as many terms as you can for b3(n) and
b4(n) (without cheating, not using our recurrences).
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George Pólya: First guess, then prove!

Exercise 4. Compute as many terms as you can for b3(n) and
b4(n) (without cheating, not using our recurrences).

37 / 90



Make it an Enumeration Problem

The puzzle can be turned into different enumeration problems:

I binary matrices without any restrictions (boring)

I (2k × 2n) binary matrices with the balancing condition

I binary matrices with pattern avoidance

I balanced binary matrices avoiding some patterns

Let bk(n) be the number of 2k × 2n balanced binary matrices.
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A Guess

Example. It looks like b3(n) satisfies the following recurrence:

51200(2n+ 7)(2n+ 5)(2n+ 3)(2n+ 1)(n+ 2)(n+ 1)

×
(
33n2 + 242n+ 445

)
b3(n)

− 128(2n+ 7)(2n+ 5)(2n+ 3)(n+ 2)
(
7491n4 + 84898n3

+ 351364n2 + 628997n+ 414370
)
b3(n+ 1)

+ 16(2n+ 5)(2n+ 7)
(
2772n6 + 48048n5 + 344379n4

+ 1307394n3 + 2775099n2 + 3125336n+ 1460132
)
b3(n+ 2)

+ 2(2n+ 7)(n+ 3)
(
3201n6 + 61886n5 + 497179n4 + 2124170n3

+ 5089654n2 + 6484024n+ 3431096
)
b3(n+ 3)

− (n+ 3)(n+ 4)5
(
33n2 + 176n+ 236

)
b3(n+ 4) = 0
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Naive Guessing

Ansatz:
leads to a linear system M · x = 0 with

M = ()

I There are (r + 1)(d+ 1) unknowns in the ansatz.

I If a0, . . . , aN are given, then we get N − r + 1 equations.

I To trust the result, we need N − r + 1 > (r + 1)(d+ 1).

Exercise 5. Guess the recurrence for b3(n) (Hint: it is A172556 in
the OEIS). How many terms are needed (a) with naive guessing,
(b) with order-degree trading (see next slide)?
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d
)
an+r = 0

leads to a linear system M · x = 0 with

M =



a0 a1 · · · ar 0a0 · · · 0ar · · · 0da0 · · · 0dar
a1 a2 · · · ar+1 1a1 · · · 1ar+1 · · · 1da1 · · · 1dar+1

a2 a3 · · · ar+2 2a2 · · · 2ar+2 · · · 2da2 · · · 2dar+2

a3 a4 · · · ar+3 3a3 · · · 3ar+3 · · · 3da3 · · · 3dar+3

a4 a5 · · · ar+4 4a4 · · · 4ar+4 · · · 4da4 · · · 4dar+4
...

...
...

...
...

...
...


I There are (r + 1)(d+ 1) unknowns in the ansatz.

I If a0, . . . , aN are given, then we get N − r + 1 equations.

I To trust the result, we need N − r + 1 > (r + 1)(d+ 1).

Exercise 5. Guess the recurrence for b3(n) (Hint: it is A172556 in
the OEIS). How many terms are needed (a) with naive guessing,
(b) with order-degree trading (see next slide)?
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Guessing with Little Data

If we have too little data, i.e., N − r + 1 < (r + 1)(d+ 1)− 1,
then dim(kerM) > 1.

Problem: Identify the true recurrence in the vector space ker(M).
−→ is like looking for a needle in a haystack!

Filtering criteria:

I Unrolling the recurrence produces only integers.

I The ODE of the g.f. has only regular singularities.

I The p-curvature is nilpotent.

−→ These criteria lead to nonlinear (diophantine) equations /
I The coefficients of the recurrence involve “small” integers.

−→ Employ a lattice reduction algorithm (LLL, BKZ, . . . ).
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Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)

w1 =

(
2
1

)
w2 =

(
−2
2

)

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)

w1 =

(
2
1

)
w2 =

(
−2
2

)

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)

w1 =

(
2
1

)
w2 =

(
−2
2

)

-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)

w1 =

(
2
1

)
w2 =

(
−2
2

)

-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)

w1 =

(
2
1

)
w2 =

(
−2
2

)

-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)
w1 =

(
2
1

)
w2 =

(
−2
2

)
-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)
w1 =

(
2
1

)
w2 =

(
−2
2

)
-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Lattice Basis with Short Vectors
Let v1, . . . , v` ∈ Zm. They generate a lattice

L = {c1v1 + · · ·+ c`v` | c1, . . . , c` ∈ Z}.

The lattice reduction algorithm LLL (Lenstra Lenstra Lovász, 1982)
computes a basis w1, . . . , w` of L that consists of short vectors.

v1 =

(
8
−5

)
v2 =

(
−6
3

)
w1 =

(
2
1

)
w2 =

(
−2
2

)
-5 5

-4

-2

2

4

Idea. LLL works similar as the Gram–Schmidt orthogonalization,
but over the integers.

42 / 90



Integer Relations via LLL
Definition. Real numbers x1, . . . , xn ∈ R satisfy an integer
relation if there exist a1, . . . , an ∈ Z such that

a1x1 + · · ·+ anxn = 0.

Idea. Good candidates for integer relations can be found by LLL:

I Choose an accuracy m = 10d (where d typically is the number
of available digits of the xi).

I Let vi =
(
ei
∣∣ bm · xic) where ei denotes the i-th

n-dimensional unit (row) vector.

I Apply LLL to the vectors v1, . . . , vn; the shortest vector in the
reduced basis is likely to be an integer relation.

Exercise 6. Use LLL to identify the number

0.60819681587412188135682003077628677069061840980889

as a linear combination of π, π2, ζ(3), and log(2).
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Module Basis

Back to guessing with little data:

Goal. Find a vector with small (integer) entries in ker(M).

Caveat: Before, we computed a Q-vector space basis of ker(M).

I Clearing denominators is not enough.

I We need a basis of the Z-module kerZ(M).

I It can be computed, e.g., using the Hermite normal form:(
MT Im

)
HNF−→

(
∗ ∗
0 K

)
Then the rows of K form a Z-module basis of kerZ(M).
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Algorithm: Guessing with Little Data
(joint work with Manuel Kauers)

Input: a0, . . . , aN ∈ Q, and r, d ∈ N
Output: A linear recurrence of order r and degree d which matches

the given data and involves short integers, or FAIL.

1 Compute Z-module basis v1, . . . , v` ∈ Z(r+1)(d+1) of kerZM .

2 if ` = 0, then return FAIL.

3 Apply LLL to v1, . . . , v`, and call the result w1, . . . , w`.

4 Return the recurrence corresponding to the vector w1.

Improvements and Variations:

I Use different basis than standard monomials (binomials, . . . )

I Incorporate homomorphic images and Chinese remaindering

I Recycle LLL-output when trying a range of degrees d
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Behavior of the Algorithm

First two vectors of kerZM :
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Behavior of the Algorithm

LLL-basis of kerZM , using N = 28:
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Behavior of the Algorithm

LLL-basis of kerZM , using N = 33:
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Behavior of the Algorithm

LLL-basis of kerZM , using N = 40:
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Guessing for an OEIS Sequence

(10346454767880n13 + 439724327634900n12 + 8541142111645605n11 + 100346408873891460n10

+795176466036180480n9 + 4485660756765878340n8 + 18521224670025594405n7

+56639217843614362320n6 + 128197997261515989990n5 + 211964073373172447460n4

+248660072114197834440n3 + 195845152107619591920n2

+92743576895010081600n+ 19927056990544704000)an
+(194741607456n13 + 8763372335520n12 + 181116778854528n11 + 2276272139092056n10

+19409301171931086n9 + 118570454113296582n8 + 533897028046714761n7

+1794118103056008945n6 + 4499490897537212457n5 + 8317813242144219813n4

+11017108466619178896n3 + 9901273828612752684n2

+5411908796200065936n+ 1358800904704763520)an+1

+(−7905964176n13 − 375533298360n12 − 8210014228350n11 − 109384917208164n10

−990927551678562n9 − 6445641158908164n8 − 30971993224981077n7

−111314492026841106n6 − 299240095376493090n5 − 594271149013691226n4

−847459848696773373n3 − 821800045816910820n2

−485718284438018172n− 132150596906568240)an+2

+(−34192224n13 − 1709611200n12 − 39348646744n11 − 551960207552n10

−5264405804862n9 − 36048494147578n8 − 182315015737541n7

−689472630263907n6 − 1949560872565283n5 − 4070539427181535n4

−6099491170412670n3 − 6211013227585736n2

−3851899366258336n− 1098712786184832)an+3

+(3784n13 + 198660n12 + 4794801n11 + 70437960n10

+702635490n9 + 5025358332n8 + 26510256652n7

+104430770292n6 + 307166340054n5

+666220125600n4 + 1035598237875n3

+1092435142500n2 + 700889050000n
+206542200000)an+4

Trustworthy?!

416745(n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(3784n4 + 62436n3 + 384549n2 + 1047914n+ 1066254)an

+9(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(29681696n7 + 712360704n6 + 7253307424n5

+40621828312n4 + 135172900470n3 + 267337368752n2

+291083104767n+ 134667010044)an+1

−9(n+ 3)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(10844944n8 + 309080904n7 + 3833838118n6

+27035659722n5 + 118560795930n4 + 331121212914n3

+575194973415n2 + 568260550317n+ 244478848756)an+2

−(n+ 3)(n+ 4)3(3n+ 13)(3n+ 14)
×(3799136n7 + 98777536n6 + 1092573240n5

+6662600832n4 + 24184813590n3 + 52244190090n2

+62174897623n+ 31442101253)an+3

+(n+ 3)(n+ 4)3(n+ 5)5

×(3784n4 + 47300n3 + 219945n2

+450988n+ 344237)an+4

90
202410
747558000
3536978063850
19292117692187340
115428185943399529200
737005538936597762145600
4937928427617947420104982250
34335031273255183438800013252500
245885257930209910994050195049583660
1803606070619313418263028665207782889600
13495472374334172242190334756526625738793200
102686609451774712441837258821702706690958244000
792606936905424716827805609592848631050897983368000
6194061046984488807137976612543476252072240088843168000
48930886220271330542271419741692768122929164062703692950250
390229178478432343758493287708395462786699986146463590205462500
3138480844349933121860864061245246387668619696538799391771830312500
25432614295681739433196618354669628742557464857190982677010381944500000
207492558790308966981127400374613926115883943143470298306753431997561245100
1703218238481833503830053446085753316816923905337688679320940617430053026793000
14058848882589179758130070400729131813439016621575276111626854605226450646014928000
116634933760657037542233232023342488551082357129978746187082171269726955508399331520000
972123687656328288735978572104329068283230362616209131997797645253144907352505487518710000

8137021686675518646293987429238146291939698206862646669804019655299405410612322521011793199840
68378027287127596101538933052599954448793862727300484972893130374083314936140639370265791902301600
576696135477018756656097310539308206595297137655178128559217331447163987622287690653154248117571110400
4880259952199292008921826526312609348825249147788374851144194565482906902131493688167790266738802504840000
41428792196488801486282127539417868379239611007329360384215118568533632449531545568541320235439941375576624000
352722570320243675250582868120044596892546971115353276044155030127971499536247490129735774654399339137472372179200

Neil Sloane (05.03.2022, about A189281): In the text of
the paper you say the coefficients are small! Au contraire.
In fact the amount of data in the g.f. is comparable with
the data in the original 35-term b-file for the sequence.

If you print the g.f. and then print the data, the number of
digits in the two printouts look about the same. When this
happens, surely you should be worried. I am very worried,
and I think the g.f. needs more justification.

In fact the g.f. looks wrong. I use gfun all the time, and
when the g.f. looks like this, like something you would find
in the dumpster behind a restaurant, then I would not even
consider it :D

47 / 90



Guessing for an OEIS Sequence
(10346454767880n13 + 439724327634900n12 + 8541142111645605n11 + 100346408873891460n10

+795176466036180480n9 + 4485660756765878340n8 + 18521224670025594405n7

+56639217843614362320n6 + 128197997261515989990n5 + 211964073373172447460n4

+248660072114197834440n3 + 195845152107619591920n2

+92743576895010081600n+ 19927056990544704000)an
+(194741607456n13 + 8763372335520n12 + 181116778854528n11 + 2276272139092056n10

+19409301171931086n9 + 118570454113296582n8 + 533897028046714761n7

+1794118103056008945n6 + 4499490897537212457n5 + 8317813242144219813n4

+11017108466619178896n3 + 9901273828612752684n2

+5411908796200065936n+ 1358800904704763520)an+1

+(−7905964176n13 − 375533298360n12 − 8210014228350n11 − 109384917208164n10

−990927551678562n9 − 6445641158908164n8 − 30971993224981077n7

−111314492026841106n6 − 299240095376493090n5 − 594271149013691226n4

−847459848696773373n3 − 821800045816910820n2

−485718284438018172n− 132150596906568240)an+2

+(−34192224n13 − 1709611200n12 − 39348646744n11 − 551960207552n10

−5264405804862n9 − 36048494147578n8 − 182315015737541n7

−689472630263907n6 − 1949560872565283n5 − 4070539427181535n4

−6099491170412670n3 − 6211013227585736n2

−3851899366258336n− 1098712786184832)an+3

+(3784n13 + 198660n12 + 4794801n11 + 70437960n10

+702635490n9 + 5025358332n8 + 26510256652n7

+104430770292n6 + 307166340054n5

+666220125600n4 + 1035598237875n3

+1092435142500n2 + 700889050000n
+206542200000)an+4

Trustworthy?!

416745(n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(3784n4 + 62436n3 + 384549n2 + 1047914n+ 1066254)an

+9(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(29681696n7 + 712360704n6 + 7253307424n5

+40621828312n4 + 135172900470n3 + 267337368752n2

+291083104767n+ 134667010044)an+1

−9(n+ 3)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(10844944n8 + 309080904n7 + 3833838118n6

+27035659722n5 + 118560795930n4 + 331121212914n3

+575194973415n2 + 568260550317n+ 244478848756)an+2

−(n+ 3)(n+ 4)3(3n+ 13)(3n+ 14)
×(3799136n7 + 98777536n6 + 1092573240n5

+6662600832n4 + 24184813590n3 + 52244190090n2

+62174897623n+ 31442101253)an+3

+(n+ 3)(n+ 4)3(n+ 5)5

×(3784n4 + 47300n3 + 219945n2

+450988n+ 344237)an+4

90
202410
747558000
3536978063850
19292117692187340
115428185943399529200
737005538936597762145600
4937928427617947420104982250
34335031273255183438800013252500
245885257930209910994050195049583660
1803606070619313418263028665207782889600
13495472374334172242190334756526625738793200
102686609451774712441837258821702706690958244000
792606936905424716827805609592848631050897983368000
6194061046984488807137976612543476252072240088843168000
48930886220271330542271419741692768122929164062703692950250
390229178478432343758493287708395462786699986146463590205462500
3138480844349933121860864061245246387668619696538799391771830312500
25432614295681739433196618354669628742557464857190982677010381944500000
207492558790308966981127400374613926115883943143470298306753431997561245100
1703218238481833503830053446085753316816923905337688679320940617430053026793000
14058848882589179758130070400729131813439016621575276111626854605226450646014928000
116634933760657037542233232023342488551082357129978746187082171269726955508399331520000
972123687656328288735978572104329068283230362616209131997797645253144907352505487518710000

8137021686675518646293987429238146291939698206862646669804019655299405410612322521011793199840
68378027287127596101538933052599954448793862727300484972893130374083314936140639370265791902301600
576696135477018756656097310539308206595297137655178128559217331447163987622287690653154248117571110400
4880259952199292008921826526312609348825249147788374851144194565482906902131493688167790266738802504840000
41428792196488801486282127539417868379239611007329360384215118568533632449531545568541320235439941375576624000
352722570320243675250582868120044596892546971115353276044155030127971499536247490129735774654399339137472372179200

Neil Sloane (05.03.2022, about A189281): In the text of
the paper you say the coefficients are small! Au contraire.
In fact the amount of data in the g.f. is comparable with
the data in the original 35-term b-file for the sequence.

If you print the g.f. and then print the data, the number of
digits in the two printouts look about the same. When this
happens, surely you should be worried. I am very worried,
and I think the g.f. needs more justification.

In fact the g.f. looks wrong. I use gfun all the time, and
when the g.f. looks like this, like something you would find
in the dumpster behind a restaurant, then I would not even
consider it :D

47 / 90



Guessing for an OEIS Sequence
(10346454767880n13 + 439724327634900n12 + 8541142111645605n11 + 100346408873891460n10

+795176466036180480n9 + 4485660756765878340n8 + 18521224670025594405n7

+56639217843614362320n6 + 128197997261515989990n5 + 211964073373172447460n4

+248660072114197834440n3 + 195845152107619591920n2

+92743576895010081600n+ 19927056990544704000)an
+(194741607456n13 + 8763372335520n12 + 181116778854528n11 + 2276272139092056n10

+19409301171931086n9 + 118570454113296582n8 + 533897028046714761n7

+1794118103056008945n6 + 4499490897537212457n5 + 8317813242144219813n4

+11017108466619178896n3 + 9901273828612752684n2

+5411908796200065936n+ 1358800904704763520)an+1

+(−7905964176n13 − 375533298360n12 − 8210014228350n11 − 109384917208164n10

−990927551678562n9 − 6445641158908164n8 − 30971993224981077n7

−111314492026841106n6 − 299240095376493090n5 − 594271149013691226n4

−847459848696773373n3 − 821800045816910820n2

−485718284438018172n− 132150596906568240)an+2

+(−34192224n13 − 1709611200n12 − 39348646744n11 − 551960207552n10

−5264405804862n9 − 36048494147578n8 − 182315015737541n7

−689472630263907n6 − 1949560872565283n5 − 4070539427181535n4

−6099491170412670n3 − 6211013227585736n2

−3851899366258336n− 1098712786184832)an+3

+(3784n13 + 198660n12 + 4794801n11 + 70437960n10

+702635490n9 + 5025358332n8 + 26510256652n7

+104430770292n6 + 307166340054n5

+666220125600n4 + 1035598237875n3

+1092435142500n2 + 700889050000n
+206542200000)an+4

Trustworthy?

!

416745(n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(3784n4 + 62436n3 + 384549n2 + 1047914n+ 1066254)an

+9(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(29681696n7 + 712360704n6 + 7253307424n5

+40621828312n4 + 135172900470n3 + 267337368752n2

+291083104767n+ 134667010044)an+1

−9(n+ 3)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(10844944n8 + 309080904n7 + 3833838118n6

+27035659722n5 + 118560795930n4 + 331121212914n3

+575194973415n2 + 568260550317n+ 244478848756)an+2

−(n+ 3)(n+ 4)3(3n+ 13)(3n+ 14)
×(3799136n7 + 98777536n6 + 1092573240n5

+6662600832n4 + 24184813590n3 + 52244190090n2

+62174897623n+ 31442101253)an+3

+(n+ 3)(n+ 4)3(n+ 5)5

×(3784n4 + 47300n3 + 219945n2

+450988n+ 344237)an+4

90
202410
747558000
3536978063850
19292117692187340
115428185943399529200
737005538936597762145600
4937928427617947420104982250
34335031273255183438800013252500
245885257930209910994050195049583660
1803606070619313418263028665207782889600
13495472374334172242190334756526625738793200
102686609451774712441837258821702706690958244000
792606936905424716827805609592848631050897983368000
6194061046984488807137976612543476252072240088843168000
48930886220271330542271419741692768122929164062703692950250
390229178478432343758493287708395462786699986146463590205462500
3138480844349933121860864061245246387668619696538799391771830312500
25432614295681739433196618354669628742557464857190982677010381944500000
207492558790308966981127400374613926115883943143470298306753431997561245100
1703218238481833503830053446085753316816923905337688679320940617430053026793000
14058848882589179758130070400729131813439016621575276111626854605226450646014928000
116634933760657037542233232023342488551082357129978746187082171269726955508399331520000
972123687656328288735978572104329068283230362616209131997797645253144907352505487518710000

8137021686675518646293987429238146291939698206862646669804019655299405410612322521011793199840
68378027287127596101538933052599954448793862727300484972893130374083314936140639370265791902301600
576696135477018756656097310539308206595297137655178128559217331447163987622287690653154248117571110400
4880259952199292008921826526312609348825249147788374851144194565482906902131493688167790266738802504840000
41428792196488801486282127539417868379239611007329360384215118568533632449531545568541320235439941375576624000
352722570320243675250582868120044596892546971115353276044155030127971499536247490129735774654399339137472372179200

Neil Sloane (05.03.2022, about A189281): In the text of
the paper you say the coefficients are small! Au contraire.
In fact the amount of data in the g.f. is comparable with
the data in the original 35-term b-file for the sequence.

If you print the g.f. and then print the data, the number of
digits in the two printouts look about the same. When this
happens, surely you should be worried. I am very worried,
and I think the g.f. needs more justification.

In fact the g.f. looks wrong. I use gfun all the time, and
when the g.f. looks like this, like something you would find
in the dumpster behind a restaurant, then I would not even
consider it :D
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Guessing for an OEIS Sequence
(10346454767880n13 + 439724327634900n12 + 8541142111645605n11 + 100346408873891460n10

+795176466036180480n9 + 4485660756765878340n8 + 18521224670025594405n7

+56639217843614362320n6 + 128197997261515989990n5 + 211964073373172447460n4

+248660072114197834440n3 + 195845152107619591920n2

+92743576895010081600n+ 19927056990544704000)an
+(194741607456n13 + 8763372335520n12 + 181116778854528n11 + 2276272139092056n10

+19409301171931086n9 + 118570454113296582n8 + 533897028046714761n7

+1794118103056008945n6 + 4499490897537212457n5 + 8317813242144219813n4

+11017108466619178896n3 + 9901273828612752684n2

+5411908796200065936n+ 1358800904704763520)an+1

+(−7905964176n13 − 375533298360n12 − 8210014228350n11 − 109384917208164n10

−990927551678562n9 − 6445641158908164n8 − 30971993224981077n7

−111314492026841106n6 − 299240095376493090n5 − 594271149013691226n4

−847459848696773373n3 − 821800045816910820n2

−485718284438018172n− 132150596906568240)an+2

+(−34192224n13 − 1709611200n12 − 39348646744n11 − 551960207552n10

−5264405804862n9 − 36048494147578n8 − 182315015737541n7

−689472630263907n6 − 1949560872565283n5 − 4070539427181535n4

−6099491170412670n3 − 6211013227585736n2

−3851899366258336n− 1098712786184832)an+3

+(3784n13 + 198660n12 + 4794801n11 + 70437960n10

+702635490n9 + 5025358332n8 + 26510256652n7

+104430770292n6 + 307166340054n5

+666220125600n4 + 1035598237875n3

+1092435142500n2 + 700889050000n
+206542200000)an+4

Trustworthy?

!

416745(n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(3784n4 + 62436n3 + 384549n2 + 1047914n+ 1066254)an

+9(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(29681696n7 + 712360704n6 + 7253307424n5

+40621828312n4 + 135172900470n3 + 267337368752n2

+291083104767n+ 134667010044)an+1

−9(n+ 3)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(10844944n8 + 309080904n7 + 3833838118n6

+27035659722n5 + 118560795930n4 + 331121212914n3

+575194973415n2 + 568260550317n+ 244478848756)an+2

−(n+ 3)(n+ 4)3(3n+ 13)(3n+ 14)
×(3799136n7 + 98777536n6 + 1092573240n5

+6662600832n4 + 24184813590n3 + 52244190090n2

+62174897623n+ 31442101253)an+3

+(n+ 3)(n+ 4)3(n+ 5)5

×(3784n4 + 47300n3 + 219945n2

+450988n+ 344237)an+4

90
202410
747558000
3536978063850
19292117692187340
115428185943399529200
737005538936597762145600
4937928427617947420104982250
34335031273255183438800013252500
245885257930209910994050195049583660
1803606070619313418263028665207782889600
13495472374334172242190334756526625738793200
102686609451774712441837258821702706690958244000
792606936905424716827805609592848631050897983368000
6194061046984488807137976612543476252072240088843168000
48930886220271330542271419741692768122929164062703692950250
390229178478432343758493287708395462786699986146463590205462500
3138480844349933121860864061245246387668619696538799391771830312500
25432614295681739433196618354669628742557464857190982677010381944500000
207492558790308966981127400374613926115883943143470298306753431997561245100
1703218238481833503830053446085753316816923905337688679320940617430053026793000
14058848882589179758130070400729131813439016621575276111626854605226450646014928000
116634933760657037542233232023342488551082357129978746187082171269726955508399331520000
972123687656328288735978572104329068283230362616209131997797645253144907352505487518710000

8137021686675518646293987429238146291939698206862646669804019655299405410612322521011793199840
68378027287127596101538933052599954448793862727300484972893130374083314936140639370265791902301600
576696135477018756656097310539308206595297137655178128559217331447163987622287690653154248117571110400
4880259952199292008921826526312609348825249147788374851144194565482906902131493688167790266738802504840000
41428792196488801486282127539417868379239611007329360384215118568533632449531545568541320235439941375576624000
352722570320243675250582868120044596892546971115353276044155030127971499536247490129735774654399339137472372179200

Neil Sloane (05.03.2022, about A189281): In the text of
the paper you say the coefficients are small! Au contraire.
In fact the amount of data in the g.f. is comparable with
the data in the original 35-term b-file for the sequence.

If you print the g.f. and then print the data, the number of
digits in the two printouts look about the same. When this
happens, surely you should be worried. I am very worried,
and I think the g.f. needs more justification.

In fact the g.f. looks wrong. I use gfun all the time, and
when the g.f. looks like this, like something you would find
in the dumpster behind a restaurant, then I would not even
consider it :D
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Guessing for an OEIS Sequence
(10346454767880n13 + 439724327634900n12 + 8541142111645605n11 + 100346408873891460n10

+795176466036180480n9 + 4485660756765878340n8 + 18521224670025594405n7

+56639217843614362320n6 + 128197997261515989990n5 + 211964073373172447460n4

+248660072114197834440n3 + 195845152107619591920n2

+92743576895010081600n+ 19927056990544704000)an
+(194741607456n13 + 8763372335520n12 + 181116778854528n11 + 2276272139092056n10

+19409301171931086n9 + 118570454113296582n8 + 533897028046714761n7

+1794118103056008945n6 + 4499490897537212457n5 + 8317813242144219813n4

+11017108466619178896n3 + 9901273828612752684n2

+5411908796200065936n+ 1358800904704763520)an+1

+(−7905964176n13 − 375533298360n12 − 8210014228350n11 − 109384917208164n10

−990927551678562n9 − 6445641158908164n8 − 30971993224981077n7

−111314492026841106n6 − 299240095376493090n5 − 594271149013691226n4

−847459848696773373n3 − 821800045816910820n2

−485718284438018172n− 132150596906568240)an+2

+(−34192224n13 − 1709611200n12 − 39348646744n11 − 551960207552n10

−5264405804862n9 − 36048494147578n8 − 182315015737541n7

−689472630263907n6 − 1949560872565283n5 − 4070539427181535n4

−6099491170412670n3 − 6211013227585736n2

−3851899366258336n− 1098712786184832)an+3

+(3784n13 + 198660n12 + 4794801n11 + 70437960n10

+702635490n9 + 5025358332n8 + 26510256652n7

+104430770292n6 + 307166340054n5

+666220125600n4 + 1035598237875n3

+1092435142500n2 + 700889050000n
+206542200000)an+4

Trustworthy?

!

416745(n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(3784n4 + 62436n3 + 384549n2 + 1047914n+ 1066254)an

+9(3n+ 7)(3n+ 8)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(29681696n7 + 712360704n6 + 7253307424n5

+40621828312n4 + 135172900470n3 + 267337368752n2

+291083104767n+ 134667010044)an+1

−9(n+ 3)(3n+ 10)(3n+ 11)(3n+ 13)(3n+ 14)
×(10844944n8 + 309080904n7 + 3833838118n6

+27035659722n5 + 118560795930n4 + 331121212914n3

+575194973415n2 + 568260550317n+ 244478848756)an+2

−(n+ 3)(n+ 4)3(3n+ 13)(3n+ 14)
×(3799136n7 + 98777536n6 + 1092573240n5

+6662600832n4 + 24184813590n3 + 52244190090n2

+62174897623n+ 31442101253)an+3

+(n+ 3)(n+ 4)3(n+ 5)5

×(3784n4 + 47300n3 + 219945n2

+450988n+ 344237)an+4

90
202410
747558000
3536978063850
19292117692187340
115428185943399529200
737005538936597762145600
4937928427617947420104982250
34335031273255183438800013252500
245885257930209910994050195049583660
1803606070619313418263028665207782889600
13495472374334172242190334756526625738793200
102686609451774712441837258821702706690958244000
792606936905424716827805609592848631050897983368000
6194061046984488807137976612543476252072240088843168000
48930886220271330542271419741692768122929164062703692950250
390229178478432343758493287708395462786699986146463590205462500
3138480844349933121860864061245246387668619696538799391771830312500
25432614295681739433196618354669628742557464857190982677010381944500000
207492558790308966981127400374613926115883943143470298306753431997561245100
1703218238481833503830053446085753316816923905337688679320940617430053026793000
14058848882589179758130070400729131813439016621575276111626854605226450646014928000
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Neil Sloane (05.03.2022, about A189281): In the text of
the paper you say the coefficients are small! Au contraire.
In fact the amount of data in the g.f. is comparable with
the data in the original 35-term b-file for the sequence.

If you print the g.f. and then print the data, the number of
digits in the two printouts look about the same. When this
happens, surely you should be worried. I am very worried,
and I think the g.f. needs more justification.

In fact the g.f. looks wrong. I use gfun all the time, and
when the g.f. looks like this, like something you would find
in the dumpster behind a restaurant, then I would not even
consider it :D
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Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Guessing with Little Data for b4(n)

This is a linear recurrence of order 9 with polynomial
coefficients of degree 36.

I The ansatz for naive guessing has 10 · 37 = 370
unknowns, hence 379 terms would be required.

I Using order-versus-degree-trading 266 terms are
sufficient to find this recurrence.

I With LLL-based guessing, the recurrence can be
constructed from only 110 terms.

I The bit size of the guessed recurrence (after
applying an “offset shift” and counting only its
integer coefficients) is 46,599, which compares
with the bit size 70,955 of the first 110 terms.

48 / 90



Experiments with OEIS Sequences
I There are more than 350,000 sequences in the OEIS.

I Select those for which at least 50 terms are given,
I which seem to be D-finite (LA finds recurrence),
I which are not too simple (LA needs more than 10 terms),
I which are not too large (LA needs no more than 250 terms).

Exercise 7. Use the LLL approach to guess a recurrence for b3(n).
What is the minimal number of terms needed?
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Conclusion

I We designed a method for guessing recurrence equations,
using fewer terms than classical LA methods.

I Our algorithm is applicable to medium-sized examples where
computing more terms is prohibitively expensive.

I In practice, it often succeeds to reduce the required number of
sequence terms to 50% and less.

I For example, the recurrence for b4(n) could be guessed using
110 terms, while LA requires at least 266 terms.

I We identified trustworthy, yet-unknown recurrences for several
entries in the OEIS, which could not be found otherwise.

I The output of the algorithm is a guess and thus non-rigorous.
Independent verification is necessary to obtain a theorem!

I We were not able to find a recurrence for the notorious
Av(1324) sequence. . .
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Back to the Not-Alone Puzzle
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Part 3
D-Finite Functions and Creative Telescoping
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Motivation: Proving Identities
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2

x1 · · ·x2k
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:=
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The Holonomic Systems Approach

I seminal paper by Doron Zeilberger in 1990
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Univariate D-finite Functions

Definition. A function f(x) is called D-finite (“differentiably
finite”) if it satisfies a (nontrivial) linear ordinary differential
equation with polynomial coefficients:

pr(x)f (r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0, pi ∈ K[x].

Examples. const., xn, exp(x), sin(x),
√
x+ 1, . . .

Features.

I important and rich class of functions (aka holonomic functions)

I closed under many operations ; “closure properties”

I good data structure in symbolic computation:

I finitely many initial values ; finite amount of data

I operations (closure properties) can be executed algorithmically
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Many Functions are D-Finite
ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh,
HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc,
CosIntegral, ArcSech, SphericalBesselY, Sin, WhittakerW,
SphericalHankelH2, HermiteH, ExpIntegralEi, Beta, AiryBiPrime,
SphericalBesselJ, ParabolicCylinderD, Erfc, EllipticK, Cos,
Hypergeometric2F1, Erf, KelvinKer, BetaRegularized,
HypergeometricPFQRegularized, Log, BesselY, Cosh, ArcSinh,
CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE,
SinhIntegral, Sinh, SphericalHankelH1, ArcSin, AiryAiPrime,
EllipticThetaPrime, Root, AppellF1, FresnelC, LegendreQ,
ChebyshevU, GammaRegularized, Erfi, BesselI, HypergeometricU,
KelvinKei, Exp, ArcCot, Hypergeometric2F1Regularized, ArcSec,
Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE,
FresnelS, EllipticF, ArcCosh, HankelH1, Sqrt, BesselK, BesselJ,
Hypergeometric1F1Regularized, StruveL, KelvinBer, StruveH,
WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, . . .
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Closure Properties of D-Finite Functions
Theorem. If f(x) and g(x) are D-finite functions, then also the
following functions are D-finite:

(i) f(x)± g(x)

(ii) f(x) · g(x)

(iii)
∫
f(x) dx

(iv) d
dxf(x)

(v) f(h(x)), where h(x) is an algebraic function.

(vi) In particular, every algebraic function h(x) is D-finite.

Proof ideas.

(i) linear algebra, see next slide

(ii) also by linear algebra, analogous to (i)

(iii) replace f (i)(x) by f (i+1)(x) in the differential equation
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Proof
Assume f, g are D-finite and satisfy LODEs of order d1, d2, resp.

Goal. Show that h(x) := f(x) + g(x) is D-finite.

Ansatz. We want to find c0, . . . , cd ∈ K[n] such that

0 =

cd(x)h(d)(x) + · · ·+ c1h
′(x) + c0(x)h(x)

= 0

= cd(x)
(
f (d)(x) + g(d)(x)

)
+ · · ·+ c0(x)

(
f(x) + g(x)

)
= cd(x)

(
� f (d1−1)(x) + · · ·+� f ′(x) +� f(x) +

� g(d2−1)(x) + · · ·+� g′(x) +� g(x)
)

+ · · ·+ c0(x)
(
f(x) + g(x)

)
=

d1−1∑
i=0

ri(c0, . . . , cd, x)f (i)(x) +

d2−1∑
i=0

si(c0, . . . , cd, x)g(i)(x)

All coefficients ri, si must vanish: this yields d1 + d2 equations for
the unknowns c0, . . . , cd. The choice d := d1 + d2 ensures a solution.
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Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)

3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2

7

I
log
(√

1− x
)

exp
(√

1− x
)

3

I arctan
(
ex
)

7

I exp
(
arctan(x)

)

3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2

7

I
log
(√

1− x
)

exp
(√

1− x
)

3

I arctan
(
ex
)

7

I exp
(
arctan(x)

)

3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2 7

I
log
(√

1− x
)

exp
(√

1− x
)

3

I arctan
(
ex
)

7

I exp
(
arctan(x)

)

3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2 7

I
log
(√

1− x
)

exp
(√

1− x
) 3

I arctan
(
ex
)

7

I exp
(
arctan(x)

)

3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2 7

I
log
(√

1− x
)

exp
(√

1− x
) 3

I arctan
(
ex
) 7

I exp
(
arctan(x)

)

3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2 7

I
log
(√

1− x
)

exp
(√

1− x
) 3

I arctan
(
ex
) 7

I exp
(
arctan(x)

) 3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)
3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2 7

I
log
(√

1− x
)

exp
(√

1− x
) 3

I arctan
(
ex
) 7

I exp
(
arctan(x)

) 3

Exercise 8. For each of the functions that is D-finite, derive a
linear differential equation that it satisfies.

59 / 90



Operator Notation
Let Dx denote the differentiation w.r.t. x, i.e.,

D0
x

(
f(x)

)
= f(x),

Dx
(
f(x)

)
= f ′(x)

, D2
x

(
f(x)

)
= f ′′(x), etc.

Let K(x)〈Dx〉 denote the polynomial ring in Dx with coeffs in K(x).
It is not commutative:

Dx · x = x ·Dx + 1 (Leibniz rule).

More general:

Dx · r(x) = r(x) ·Dx + r′(x) for any r ∈ K(x).

Example. The Legendre differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0

translates to the operator

(x2 − 1)D2
x + 2xDx − n(n+ 1).
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D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

f(x) is D-finite ⇐⇒ ∃ L ∈ K(x)〈Dx〉 \ {0} : L
(
f(x)

)
= 0.

Let L1, L2 ∈ K(x)〈Dx〉 annihilate f and g, respectively. Then:

I L1 ·Dx annihilates
∫
f(x) dx.

I L := lclm(L1, L2) annihilates f + g.

(Actually, L annihilates c1 · f + c2 · g for any constants c1, c2.)
Proof: L = M1L1 = M2L2 for certain M1,M2 ∈ K(x)〈Dx〉.

I If f satisfies L(f) = h for some D-finite h, then f is D-finite.

Proof: Assume M(h) = 0. Then (ML)(f) = M(L(f)) = 0.

Let L1, L2 ∈ K(x)〈Dx〉 both annihilate f . Then

I L := gcrd(L1, L2) annihilates f .
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Proof: Assume M(h) = 0. Then (ML)(f) = M(L(f)) = 0.

Let L1, L2 ∈ K(x)〈Dx〉 both annihilate f . Then

I L := gcrd(L1, L2) annihilates f .
61 / 90



Univariate P-recursive Sequences
Definition. A sequence (an)n∈N is called P-recursive if it satisfies
a (nontrivial) linear ordinary recurrence equation with polynomial
coefficients:

pr(n)an+r + · · · + p1(n)an+1 + p0(n)an = 0, pi ∈ K[n].

Examples. const., n7, Fibonacci, n!,
(
2n
n

)
, Hn, . . .

Features.

I important and rich class of sequences
(aka “P-finite”, “D-finite”, or “holonomic” sequences)

I closed under many operations ; “closure properties”

I good data structure in symbolic computation:

I finitely many initial values ; finite amount of data

I operations (closure properties) can be executed algorithmically
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Many Sequences are P-Recursive

Multinomial, KelvinBei, HypergeometricPFQ, HarmonicNumber,
HankelH2, CatalanNumber, AngerJ, JacobiP, ChebyshevT,
SphericalBesselY, WhittakerW, Gamma, Subfactorial, BesselJ,
Pochhammer, SphericalHankelH2, Fibonacci, HermiteH, Beta,
SphericalBesselJ, Tribonacci, StruveL, ParabolicCylinderD,
Hypergeometric2F1, BesselK, BetaRegularized, KelvinKer,
PolyGamma, HypergeometricPFQRegularized, SchröderNumber,
SphericalHankelH1, LegendreP, LaguerreL, DelannoyNumber,
BetaRegularized, AppellF1, LegendreQ, Binomial, ChebyshevU,
GammaRegularized, BesselI, HypergeometricU, KelvinKei,
Factorial, Hypergeometric2F1Regularized, GegenbauerC,
KelvinBer, WeberE, HankelH1, Hypergeometric1F1Regularized,
StruveH, WhittakerM, Hypergeometric0F1, Factorial2,
Hypergeometric1F1, LucasL, MotzkinNumber, BesselY, . . .
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Closure Properties of P-Recursive Sequences

Theorem. If an and bn are two P-recursive sequences, then also
the following expressions are P-recursive:

(i) an ± bn

(ii) an · bn

(iii)
∑

n an (indefinite sum, i.e., sn s.t. sn+1 − sn = an)

(iv) acn+d, where c, d ∈ Z.

Proof idea.

(i) linear algebra, analogous to D-finite

(ii) also by linear algebra, analogous to (i)

(iii) replace an by an+1 − an in the recurrence
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Quiz: Which functions are P-Recursive?

Let Fn denote the Fibonacci sequence.

I F 2
n

3

I Fn2

7

I Γ
(
n
2

)

3

I sequence of prime numbers

7

Exercise 9. For each of the sequences that is P-recursive, derive a
linear recurrence equation that it satisfies.
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Operator Notation
Let Sn denote the forward shift operator w.r.t. n, i.e.,

S0
n

(
an
)

= an,

Sn
(
an
)

= an+1

, S2
n

(
an
)

= an+2, etc.

Let K(n)〈Sn〉 denote the polynomial ring in Sn with coeffs in K(n).
It is not commutative:

Sn · n = (n+ 1) · Sn.

More general:

Sn · r(n) = r(n+ 1) · Sn for any r ∈ K(n).

Example. The three-term recurrence for Legendre polynomials

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

translates to the operator

(n+ 2)S2
n − (2n+ 3)xSn + (n+ 1).
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P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

an is P-recursive ⇐⇒ ∃ L ∈ K(n)〈Sn〉 \ {0} : L(an) = 0.

Let L1, L2 ∈ K(n)〈Sn〉 annihilate an and bn, respectively. Then:

I L1 · (Sn − 1) annihilates
∑

n an.

I L := lclm(L1, L2) annihilates an + bn.

(Actually, L annihilates c1 · an + c2 · bn for any constants c1, c2.)
Proof: L = M1L1 = M2L2 for certain M1,M2 ∈ K(n)〈Sn〉.

I If an satisfies L(an) = hn for some P-rec hn, then an is P-rec.

Proof: Assume M(hn) = 0. Then (ML)(an) = M(L(an)) = 0.

Let L1, L2 ∈ K(n)〈Sn〉 both annihilate an. Then also

I L := gcrd(L1, L2) annihilates an.
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D-Finite and P-Recursive
Theorem. A sequence (an)n∈N is P-recursive iff its generating
function f(x) =

∑∞
n=0 anx

n is D-finite.

Proof. Calculate the derivatives of f :

=

∞∑
n=0

(n+ 1)i an+ix
n.

Assume f satisfies the LODE
r∑
i=0

d∑
j=0

pi,jx
jf (i)(x) = 0. Then:

r∑
i=0

d∑
j=0

∞∑
n=0

pi,j(n+ 1)i an+ix
n+j = 0

r∑
i=0

d∑
j=0

∞∑
n=j

pi,j(n− j + 1)i an−j+ix
n = 0

r∑
i=0

d∑
j=0

pi,j(n− j + 1)i an−j+i = 0 for all n > d.
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q-Case
Consider q-difference equations involving the q-shift operation

x 7→ qx, resp. qn 7→ qn+1,

or q-differential equations using the q-differentiation( d

dx

)
q
f(x) :=

f(qx)− f(x)

(q − 1)x
.

Examples.

I (a; q)n :=

n−1∏
i=0

(1− aqi), the q-Pochhammer symbol

I the q-binomial coefficient

[
n

k

]
q

:=
(q; q)n

(q; q)k (q; q)n−k

I q-trigonometric functions: sinq(x), Sinq(x), cosq(x), Cosq(x)

I q-special functions: q-Bessel functions, q-Legendre polynomials,
q-Gegenbauer polynomials, etc.
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Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables
(from now on, everything will just be called “D-finite”):

I Continuous case: multivariate functions f(x1, . . . , xs) where
the xi are continuous variables; must satisfy a (“maximally
overdetermined”) system of LPDEs with polynomial coeffs.

I Discrete case: multidimensional sequences (an1,...,nr)n1,...,nr∈N
where the ni are discrete variables; must satisfy “enough”
multivariate linear recurrences with polynomial coefficients.

I q-Case: multivariate expressions satisfying q-difference
equations or q-differential equations.

I Mixed cases: functions in several continuous and discrete
variables fn1,...,nr(x1, . . . , xs).

Examples: Bessel functions, orthogonal polynomials such as the
Legendre polynomials Pn(x), etc.
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Multivariate D-Finite Functions
Definition. A function fn1,...,nr(x1, . . . , xs) in the continuous
variables x1, . . . , xs and in the discrete variables n1, . . . , nr is
called D-finite if there is a finite set of basis functions of the form

di1

dxi11
. . .

dis

dxiss
fn1+j1,...,nr+jr(x1, . . . , xs)

such that any shifted partial derivative of f can be expressed as a
K(x1, . . . , xs, n1, . . . , nr)-linear combination of the basis functions.

Definition. A ring of partial differential / difference operators

O = K(x, n, . . . )〈Dx, Sn, . . . 〉,
i.e., multivariate polynomials in Dx, Sn, . . . with coefficients being
rational functions in x, n, . . . , is called an Ore algebra.

Definition. We define the annihilator of a function f to be the set

AnnO f :=
{
P ∈ O

∣∣ P · f = 0
}

(it is a left ideal in the ring O).
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(Left) Gröbner Bases
AnnO f is a left ideal in O ; Use (left) Gröbner bases!

Example. The Legendre polynomials Pn(x) satisfy

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0,

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

The corresponding operators in O = K(x, n)〈Dx, Sn〉,

(x2−1)D2
x +2xDx−n(n+1), (n+2)S2

n − (2n+3)xSn+(n+1),

generate AnnO
(
Pn(x)

)
, but do not form a (left) Gröbner basis.

Here is a Gröbner basis:

(n+1)Sn+(1−x2)Dx− (n+1)x, (x2−1)D2
x +2xDx−n(n+1).

Note. Gröbner bases (Buchberger 1965) are very useful!
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Multivariate D-Finite Functions
Let O = K(x, n, . . . )〈Dx, Sn, . . . 〉 be an Ore algebra.

Definition. A function f(x, y, . . . ) is D-finite w.r.t. O if
“all its shifts and derivatives”

O · f = {P · f | P ∈ O}

form a finite-dimensional K(x, y, . . . )-vector space:

dimK(x,y,... )

(
O/AnnO(f)

)
<∞.

In other words, if AnnO(f) is a zero-dimensional (left) ideal.

Sn

Dx

“monomials under the
staircase” (dim = 5)
= “holonomic rank”
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Closure Properties
General D-finite functions are closed under many operations:

(i) addition, e.g., xn + Pn(x)

(ii) multiplication, e.g., Pn(x)Pn+1(x)

(iii) certain substitutions, e.g., P2n+3

(√
x2 + 1

)
(iv) operator application, e.g., DxS

2
n (Pn(x)) = P ′n+2(x)

(v) definite summation, e.g.,
∑∞

n=0 Pn(x)tn

(vi) definite integration, e.g.,
∫ 1
0 Pn(x) dx

Assume the input functions have holonomic rank r1, r2, resp.
Then the output has rank at most

(i) r1 + r2

(ii) r1 · r2
(iii) r1 · d (where d is the degree of the algebraic function)

(iv) r1
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by AnnO(f), O = K(n, k)〈Sn, Sk〉.

We aim at computing a creative telescoping relation of the form:

pr(n)f(n+ r, k) + · · ·+ p0(n)f(n, k) = g(n, k + 1)− g(n, k)

= (Sk − 1) · g(n, k).

Where should we look for g(n, k)?

Note that there are “trivial” solutions like:

g(n, k) :=
k−1∑
i=0

(
pr(n)f(n+ r, i) + · · ·+ p0(n)f(n, i)

)
.

A reasonable choice for where to search for g is O · f .

Task: find P (n, Sn) = pr(n)Srn + · · ·+ p0(n) and Q ∈ O such that(
P − (Sk − 1)Q

)
· f = 0

⇐⇒ P − (Sk − 1)Q ∈ AnnO(f).
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Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)

A reasonable choice for where to search for g is O · f .

Task: find P (x,Dx) = pr(x)Dr
x + · · ·+ p0(x) and Q ∈ O such that(

P −DyQ
)
· f = 0

⇐⇒ P −DyQ ∈ AnnO(f).

76 / 90



Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)

A reasonable choice for where to search for g is O · f .

Task: find P (x,Dx) = pr(x)Dr
x + · · ·+ p0(x) and Q ∈ O such that(

P −DyQ
)
· f = 0

⇐⇒ P −DyQ ∈ AnnO(f).

76 / 90



Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)

A reasonable choice for where to search for g is O · f .

Task: find P (x,Dx) = pr(x)Dr
x + · · ·+ p0(x) and Q ∈ O such that(

P −DyQ
)
· f = 0

⇐⇒ P −DyQ ∈ AnnO(f).

76 / 90



Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)

A reasonable choice for where to search for g is O · f .

Task: find P (x,Dx) = pr(x)Dr
x + · · ·+ p0(x) and Q ∈ O such that(

P −DyQ
)
· f = 0

⇐⇒ P −DyQ ∈ AnnO(f).

76 / 90



Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)

A reasonable choice for where to search for g is O · f .

Task: find P (x,Dx) = pr(x)Dr
x + · · ·+ p0(x) and Q ∈ O such that(

P −DyQ
)
· f = 0 ⇐⇒ P −DyQ ∈ AnnO(f).

76 / 90



Example for Creative Telescoping

Consider the integral F (x) :=

∫ ∞
0

yν+1

y2 + 1
Jν(xy)︸ ︷︷ ︸

=:f(x,y)

dy.

The function f is D-finite with holonomic rank 2 (Basis: f , d
dxf):

{(y3+y)Dy−x(y2+1)Dx−νy2−ν+y2−1, x2D2
x +xDx+x2y2−ν2}

Creative telescoping delivers:

P = x2D2
x + xDx − x2 − ν2

Q =
x
(
y2 + 1

)
y

Dx −
νy2 + ν

y

g(x, y) = Q · f = yν
(
xyJ ′ν(xy)− νJν(xy)

)

Integrating (P −DyQ) · f = 0, i.e., P · f = d
dyg(x, y), yields

x2F ′′(x) + xF ′(x)− (x2 + ν2)F (x) = g(x, y)
∣∣∣y=∞
y=0

= 0.

Indeed, we have F (x) = Kν(x).
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x + xDx − x2 − ν2

Q =
x
(
y2 + 1

)
y

Dx −
νy2 + ν

y

g(x, y) = Q · f = yν
(
xyJ ′ν(xy)− νJν(xy)

)

Integrating (P −DyQ) · f = 0, i.e., P · f = d
dyg(x, y), yields

x2F ′′(x) + xF ′(x)− (x2 + ν2)F (x) = g(x, y)
∣∣∣y=∞
y=0

= 0.

Indeed, we have F (x) = Kν(x).
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Computing CT Relations
Idea: Make an ansatz for the telescoper P and the certificate Q.

Telescoper: Fix an integer r and set

P =

r∑
i=0

pi(x)Di
x with unknown coefficients pi ∈ K(x).

Certificate:
Let U denote the set of monomials under the stairs of a Gröbner
basis for AnnO(f), or any other vector space basis of O/AnnO(f).

Sn

Dx

Since Q ∈ O/AnnO(f), we can set

Q =
∑
u∈U

qu(x, y)u with unknowns qu ∈ K(x, y).
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Chyzak’s Algorithm
Putting things together:

P −DyQ =

r∑
i=0

pi(x)Di
x −Dy

∑
u∈U

qu(x, y)u

=
r∑
i=0

pi(x)Di
x −

∑
u∈U

(
qu(x, y)Dy + d

dy qu(x, y)
)
u

Since we want P −DyQ ∈ AnnO(f) we reduce the above
expression with a Gröbner basis of AnnO(f) and equate the
(Dx, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the qu’s with parameters p0, . . . , pr ∈ K(x).
−→ There are algorithms to find rational solutions of such systems.

Finally: loop over the (a priori) unknown order r of the telescoper.
−→ This is Chyzak’s algorithm (analogously in other Ore algebras).
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Application: Special Function Identities
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Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer

polynomials C
(α)
n (x)

Gamma
function Γ(x)

Bessel
function Jν(x)

Let’s prove this identity with creative telescoping. . .
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Example∫ 1

−1

(
1− x2

)ν− 1
2 eiaxCνn(x) dx =

π 21−νin Γ(2ν + n)

n! Γ(ν)
a−νJν+n(a)

CreativeTelescoping[

(1-x^2)^(nu-1/2)*Exp[I*a*x]*GegenbauerC[n, nu, x],

Der[x], {S[n], Der[a]}]{{
(a+ an)Sn + (ian+ 2iaν)Da + (−in2 − 2inν),

a2D2
a + (a+ 2aν)Da + (a2 − n2 − 2nν)

}
,{

i(1 + n)Sn − i(nx+ 2νx),

(1 + n)Sn − i(−a− inx− 2iνx+ ax2)
}}

Annihilator[

Pi*2^(1 - nu)*I^n*Gamma[2 nu + n]/n!/Gamma[nu]*

a^(-nu)*BesselJ[nu + n, a], {S[n], Der[a]}]{
(a+ an)Sn + (ian+ 2iaν)Da + (−in2 − 2inν),

a2D2
a + (a+ 2aν)Da + (a2 − n2 − 2nν)

}
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Diagonals of Rational Functions

Given a rational function in n variables

R(x1, . . . , xn) =
A(x1, . . . , xn)

B(x1, . . . , xn)
,

where A,B ∈ Q[x1, . . . , xn] such that B(0, . . . , 0) 6= 0.

Definition. The diagonal of R is defined through its multi-Taylor
expansion around (0, . . . , 0):

R(x1, . . . , xn) =

∞∑
m1=0

· · ·
∞∑

mn=0

rm1,...,mn · x
m1
1 · · ·x

mn
n ,

as the power series in one variable:

Diag
(
R(x1, . . . , xn)

)
:=

∞∑
m=0

rm,m,...,m · xm.
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

f(x, y) =
1

1− x− y − 2xy

= 1 + x+ y + x2 + 4xy + y2 + x3 + 7x2y + 7xy2 + . . .

= 1 + y + y2 + y3 + y4 + y5 + . . .
+ x + 4xy + 7xy2 + 10xy3 + 13xy4 + 16xy5 + . . .
+ x2 + 7x2y + 22x2y2 + 46x2y3 + 79x2y4 + 121x2y5 + . . .
+ x3 + 10x3y + 46x3y2 + 136x3y3 + 307x3y4 + 586x3y5 + . . .
+ x4 + 13x4y + 79x4y2 + 307x4y3 + 886x4y4 + 2086x4y5 + . . .
+ x5 + 16x5y + 121x5y2 + 586x5y3 + 2086x5y4 + 5944x5y5 + . . .

Then the diagonal of f is

Diag(f) = 1 + 4x+ 22x2 + 136x3 + 886x4 + 5944x5 + . . .
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= 1 + y + y2 + y3 + y4 + y5 + . . .
+ x + 4xy + 7xy2 + 10xy3 + 13xy4 + 16xy5 + . . .
+ x2 + 7x2y + 22x2y2 + 46x2y3 + 79x2y4 + 121x2y5 + . . .
+ x3 + 10x3y + 46x3y2 + 136x3y3 + 307x3y4 + 586x3y5 + . . .
+ x4 + 13x4y + 79x4y2 + 307x4y3 + 886x4y4 + 2086x4y5 + . . .
+ x5 + 16x5y + 121x5y2 + 586x5y3 + 2086x5y4 + 5944x5y5 + . . .

Then the diagonal of f is
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Diagonals as Integrals

Note that a diagonal Diag
(
R(x, y, z)

)
can also be expressed as

〈y0z0〉R
(x
y
,
y

z
, z
)

= resy,z
1

yz
R
(x
y
,
y

z
, z
)

=

∮
1

yz
R
(x
y
,
y

z
, z
)

dy dz.

where 〈y0z0〉 denotes the constant coefficient w.r.t. y and z.

Indeed, writing

R(x, y, z) =
∑
l>0

∑
m>0

∑
n>0

rl,m,n x
lymzn

one obtains

R
(x
y
,
y

z
, z
)

=
∑
l>0

∑
m>0

∑
n>0

al,m,n x
lym−lzn−m.
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Back to Balanced Binary Matrices
Theorem. For any fixed k the sequence bk(n) of balanced 2k× 2n
binary matrices is P-recursive.

Proof. Consider the elementary symmetric function of degree k:

ek(x1, . . . , x2k) =
∑

16i1<i2<···<ik62k
xi1 · · ·xik .

I Each monomial of ek(x1, . . . , x2k) corresponds to a way of
placing k ones and k zeroes in a particular column.

I Then ek(x1, . . . , x2k)
2n is the weight enumerator of all

column-balanced 2k × 2n matrices.
I Extracting the coefficient of xn1 · · ·xn2k in ek(x1, . . . , x2k)

2n

collects those that are also row-balanced.

bk(n) =

∞∑
n=0

bk(n)x2n = Diag

(
1

1− ek(x1, . . . , x2k)

)
.
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First Result
(joint work with Robert Dougherty-Bliss, Natalya Ter-Saakov, Doron Zeilberger)

Theorem. Let b2(n) be the number of 4× 2n balanced matrices.
Then

36(2n+ 3)(2n+ 1)(n+ 1) b2(n)

− 2(2n+ 3)(10n2 + 30n+ 23) b2(n+ 1)

+ (n+ 2)3 b2(n+ 2) = 0

for all n > 0.

Exercise 10. Use creative telescoping to rigorously derive this
recurrence. If you have some time, do the same for the theorem on
the next slide.
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Second Result
Theorem. Let b3(n) be the number of 6× 2n balanced matrices.
Then

51200(2n+ 7)(2n+ 5)(2n+ 3)(2n+ 1)(n+ 2)(n+ 1)

×
(
33n2 + 242n+ 445

)
b3(n)

− 128(2n+ 7)(2n+ 5)(2n+ 3)(n+ 2)
(
7491n4 + 84898n3

+ 351364n2 + 628997n+ 414370
)
b3(n+ 1)

+ 16(2n+ 5)(2n+ 7)
(
2772n6 + 48048n5 + 344379n4

+ 1307394n3 + 2775099n2 + 3125336n+ 1460132
)
b3(n+ 2)

+ 2(2n+ 7)(n+ 3)
(
3201n6 + 61886n5 + 497179n4 + 2124170n3

+ 5089654n2 + 6484024n+ 3431096
)
b3(n+ 3)

− (n+ 3)(n+ 4)5
(
33n2 + 176n+ 236

)
b3(n+ 4) = 0

for all n > 0.
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Balanced Matrices Avoiding Some Patterns
Theorem. Let H and V be finite sets of words (patterns) in {0, 1}.
Let bH,V,k(n) be the number of balanced 2k × 2n binary matrices,
that avoid the patterns of H in every row and the patterns of V in
every column. Then bH,V,k(n) is P-recursive for any fixed k.

Proof idea.

I Assign a weight of a matrix A = (aij , 1 6 i 6 2k, 1 6 j 6 n)
to be tnxa11 · · ·x

a2k
2k , where ai is the number of ones in row i.

I Use the transfer matrix method to find the weight-enumerator
of the set of all matrices avoiding H horizontally and V vertically.

I This is a complicated rational function in the 2k + 1 variables.

I In order to count balanced such matrices with 2n columns, we
have to extract the coefficient of t2nxn1 · · ·xn2k.

Exercise 11. Work out the details and derive a recurrence for
balanced 4× 2n matrices that avoid the patterns 010 and 101
both horizontally and vertically.
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Encore: Symbolic Determinants

. . . maybe another time!
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