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Introduction

Probabilistic methods
▶ prove the existence of combinatorial objects
▶ using probabilistic tools and arguments

▶ First moment principles: linearity of expectation
▶ Second moment inequalities
▶ Lovász Local Lemma
▶ Entropy Compression
▶ Concentration inequalities
▶ . . .
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Outline of today’s talk

▶ a warmup example
▶ hypergraph coloring problem
▶ statement of the Lovász Local Lemma
▶ application in hypergraph coloring
▶ application in acyclic graph coloring
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Warmup example

Given a graph on n vertices and m edges, what minimum size
of a bipartite (spanning) subgraph can be guaranteed?
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Warmup example

Given a graph on n vertices and m edges, what minimum size
of a bipartite (spanning) subgraph can be guaranteed?

The best we can hope for is ∼ m
2 :

▶ a complete graph on n vertices has
(n
2

)
∼ n2
2 edges

▶ a complete bipartite graph on ⌈n2⌉+ ⌊n2⌋ vertices has ∼
n2
4

edges
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Warmup example

Randomized procedure
▶ For each vertex, choose a color (red/blue) independently,
uniformly at random

▶ Remove monochromatic edges

For an edge e, let Xe =

{
1 if e is bichromatic,
0 if e is monochromatic.

Then E(Xe) = 1
2 , and by linearity of expectation,

E(
∑
e∈E(G) Xe) =

∑
e∈E(G) E(Xe) =

m
2 .

Therefore, there exists a coloring with at least m2 bichromatic
edges.
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Hypergraph coloring

A hypergraph H = (V ,E ) is a couple of sets with
▶ V a (finite nonempty) set of vertices, and
▶ E ⊆ 2V a set of nonempty subsets of V , called edges.

A hypergraph is k-uniform if |e| = k ∀e ∈ E .
A hypergraph is k-regular if |{e ∈ E : v ∈ e}| = k ∀v ∈ V .

A hypergraph H is t-colorable if one can color its vertices with
t colors without monochromatic edges.

Is every k-regular k-uniform hypergraph 2-colorable?

Not for k = 2.
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Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?

Not for k = 3:

How about k sufficiently large?
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Hypergraph coloring
Is every k-regular k-uniform hypergraph 2-colorable?

How about k sufficiently large?

Randomized procedure
▶ For each vertex, choose a color (red/blue) independently,
uniformly at random

For e ∈ E , let Ae denote the event that e is monochromatic.

P(Ae) =
1
2k−1

∀e ∈ E P

(⋂
e∈E

Ae

)
= ?

If A := (Ae , e ∈ E ) were independent, we would have

P

(⋂
e∈E

Ae

)
=

(
1− 1
2k−1

)m
> 0

18/32
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Mutually independent events

Definition
Let A be an event and let B be a set of events in a probability
space. We say that A is mutually independent of B if

P

(
A |

⋂
Bi∈S

Bi

)
= P(A)

for every set S ⊆ B.

For example, in the context of random hypergraph coloring,
Ae is mutually independent of

{Ae′ : e ∩ e ′ = ∅} .
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Lovász Local Lemma
If a set of bad events that are mostly mutually independent happen with low
probability, then with positive probability none of them happen.

Theorem (Lovász Local Lemma, Symmetric version)
Let A = {A1,A2, . . . ,An} be a set of events such that for
each i = 1, 2 . . . , n
▶ P(Ai) ≤ p and
▶ ∃Di ⊂ A of size at most d such that
Ai is mutually independent of A \ Di .

If
e · p · (d + 1) ≤ 1

then

P

(
n⋂
i=1

Ai

)
> 0.
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Lovász Local Lemma
If a set of bad events that are mostly mutually independent happen with low
probability, then with positive probability none of them happen.

Theorem (LLL)
If P(Ai) ≤ p, Ai is mutually independent of A \ Di with

|Di | ≤ d, and ep(d + 1) ≤ 1, then P
(
n⋂
i=1
Ai

)
> 0.

In the context of random coloring of a k-regular k-uniform

hypergraph, p =
1
2k−1

and each Ae is mutually independent of

all but at most k2 other edges, so d = k2.

There exists a coloring without a monochromatic edge
whenever e

2k−1
· k2 ≤ 1.
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Hypergraph coloring

Theorem (Lovász and Erdős 1975)
Let k ≥ 9. Then every k-regular k-uniform hypergraph is
2-colorable.

Theorem (Alon and Bregman 1988)
Let k ≥ 8. Then every k-regular k-uniform hypergraph is
2-colorable.

Theorem (Alon and Bregman 1988, Henning and
Yeo 2013)
Let k ≥ 4. Then every k-regular k-uniform hypergraph is
2-colorable.
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Acyclic graph coloring
Definition
Let G = (V ,E ) be a graph. A coloring
φ : V (G ) → {1, 2, . . . , k} is an acyclic coloring of G if
▶ φ(u) ̸= φ(v) ∀uv ∈ E (G ), (φ is a proper coloring)
▶ there is no bichromatic cycle in G .

not a proper coloring
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Acyclic graph coloring

Definition
Let G = (V ,E ) be a graph. A coloring
φ : V (G ) → {1, 2, . . . , k} is an acyclic coloring of G if
▶ φ(u) ̸= φ(v) ∀uv ∈ E (G ), (φ is a proper coloring)
▶ there is no bichromatic cycle in G .

Definition
The acyclic chromatic number of a graph G, denoted by
χa(G ), is the smallest k such that G admits an acyclic
coloring with k colors.

Can we bound χa(G ) as a function of ∆(G ), the
maximum degree of G?
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Greedy bound
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

If we color every vertex with a color distinct from all the colors
of its neighbors and the neighbors of its neighbors, surely we
will not create any bichromatic cycle.

This is always possible provided we have at least

∆+∆(∆− 1) + 1 = ∆2 + 1

colors. Hence,
χa(G ) ≤ ∆2 + 1

for every graph G .
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Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem (Alon, McDiarmid, Reed 1991)
Let G be a graph with maximum degree ∆. Then

χa(G ) ≤ 50∆4/3.

On the other hand, there are graphs for which

χa(G ) = Ω

(
∆4/3

(log∆)1/3

)
.
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Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem
Let G be a graph with maximum degree ∆. Then

χa(G ) ≤ 7∆3/2.

Let C be a set of K ≥ 7∆3/2 colors.
Randomized procedure : For each vertex v , let F (v) be the set
of colors forbidden at v – the colors of the neighbors already
colored, and let C (v) = C \ F (v) be the set of available colors
at v . Clearly, |F (v)| ≤ ∆.
▶ Choose an integer i ≤ K −∆ uniformly randomly and
color v with i -th available color.

This procedure gives a proper coloring of G .

29/32



Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem
Let G be a graph with maximum degree ∆. Then

χa(G ) ≤ 7∆3/2.

Let C be a set of K ≥ 7∆3/2 colors.
Randomized procedure : For each vertex v , let F (v) be the set
of colors forbidden at v – the colors of the neighbors already
colored, and let C (v) = C \ F (v) be the set of available colors
at v . Clearly, |F (v)| ≤ ∆.
▶ Choose an integer i ≤ K −∆ uniformly randomly and
color v with i -th available color.

This procedure gives a proper coloring of G .

29/32



Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem
Let G be a graph with max degree ∆. Then χa(G ) ≤ 7∆3/2.
Let C be a set of K ≥ 7∆3/2 colors.
▶ Choose an integer i ≤ K −∆ uniformly randomly and
color v with i -th available color.

Let AP be the event that a 4-vertex path P = v1v2v3v4 gets
only two colors.

P(AP) ≤
1

(K −∆)2
.

AP is independent of all AP′ with P ∩ P ′ = ∅.
The dependency degree is (less than)

d < 4 · 4 ·∆3 = 16∆3.
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If P(Ai) ≤ p, Ai is mutually independent of A \ Di with

|Di | ≤ d, and ep(d + 1) ≤ 1, then P
(
n⋂
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)
> 0.

Let C be a set of K ≥ 7∆3/2 colors. We have
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and d < 4 · 4 ·∆3 = 16∆3

and so
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(7∆3/2 −∆)2
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0.89∆

(∆1/2 − 1
7)
2
< 1

□
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Conclusion

LLL: If a set of bad events that are mostly mutually
independent happen with low probability, then with positive
probability none of them happen.

Applications in graphs, hypergraphs, coloring, transversals,
satisfiability, combinatorics of words, etc.

Main inconvenience: Not algorithmic/non constructive, only
proves existence.

Thank you for your attention!
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Frank Sinatra: Strangers in the night

Strangers in the night exchanging
glances
Wondering in the night, what were
the chances
we’d be sharing love before the
night was through
Something in your eyes was so
inviting
Something in your smile was so
exciting
Something in my heart told me I
must have you
Strangers in the night
Two lonely people we were
strangers in the night
Up to the moment

When we said our first hello
Little did we know
Love was just a glance away
A warm embracing dance away, and
Ever since that night we’ve been
together
Lovers at first sight, in love forever
It turned out so right
For strangers in the night
Love was just a glance away
A warm embracing dance away
Ever since that night we’ve been
together
Lovers at first sight, in love forever
It turned out so right
For strangers in the night



Alicia Keys: If I Ain’t got you

Some people live for the fortune
Some people live just for the fame
Some people live for the power, yeah
Some people live just to play the game
Some people think that the physical
things define what’s within
And I’ve been there before
That life’s a bore
So full of the superficial
Some people want it all
But I don’t want nothing at all
If it ain’t you, baby
If I ain’t got you, baby
Some people want diamond rings
Some just want everything
But everything means nothing
If I ain’t got you, yeah
Some people search for a fountain
That promises forever young
Some people need three dozen roses
And that’s the only way to prove you love
them
Hand me the world
On a silver platter

And what good would it be?
With no one to share
With no one who truly cares for me?
Some people want it all
But I don’t want nothing at all
If it ain’t you, baby
If I ain’t got you, baby
Some people want diamond rings
Some just want everything
But everything means nothing
If I ain’t got you, you, you
Some people want it all
But I don’t want nothing at all
If it ain’t you, baby
If I ain’t got you, baby
Some people want diamond rings
Some just want everything
But everything means nothing
If I ain’t got you, yeah
If I ain’t got you with me, baby
Oh, whoo-ooh
Said nothing in this whole wide world
don’t mean a thing
If I ain’t got you with me, baby
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Introduction

Entropy compression method
▶ analyze the performance of randomized algorithms
▶ prove that the algorithm eventually finds a solution
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Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G ) → [1, k]

is acyclic if there is no bichromatic cycle.
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Acyclic edge coloring

The smallest k such that G admits an acyclic edge coloring
with k colors is the acyclic chromatic index of G , denoted
χ′
a(G ).

Clearly, for every graph G ,

χ′
a(G ) ≥ χ′(G ) ≥ ∆(G )

where χ(G ) is the chromatic index of G and ∆(G ) is the
maximum degree of G .

For Petersen graph P we have

χ′
a(P) = χ′(P) = 4.
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Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G ) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G ) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G ) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G ) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G ) ≤ 4∆− 4.
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Randomized algorithm

Let G be a graph, let e1, e2, . . . , em be the edges of G .
Let C be a set of colors, let |C | = K .

For a partially colored graph G and an edge e, let F (e) denote
the set of forbidden colors for e: the colors on the edges
adjacent to e.

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the first two

until the whole graph is colored.
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Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.
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Entropy compression principle

Let the number of rounds N be fixed.

If at each round, we can choose one of (at least) k colors,
then there are at least kN different runs, none of which
succeeds to color the whole graph.

On the other hand, given a final coloring after N rounds and
the content of the log file, we can reconstruct the whole run.

If we can prove that the number of possible combinations of
{final coloring × log file} is in o(kN), then we get a
contradiction: a run that stops before round N must exist.
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Log file: which edges are colored and which are not

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].
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Log file: which edges are colored and which are not

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].
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Log file: what else?

Given
▶ the coloring after round j
▶ the information whether a path was uncolored or not
▶ (eventually) the uncolored path
we can determine the coloring before round j .

1

2

ei

In particular, we can determine the color assigned to ei .
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Log file

Log file contains
▶ for each round, a boolean to know whether there was
a conflict or not; and eventually

▶ the number of edges to uncolor, and
▶ for each uncolored edge, a value from [1,∆].

Alternatively, log file can contain
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
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Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

1 2 3 4 5 6 7
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Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
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m
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Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
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Dyck words

A Dyck word of length 2N is a word over {↗,↘} representing
a path from (0, 0) to (2N , 0) never crossing the zero line.

It is known that the number of Dyck words of length 2N is the
N-th Catalan number

CN =
1
N + 1

(
2N
N

)
∼ 4N

N3/2
√
π
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Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N = o((4∆)N)
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How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34



How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34



How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,

but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34



How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34



How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34



Conclusion

Entropy compression: the history of a given process can be
recorded in an efficient way – the amount of additional
information that is recorded at each step of the process is
(on average) less than the amount of new information
randomly generated at each step.

Used to prove the existence of a solution in various settings:
graph colourings, formula satisfiability, combinatorics of words,
etc.

Thank you for your attention!
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