
Journées ALEA, CIRM, 21st-25th March 2022

Scaling limits of random trees and
graphs

Christina Goldschmidt

https://www.stats.ox.ac.uk/~goldschm/ALEAminicourse.html

https://www.stats.ox.ac.uk/~goldschm/ALEAminicourse.html

1. INTRODUCTION: BINARY TREES

Binary trees

I Let Tn be the set of planted plane binary trees with n leaves.

I Note that every element of Tn has n − 1 internal vertices and
2n − 1 edges.

I Let T∗n be the set of planted plane binary leaf-labelled trees
with n labelled leaves.

I The root, labelled 0 is, by convention, not a leaf.

0

1

2

3

45

67

Binary trees

I Let Tn be the set of planted plane binary trees with n leaves.

I Note that every element of Tn has n − 1 internal vertices and
2n − 1 edges.

I Let T∗n be the set of planted plane binary leaf-labelled trees
with n labelled leaves.

I The root, labelled 0 is, by convention, not a leaf.

0

1

2

3

45

67

Binary trees

Tn is the set of planted plane binary trees with n leaves.
T∗n is the set of planted plane binary leaf-labelled trees with n
labelled leaves.

|Tn| =
1

n

(
2n − 2
n − 1

)
(Catalan numbers), |T∗n| = n!|Tn|.

Uniform binary plane trees

|Tn| =
1

n

(
2n − 2
n − 1

)
∼ 4n−1

n3/2
√
π

as n→∞.

Our first object of interest is a uniform random element of Tn. It
will be more convenient to work with T∗n and then ignore the leaf
labels.

Rémy’s algorithm recursively constructs a sequence (Tn)n≥1 of
trees such that Tn is uniform on T∗n for each n.

Uniform binary plane trees

|Tn| =
1

n

(
2n − 2
n − 1

)
∼ 4n−1

n3/2
√
π

as n→∞.

Our first object of interest is a uniform random element of Tn.

It
will be more convenient to work with T∗n and then ignore the leaf
labels.

Rémy’s algorithm recursively constructs a sequence (Tn)n≥1 of
trees such that Tn is uniform on T∗n for each n.

Uniform binary plane trees

|Tn| =
1

n

(
2n − 2
n − 1

)
∼ 4n−1

n3/2
√
π

as n→∞.

Our first object of interest is a uniform random element of Tn. It
will be more convenient to work with T∗n and then ignore the leaf
labels.

Rémy’s algorithm recursively constructs a sequence (Tn)n≥1 of
trees such that Tn is uniform on T∗n for each n.

Uniform binary plane trees

|Tn| =
1

n

(
2n − 2
n − 1

)
∼ 4n−1

n3/2
√
π

as n→∞.

Our first object of interest is a uniform random element of Tn. It
will be more convenient to work with T∗n and then ignore the leaf
labels.

Rémy’s algorithm recursively constructs a sequence (Tn)n≥1 of
trees such that Tn is uniform on T∗n for each n.

Rémy’s algorithm

I Start from a single edge with endpoints labelled 0 and 1.

I At step n ≥ 2, pick an edge uniformly at random, divide it
into two edges, insert a new vertex in the middle and attach
to that vertex a new edge with a leaf labelled n at its other
end, chosen to point in one of the two possible directions each
with probability 1/2.

Rémy’s algorithm

0

1

Rémy’s algorithm

0

1

2

Rémy’s algorithm

0

1

2

3

Rémy’s algorithm

0

1

2

3
4

Rémy’s algorithm

0

1

2

3
4

5

Rémy’s algorithm

0

1

2

3
4

5

6

Rémy’s algorithm

0

1

2

3
4

5

6

7

Rémy’s algorithm

Claim: for each n, Tn is a uniform element of T∗n.

0

1

2

3
4

5

6

7

0

1

2

3

45

67

[J.-L. Rémy, Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération
aléatoire, RAIRO. Informatique théorique 19:2 (1985), pp.179–195]

Taking limits

Vague question: what can we say about Tn as n→∞?

Concrete first question: as n→∞, how does the distance between
0 and 1 behave?

Taking limits

Vague question: what can we say about Tn as n→∞?

Concrete first question: as n→∞, how does the distance between
0 and 1 behave?

An urn in Rémy’s algorithm

The total number of edges present at step n is equal to 2n − 1.

Consider the number of edges in the path between 0 and 1:

I If we add our new leaf somewhere along that path, it gets
longer by 1.

I If we add our new leaf anywhere else, the length of the path
remains the same.

An urn in Rémy’s algorithm

We have an urn process with two colours, say black and white,
where each black ball represents an edge in the path between 0
and 1, and each white ball represents an edge elsewhere.

When we pick a black ball, we replace it in the
urn together with one black and one white ball.

+

+

When we pick a white ball, we replace it in the
urn together with two new white balls.

+

+

We start with a single black ball. At step n, we always have 2n− 1
balls present.

An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn =

2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that(
Bn

bn

)
n≥1

is a non-negative martingale.

An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn

=
2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that(
Bn

bn

)
n≥1

is a non-negative martingale.

An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn =

2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that(
Bn

bn

)
n≥1

is a non-negative martingale.

An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn =

2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that(
Bn

bn

)
n≥1

is a non-negative martingale.

An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn =

2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that(
Bn

bn

)
n≥1

is a non-negative martingale.

Martingale limit

(Bn/bn)n≥1 is also bounded in L2, hence uniformly integrable, and
so it has an almost sure limit by the martingale convergence
theorem.

Since

bn+1 =
22n(n!)2

(2n)!
∼
√
πn,

we get that
Bn√
2n
→ L a.s. as n→∞

for some limit random variable L.

[P. Marchal, A note on the fragmentation of the stable tree, Fifth Colloquium on Mathematics and Computer
Science, DMTCS (2008), pp.489–500]

Limiting distribution for the length
It also turns out (using a generating function argument) that the
law of Bn+1 is explicit:

P (Bn+1 = k) =
k − 1

n
2k−1

(
2n−k
n−1

)
(2n

n)

and so

P
(
Bn+1 = bx

√
2nc
)
∼ x√

2n
e−x

2/2, x > 0.

In other words, we get

Bn√
2n
→ L a.s. as n→∞,

where the limit L has the Rayleigh distribution, with density
xe−x

2/2 on R+.

[P. Flajolet, P. Dumas and V. Puyhaubert, Some exactly solvable models of urn process theory, Fourth
Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, DMTCS
(2006), pp.59–118]

Limiting distribution for the length
It also turns out (using a generating function argument) that the
law of Bn+1 is explicit:

P (Bn+1 = k) =
k − 1

n
2k−1

(
2n−k
n−1

)
(2n

n)

and so

P
(
Bn+1 = bx

√
2nc
)
∼ x√

2n
e−x

2/2, x > 0.

In other words, we get

Bn√
2n
→ L a.s. as n→∞,

where the limit L has the Rayleigh distribution, with density
xe−x

2/2 on R+.

[P. Flajolet, P. Dumas and V. Puyhaubert, Some exactly solvable models of urn process theory, Fourth
Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, DMTCS
(2006), pp.59–118]

Consequences
The distance between 0 and 1 varies as

√
2n, with a nice almost

sure limit. What can we say about the distances between the other
leaves as n→∞?

For example, let’s think about the distance from 2 to the path
between 0 and 1, and the position along that path at which it
branches off.

0

1

2

3

45

67

Consequences
The distance between 0 and 1 varies as

√
2n, with a nice almost

sure limit. What can we say about the distances between the other
leaves as n→∞?

For example, let’s think about the distance from 2 to the path
between 0 and 1, and the position along that path at which it
branches off.

0

1

2

3

45

67

More urns: self-similarity

At step 2 of Rémy’s algorithm, we always have

0

1

2

Each of the three parts here behaves precisely as a little copy of
Rémy’s algorithm, although the numbers of leaves we add to each
copy are dependent.

More urns: self-similarity

At step 2 of Rémy’s algorithm, we always have

0

1

2

Each of the three parts here behaves precisely as a little copy of
Rémy’s algorithm, although the numbers of leaves we add to each
copy are dependent.

More urns: self-similarity

Each of the three parts here behaves precisely as a little copy of
Rémy’s algorithm, although the numbers of leaves we add to each
copy are dependent.

A useful consequence is that given the three sets of leaves, these
three trees are themselves uniform binary plane trees.

0

1

2

3
4

5

6

7

More urns: self-similarity

The numbers of vertices in each of the three little trees evolve
according to a variant of Pólya’s urn with three colours, red, green
and blue. We start with one ball of each colour. We pick a ball at
random and replace it in the urn with two more of the same
colour. Let Rn,Gn,Bn be the numbers of red, green and blue balls
respectively at step n.

+

+

+

+

+

+

More urns: self-similarity

It is then standard that

1

2n + 3
(Rn,Gn,Bn)→ (∆1,∆2,∆3) a.s. as n→∞,

where (∆1,∆2,∆3) ∼ Dirichlet(1/2, 1/2, 1/2).

The Dirichlet distribution with parameters α1, α2, . . . , αk > 0 has
density

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

xα1−1
1 . . . xαk−1

k

with respect to Lebesgue measure on{
x = (x1, . . . , xk) ∈ Rk

+ :
k∑

i=1

xi = 1

}
.

More urns: self-similarity

It is then standard that

1

2n + 3
(Rn,Gn,Bn)→ (∆1,∆2,∆3) a.s. as n→∞,

where (∆1,∆2,∆3) ∼ Dirichlet(1/2, 1/2, 1/2).

The Dirichlet distribution with parameters α1, α2, . . . , αk > 0 has
density

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

xα1−1
1 . . . xαk−1

k

with respect to Lebesgue measure on{
x = (x1, . . . , xk) ∈ Rk

+ :
k∑

i=1

xi = 1

}
.

More urns: self-similarity
The numbers of leaves in each of the three subtrees are given by

NR
n = (Rn + 1)/2, NG

n = (Gn + 1)/2, NB
n = (Bn + 1)/2.

So we have

1

n
(NR

n ,N
G
n ,N

B
n)→ (∆1,∆2,∆3) a.s.

Writing LRn , L
G
n , L

B
n for the lengths of the three paths at step n, we

see that they look like small copies of the first urn model run for
numbers of steps which are approximately n∆1, n∆2 and n∆3. It
follows that

1√
2n

(LRn , L
G
n , L

B
n)→ (

√
∆1L1,

√
∆2L2,

√
∆3L3) a.s.

where L1, L2, L3 are i.i.d. Rayleigh random variables, independent
of (∆1,∆2,∆3).

More urns: self-similarity
The numbers of leaves in each of the three subtrees are given by

NR
n = (Rn + 1)/2, NG

n = (Gn + 1)/2, NB
n = (Bn + 1)/2.

So we have

1

n
(NR

n ,N
G
n ,N

B
n)→ (∆1,∆2,∆3) a.s.

Writing LRn , L
G
n , L

B
n for the lengths of the three paths at step n, we

see that they look like small copies of the first urn model run for
numbers of steps which are approximately n∆1, n∆2 and n∆3.

It
follows that

1√
2n

(LRn , L
G
n , L

B
n)→ (

√
∆1L1,

√
∆2L2,

√
∆3L3) a.s.

where L1, L2, L3 are i.i.d. Rayleigh random variables, independent
of (∆1,∆2,∆3).

More urns: self-similarity
The numbers of leaves in each of the three subtrees are given by

NR
n = (Rn + 1)/2, NG

n = (Gn + 1)/2, NB
n = (Bn + 1)/2.

So we have

1

n
(NR

n ,N
G
n ,N

B
n)→ (∆1,∆2,∆3) a.s.

Writing LRn , L
G
n , L

B
n for the lengths of the three paths at step n, we

see that they look like small copies of the first urn model run for
numbers of steps which are approximately n∆1, n∆2 and n∆3. It
follows that

1√
2n

(LRn , L
G
n , L

B
n)→ (

√
∆1L1,

√
∆2L2,

√
∆3L3) a.s.

where L1, L2, L3 are i.i.d. Rayleigh random variables, independent
of (∆1,∆2,∆3).

Limiting subtree lengths

An elementary distributional calculation yields that

(
√

∆1L1,
√

∆2L2,
√

∆3L3)
d
=
√

Γ2 × Dir(1, 1, 1),

where Γ2 ∼ Gamma(2, 1/2) and the two factors are independent.

More generally, if we consider the subtree spanned by 0 and the
leaves labelled 1, 2, . . . , k , we get 2k − 1 edges whose lengths are
distributed as √

Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

),

where again Γk ∼ Gamma(k , 1/2) and the two factors are
independent.

(Note that the k = 1 case fits into this pattern, since

Rayleigh
d
=
√

Γ1.)

Limiting subtree lengths

An elementary distributional calculation yields that

(
√

∆1L1,
√

∆2L2,
√

∆3L3)
d
=
√

Γ2 × Dir(1, 1, 1),

where Γ2 ∼ Gamma(2, 1/2) and the two factors are independent.

More generally, if we consider the subtree spanned by 0 and the
leaves labelled 1, 2, . . . , k , we get 2k − 1 edges whose lengths are
distributed as √

Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

),

where again Γk ∼ Gamma(k , 1/2) and the two factors are
independent.

(Note that the k = 1 case fits into this pattern, since

Rayleigh
d
=
√

Γ1.)

Limiting subtree lengths

An elementary distributional calculation yields that

(
√

∆1L1,
√

∆2L2,
√

∆3L3)
d
=
√

Γ2 × Dir(1, 1, 1),

where Γ2 ∼ Gamma(2, 1/2) and the two factors are independent.

More generally, if we consider the subtree spanned by 0 and the
leaves labelled 1, 2, . . . , k , we get 2k − 1 edges whose lengths are
distributed as √

Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

),

where again Γk ∼ Gamma(k , 1/2) and the two factors are
independent.

(Note that the k = 1 case fits into this pattern, since

Rayleigh
d
=
√

Γ1.)

A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2),

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci) at a random point chosen
uniformly over the existing tree.

A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2),

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci) at a random point chosen
uniformly over the existing tree.

A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2),

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci) at a random point chosen
uniformly over the existing tree.

A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2),

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci) at a random point chosen
uniformly over the existing tree.

A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2),

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci) at a random point chosen
uniformly over the existing tree.

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Line-breaking construction

C1 C2 C3 C4 C5 C60

Why is this the right limit?

Claim: this gives the almost sure limit of the subtree spanned by 0
and the leaves 1, 2, . . . , k in the rescaled version of Rémy’s
algorithm.

I The tree at step k ≥ 1 has total length

Ck =

√√√√ k∑
i=1

Ei
d
=
√

Γk ,

where Γk ∼ Gamma(k , 1/2).

I The combinatorics of the attachment mechanism are exactly
the same as in Rémy’s algorithm – so the underlying binary
leaf-labelled tree has the right distribution.

I A calculation shows that the cut-points and attachment
points split up the interval [0,Ck) uniformly.

The line-breaking definition of the Brownian CRT

I Start from [0,C1) and proceed inductively.

I For i ≥ 1, sample Bi uniformly from [0,Ci) and attach
[Ci ,Ci+1) at the corresponding point of the tree constructed
so far (this is a point chosen uniformly at random over the
existing tree).

Now take the union of all the branches, thought of as a path
metric space, and then take its completion.

This procedure gives (somewhat informally expressed) definition of
the Brownian continuum random tree (CRT) which is a key object
in this minicourse.

The line-breaking definition of the Brownian CRT

I Start from [0,C1) and proceed inductively.

I For i ≥ 1, sample Bi uniformly from [0,Ci) and attach
[Ci ,Ci+1) at the corresponding point of the tree constructed
so far (this is a point chosen uniformly at random over the
existing tree).

Now take the union of all the branches, thought of as a path
metric space, and then take its completion.

This procedure gives (somewhat informally expressed) definition of
the Brownian continuum random tree (CRT) which is a key object
in this minicourse.

The line-breaking definition of the Brownian CRT

[Picture by Igor Kortchemski]

The scaling limit of the uniform binary plane tree

In the next section, we will make sense of the following statement.

Theorem. (Marchal (2003), Curien and Haas (2013))
As n→∞,

1√
2n

Tn → T a.s.

where T is the Brownian CRT.

We need to know what sort of objects we’re really dealing with,
and what is the topology in which the convergence occurs. (Also:
why is T Brownian?!)

Before we do that, let’s record an immediate consequence of the
theorem.

The scaling limit of the uniform binary plane tree

In the next section, we will make sense of the following statement.

Theorem. (Marchal (2003), Curien and Haas (2013))
As n→∞,

1√
2n

Tn → T a.s.

where T is the Brownian CRT.

We need to know what sort of objects we’re really dealing with,
and what is the topology in which the convergence occurs. (Also:
why is T Brownian?!)

Before we do that, let’s record an immediate consequence of the
theorem.

Self-similarity of the Brownian CRT

Recall: we split our uniform binary plane tree into three little
uniform binary plane trees of random sizes.

0

1

2

3
4

5

6

7

This property passes to the limit, and so the Brownian CRT can be
split into three randomly rescaled Brownian CRTs. In particular,
the Brownian CRT is a random fractal.

2. R-TREES AND CONVERGENCE

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.

Continuous trees

We want a continuous notion of a tree. We don’t really care about
vertices: the important aspects are the shape of the tree and the
distances. So it makes sense to think in terms of metric spaces.

R-trees

Definition. A compact metric space (T , d) is an R-tree if for all
x , y ∈ T ,

I There exists a unique shortest path [[x , y]] from x to y (of
length d(x , y)).

(There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y .
We write fx ,y ([0, d(x , y)]) = [[x , y]].)

I The only non-self-intersecting path from x to y is [[x , y]].

(If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w]] for any w 6= v .

R-trees

Definition. A compact metric space (T , d) is an R-tree if for all
x , y ∈ T ,

I There exists a unique shortest path [[x , y]] from x to y (of
length d(x , y)). (There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y .
We write fx ,y ([0, d(x , y)]) = [[x , y]].)

I The only non-self-intersecting path from x to y is [[x , y]]. (If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w]] for any w 6= v .

R-trees

Definition. A compact metric space (T , d) is an R-tree if for all
x , y ∈ T ,

I There exists a unique shortest path [[x , y]] from x to y (of
length d(x , y)). (There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y .
We write fx ,y ([0, d(x , y)]) = [[x , y]].)

I The only non-self-intersecting path from x to y is [[x , y]]. (If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w]] for any w 6= v .

Coding R-trees

Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1).

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...

Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.

Coding R-trees

Formally, use h to define a distance:

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z).

Coding R-trees

Let y ∼ y ′ if dh(y , y ′) = 0 and take the quotient Th = [0, 1]/ ∼.

Coding R-trees

Theorem. For any excursion h, (Th, dh) is an R-tree.

Write πh : [0, 1]→ Th for the projection map.

We will often root Th at ρ = πh(0) = πh(1).

A natural measure

We will want to be able to sample random points in our trees.
There is a natural “uniform” measure µh which is the push-forward
of the Lebesgue measure on [0, 1] onto Th.

To pick a point of Th according to µh, we simply sample
U ∼ U[0, 1] and then take our point to be πh(U).

We will typically think of our continuous trees as triples
(Th, dh, µh).

A natural measure

We will want to be able to sample random points in our trees.
There is a natural “uniform” measure µh which is the push-forward
of the Lebesgue measure on [0, 1] onto Th.

To pick a point of Th according to µh, we simply sample
U ∼ U[0, 1] and then take our point to be πh(U).

We will typically think of our continuous trees as triples
(Th, dh, µh).

A natural measure

We will want to be able to sample random points in our trees.
There is a natural “uniform” measure µh which is the push-forward
of the Lebesgue measure on [0, 1] onto Th.

To pick a point of Th according to µh, we simply sample
U ∼ U[0, 1] and then take our point to be πh(U).

We will typically think of our continuous trees as triples
(Th, dh, µh).

Topological considerations

Let M be the space of compact metric spaces endowed with a
Borel probability measure, up to measure-preserving isometry.

We will define a metric dGHP, the Gromov-Hausdorff-Prokhorov
distance on M.

Topological considerations
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

Topological considerations
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

Topological considerations
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

Topological considerations
The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

invisible line

Topological considerations

Suppose that µ is a Borel probability measure on (X , d) and that
µ′ is a Borel probability measure on (X ′, d ′).

A measure ν on X × X ′ is a coupling of µ and µ′ if ν(·,X ′) = µ(·)
and ν(X , ·) = µ′(·).

Idea: find a correspondence and a coupling such that the
correspondence has small distortion and the coupling “lines up”
well with the correspondence i.e. if (V ,V ′) ∼ ν then
P ((V ,V ′) ∈ R) = ν(R) is close to 1.

Topological considerations

Suppose that µ is a Borel probability measure on (X , d) and that
µ′ is a Borel probability measure on (X ′, d ′).

A measure ν on X × X ′ is a coupling of µ and µ′ if ν(·,X ′) = µ(·)
and ν(X , ·) = µ′(·).

Idea: find a correspondence and a coupling such that the
correspondence has small distortion and the coupling “lines up”
well with the correspondence i.e. if (V ,V ′) ∼ ν then
P ((V ,V ′) ∈ R) = ν(R) is close to 1.

Topological considerations

The Gromov-Hausdorff-Prokhorov distance between (X , d , µ) and
(X ′, d ′, µ′) is defined to be

dGHP((X , d , µ), (X ′, d ′, µ′)) =
1

2
inf
R,ν

max{dis(R), ν(Rc)}.

Theorem. (M, dGHP) is a complete separable metric space.

[S. Evans, J. Pitman and A. Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probability
Theory and Related Fields 134 (2006) pp.81-126.]

[R. Abraham, J.-F. Delmas and P. Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between
(locally) compact metric measure spaces, Electronic Journal of Probability 18 (2013), no. 14.]

Topological considerations

The Gromov-Hausdorff-Prokhorov distance between (X , d , µ) and
(X ′, d ′, µ′) is defined to be

dGHP((X , d , µ), (X ′, d ′, µ′)) =
1

2
inf
R,ν

max{dis(R), ν(Rc)}.

Theorem. (M, dGHP) is a complete separable metric space.

[S. Evans, J. Pitman and A. Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probability
Theory and Related Fields 134 (2006) pp.81-126.]

[R. Abraham, J.-F. Delmas and P. Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between
(locally) compact metric measure spaces, Electronic Journal of Probability 18 (2013), no. 14.]

The Brownian CRT

Definition. The Brownian continuum random tree is
(T2e , d2e , µ2e), where e is a standard Brownian excursion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[Pictures by Igor Kortchemski]

A planar ordering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observe that the excursion comes with more information than the
the tree: if s < t and π2e(s) and π2e(t) are leaves, it is natural to
think of π2e(s) appearing to the left of π2e(t) (c.f. Rémy’s
algorithm).

Discrete trees as metric spaces

We want to think of (Tn, n ≥ 1) as metric spaces.

The vertices of Tn (labelled and unlabelled) come equipped with a
natural metric: the graph distance dn.

0

1 2

3

4

5

6

7

8

We sometimes write aTn for the metric space (Tn, adn) given by
the vertices of Tn with the graph distance scaled by a.

Uniform measure

0

1 2

3

4

5

6

7

8

We will endow Tn with µn, the measure which puts mass 1/(2n)
on each of the 2n vertices.

Convergence

Theorem. As n→∞,(
Tn,

dn√
2n
, µn

)
→ (T2e , d2e , µ2e) a.s.

with respect to the Gromov-Hausdorff-Prokhorov topology.

[P. Marchal, Constructing a sequence of random walks strongly converging to Brownian motion, Discrete
Mathematics and Theoretical Computer Science, 2003, pp.181–190.]

[N. Curien & B. Haas, The stable trees are nested, Probability Theory and Related Fields 157, 2013, pp.847–883.]

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is not a leaf and −1 if
the vertex is a leaf.

Binary trees and lattice excursions

To go back the other way, it’s easy to recover the tree:

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Binary trees and lattice excursions

To go back the other way, it’s easy to recover the tree:

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Binary trees and lattice excursions

0

1 4

5

3

6 7

2 8

0

Since our trees are uniform, so are the lattice excursions. In other
words, they are excursions of simple random walk away from 0.

So
(at least in distribution), it’s clear that, suitably rescaled, they
should converge to a Brownian excursion.

Binary trees and lattice excursions

0

1 4

5

3

6 7

2 8

0

Since our trees are uniform, so are the lattice excursions. In other
words, they are excursions of simple random walk away from 0. So
(at least in distribution), it’s clear that, suitably rescaled, they
should converge to a Brownian excursion.

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

1

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

2 1

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

3 2

1

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

3 2 1 4

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

3 2

1 4

5

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

3 6

2

1 4

5

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

2

1 4

5

3

6 7

0

Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.

0

1 4

5

3

6 7

2 8

0

Binary trees and lattice excursions

Let (En)n≥1 be the sequence of lattice excursions.

Theorem. (Marchal (2003))
As n→∞, we have

1√
2n

(En(b2ntc), 0 ≤ t ≤ 1)→ (e(t), 0 ≤ t ≤ 1)

uniformly on [0, 1], almost surely.

Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣{0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .
It turns out that Hn(k) ≈ 2En(k).

Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣{0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .
It turns out that Hn(k) ≈ 2En(k).

Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣{0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .
It turns out that Hn(k) ≈ 2En(k).

Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣{0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .

It turns out that Hn(k) ≈ 2En(k).

Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣{0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .
It turns out that Hn(k) ≈ 2En(k).

Convergence of the trees

Theorem. As n→∞,

1√
2n

(Hn(b2ntc), 0 ≤ t ≤ 1)→ (2e(t), 0 ≤ t ≤ 1)

uniformly on [0, 1], almost surely.

[J.-F. Marckert & A. Mokkadem, The depth first processes of Galton-Watson trees converge to the same
Brownian excursion, Annals of Probability, 31(3), pp.1655–1678, 2003.]

Convergence of the trees

Let’s call the vertices be v0, v1, . . . , v2n−1 in the order we visit
them, where v0 is the root.

By definition,
dn(v0, vk) = Hn(k).

More generally, for 0 ≤ i < j ≤ 2n − 1, write vi ∧ vj for the most
recent common ancestor of vi and vj in the tree. Then

dn(vi , vj) = dn(v0, vi) + dn(v0, vj)− 2dn(v0, vi ∧ vj).

Convergence of the trees

Let’s call the vertices be v0, v1, . . . , v2n−1 in the order we visit
them, where v0 is the root.

By definition,
dn(v0, vk) = Hn(k).

More generally, for 0 ≤ i < j ≤ 2n − 1, write vi ∧ vj for the most
recent common ancestor of vi and vj in the tree. Then

dn(vi , vj) = dn(v0, vi) + dn(v0, vj)− 2dn(v0, vi ∧ vj).

Convergence of the trees

Let’s call the vertices be v0, v1, . . . , v2n−1 in the order we visit
them, where v0 is the root.

By definition,
dn(v0, vk) = Hn(k).

More generally, for 0 ≤ i < j ≤ 2n − 1, write vi ∧ vj for the most
recent common ancestor of vi and vj in the tree. Then

dn(vi , vj) = dn(v0, vi) + dn(v0, vj)− 2dn(v0, vi ∧ vj).

Convergence of the trees

dn(v0, vi∧vj) =

{
mini≤k≤j Hn(k)− 1 if vi not an ancestor of vj

mini≤k≤j Hn(k) = Hn(i) if vi an ancestor of vj .

0

1 4

5

3

6 7

2 83 6

7 2

8

1

4

5

00

So ∣∣∣∣dn(v0, vi ∧ vj)− min
i≤k≤j

Hn(k)

∣∣∣∣ ≤ 1.

A correspondence

Define a correspondence Rn between {v0, v1, . . . , v2n−1} and [0, 1]
by declaring (vi , s) ∈ Rn if i = b2nsc.

Endow [0, 1] with the pseudo-metric d2e . We will bound dis(Rn).

Suppose that (vi , s), (vj , t) ∈ Rn with s ≤ t. Then

|dn(vi , vj)− d2e(s, t)|

≤
∣∣∣∣ 1√

2n

(
Hn(b2nsc) + Hn(b2ntc)− 2 min

s≤u≤t
Hn(b2nuc)

)
−
(

2e(s) + 2e(t)− 4 min
s≤u≤t

e(u)

)∣∣∣∣+
2√
2n
.

The right-hand side converges to 0 uniformly in s, t ∈ [0, 1]. So

dis(Rn)→ 0 a.s.

A correspondence

Define a correspondence Rn between {v0, v1, . . . , v2n−1} and [0, 1]
by declaring (vi , s) ∈ Rn if i = b2nsc.

Endow [0, 1] with the pseudo-metric d2e . We will bound dis(Rn).

Suppose that (vi , s), (vj , t) ∈ Rn with s ≤ t. Then

|dn(vi , vj)− d2e(s, t)|

≤
∣∣∣∣ 1√

2n

(
Hn(b2nsc) + Hn(b2ntc)− 2 min

s≤u≤t
Hn(b2nuc)

)
−
(

2e(s) + 2e(t)− 4 min
s≤u≤t

e(u)

)∣∣∣∣+
2√
2n
.

The right-hand side converges to 0 uniformly in s, t ∈ [0, 1]. So

dis(Rn)→ 0 a.s.

A correspondence

Define a correspondence Rn between {v0, v1, . . . , v2n−1} and [0, 1]
by declaring (vi , s) ∈ Rn if i = b2nsc.

Endow [0, 1] with the pseudo-metric d2e . We will bound dis(Rn).

Suppose that (vi , s), (vj , t) ∈ Rn with s ≤ t. Then

|dn(vi , vj)− d2e(s, t)|

≤
∣∣∣∣ 1√

2n

(
Hn(b2nsc) + Hn(b2ntc)− 2 min

s≤u≤t
Hn(b2nuc)

)
−
(

2e(s) + 2e(t)− 4 min
s≤u≤t

e(u)

)∣∣∣∣+
2√
2n
.

The right-hand side converges to 0 uniformly in s, t ∈ [0, 1]. So

dis(Rn)→ 0 a.s.

A coupling

Recall that µn is the measure which puts mass 1/(2n) on each of
the vertices v0, v1, . . . , v2n−1. Then we may couple µn and µ2e by
taking U ∼ U[0, 1] and taking ν to be the law of the pair

(vb2nUc, π2e(U)).

This is precisely the natural coupling νn induced by the
correspondence Rn, and so νn(Rc

n) = 0.

GHP convergence

But then

dGHP

((
Tn,

dn√
2n
, µn

)
, (T2e , d2e , µ2e)

)
≤ 1

2
max {dis(Rn), νn(Rc

n)} → 0,

almost surely as n→∞. �

3. UNIVERSALITY

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.

Branching processes

A Bienaymé-Galton-Watson (BGW) branching process (Zn)n≥0

describes the size of a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution p, where p(k) gives the
probability of k children, k ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Zn gives the number of individuals in generation n (in particular,
Z0 = 1).

BGW trees

A BGW tree is the family tree arising from a BGW branching
process. We will think of this as a rooted ordered tree.

Consider the case where the offspring distribution p is critical i.e.

∞∑
k=1

kp(k) = 1.

This ensures, in particular, that the resulting tree, T , is finite.

BGW trees

A BGW tree is the family tree arising from a BGW branching
process. We will think of this as a rooted ordered tree.

Consider the case where the offspring distribution p is critical i.e.

∞∑
k=1

kp(k) = 1.

This ensures, in particular, that the resulting tree, T , is finite.

Combinatorial trees in disguise

Let T be a BGW tree with offspring distribution p and total
progeny N.

I If p(0) = 1/2 and p(2) = 1/2 then, conditional on
N = 2n − 1, the tree is uniform on the set of rooted
(unplanted!) plane binary trees with n leaves.

I If p(k) = 2−k−1, k ≥ 0 (i.e. Geometric(1/2) offspring
distribution) then conditional on N = n, the tree is uniform on
the set of plane trees with n vertices.

I If p(k) = e−1

k! , k ≥ 0 (i.e. Poisson(1) offspring distribution)
then conditional on N = n, if we assign the vertices labels
chosen uniformly at random from {1, 2, . . . , n} and then
forget the ordering and the root, we obtain a labelled tree T̃
which is uniform on the set of possibilities.

The last example will be particularly important in Lecture 2.

A universal scaling limit

Let Tn be the family tree of a BGW process with critical offspring
distribution of variance σ2 ∈ (0,∞), conditioned to have total
progeny n. Let dn be the graph distance on Tn and let µn be the
uniform measure on the vertices.

Theorem. (Aldous (1993), Le Gall (2005))
As n→∞, (

Tn,
σ√
n
dn, µn

)
d→ (T2e , d2e , µ2e),

where convergence is in the Gromov-Hausdorff-Prokhorov sense.

Two ways of encoding a tree

As we have seen, it is convenient to encode our trees in terms of
discrete functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk (or Lukasiewicz path).

Height function

Suppose that our tree has n vertices. Let them be v0, v1, . . . , vn−1,
listed in depth-first order.

Then the height function is defined by

H(k) = dn(v0, vk), 0 ≤ k ≤ n − 1.

Height function

Suppose that our tree has n vertices. Let them be v0, v1, . . . , vn−1,
listed in depth-first order.

Then the height function is defined by

H(k) = dn(v0, vk), 0 ≤ k ≤ n − 1.

Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k

We can easily recover the tree from its height function.

Depth-first walk

Let c(v) be the number of children of v , and that v0, v1, . . . , vn−1

is a list of the vertices in depth-first order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi)− 1, 0 ≤ i ≤ n − 1.

We can think of X (i) as representing the number of vertices we
have seen but not yet visited.

Depth-first walk

Let c(v) be the number of children of v , and that v0, v1, . . . , vn−1

is a list of the vertices in depth-first order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi)− 1, 0 ≤ i ≤ n − 1.

We can think of X (i) as representing the number of vertices we
have seen but not yet visited.

Depth-first walk

Let c(v) be the number of children of v , and that v0, v1, . . . , vn−1

is a list of the vertices in depth-first order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi)− 1, 0 ≤ i ≤ n − 1.

We can think of X (i) as representing the number of vertices we
have seen but not yet visited.

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1

1 1 1 2

1 2 11 1 21 1 1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1

1 1 1 2

1 2 11 1 21 1 1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

Proposition. For 0 ≤ i ≤ n − 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.

The depth-first walk of a BGW tree is a stopped random
walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a BGW tree with offspring distribution p
and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]

The depth-first walk of a BGW tree is a stopped random
walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a BGW tree with offspring distribution p
and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]

The depth-first walk of a BGW tree is a stopped random
walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a BGW tree with offspring distribution p
and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]

The depth-first walk of a BGW tree is a stopped random
walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a BGW tree with offspring distribution p
and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]

BGW trees conditioned on their total progeny

Suppose now that we have offspring variance
σ2 :=

∑∞
k=1(k − 1)2p(k) ∈ (0,∞).

The depth-first walk X is a random walk with step mean 0 and
variance σ2, stopped at the first time it hits −1. The underlying
random walk has a Brownian motion as its scaling limit, by
Donsker’s theorem.

The total progeny N is equal to inf{k ≥ 0 : X (k) = −1}. We want
to condition on the event {N = n}.

Standing assumption: P (N = n) > 0 for all n sufficiently large.

BGW trees conditioned on their total progeny

Suppose now that we have offspring variance
σ2 :=

∑∞
k=1(k − 1)2p(k) ∈ (0,∞).

The depth-first walk X is a random walk with step mean 0 and
variance σ2, stopped at the first time it hits −1. The underlying
random walk has a Brownian motion as its scaling limit, by
Donsker’s theorem.

The total progeny N is equal to inf{k ≥ 0 : X (k) = −1}. We want
to condition on the event {N = n}.

Standing assumption: P (N = n) > 0 for all n sufficiently large.

BGW trees conditioned on their total progeny

Write (Xn(k), 0 ≤ k ≤ n) for the depth-first walk conditioned on
{N = n}. Then there is a conditional version of Donsker’s theorem.

Theorem. As n→∞,

1

σ
√
n

(Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

[W.D. Kaigh, An invariance principle for random walk conditioned by a late return to zero, Annals of Probability
4, 1976, pp.115-121.]

Height process

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical BGW tree
with offspring variance σ2 ∈ (0,∞), conditioned to have total
progeny n, so that

Hn(i) = #

{
0 ≤ j ≤ i − 1 : Xn(j) = min

j≤k≤i
Xn(k)

}
.

Theorem. As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

Convergence to the Brownian CRT

The convergence(
Tn,

σ√
n
dn, µn

)
d→ (T2e , d2e , µ2e),

now follows by applying Skorokhod’s theorem (in order to work on
a probability space where the height process converges almost
surely) and then using the same proof that we had in the case of
binary trees.

Universality

The universality class of the Brownian CRT is, in fact, even larger.
Some other examples of trees (and graphs!) with the Brownian
CRT as their scaling limit are:

I uniform unordered unlabelled rooted trees

I uniform unordered unlabelled unrooted trees

I critical multi-type BGW trees

I random trees with a prescribed degree sequence satisfying
certain conditions

I random dissections

I random graphs from subcritical classes.

4. THE CRITICAL ERDŐS–RÉNYI RANDOM GRAPH

Key reference:

David Aldous, Brownian excursions, critical random graphs
and the multiplicative coalescent, Annals of Probability 25,
1997, pp.812–854.

The Erdős-Rényi random graph

Take n vertices labelled by [n] := {1, 2, . . . , n} and put an edge
between any pair independently with probability p. Call the
resulting model G (n, p).

Example: n = 10, p = 0.4.

1

2

3

4

5

6

7

8

9

10

Connected components

We’re going to be interested in the connected components of these
graphs.

Below, there are three of them.

1

2

3

4

5

6

7

8

9

10

The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 0.4

The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 0.8

The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 1.2

The phase transition (Erdős and Rényi (1960))

By the size of a component, we mean its number of vertices.

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

(These statements hold with probability tending to 1 as n→∞.)

The phase transition (Erdős and Rényi (1960))

By the size of a component, we mean its number of vertices.

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

(These statements hold with probability tending to 1 as n→∞.)

Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).

Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).

Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).

Heuristic picture of the phase transition

If c ≤ 1, this branching process dies out with probability 1, which
corresponds to getting only a small component containing vertex 1.
A similar argument works for subsequent components.

If, on the other hand, c > 1, there is a positive probability that the
branching process will survive. The branching process
approximation holds good until we explore the first component
which does not die out; this component ends up being the giant.

Heuristic picture of the phase transition

If c ≤ 1, this branching process dies out with probability 1, which
corresponds to getting only a small component containing vertex 1.
A similar argument works for subsequent components.

If, on the other hand, c > 1, there is a positive probability that the
branching process will survive. The branching process
approximation holds good until we explore the first component
which does not die out; this component ends up being the giant.

The critical point of the phase transition

Recall: p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

If c = 1, the largest component has size Θ(n2/3) and, indeed,
there is a whole sequence of components of this order.

The critical point of the phase transition

Recall: p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

If c = 1, the largest component has size Θ(n2/3) and, indeed,
there is a whole sequence of components of this order.

The critical random graph

[Picture by Nicolas Broutin]

The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9

The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9

Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes of

G
(
n, 1

n + λ
n4/3

)
in decreasing order, and let Sn

1 ,S
n
2 , . . . be the

corresponding surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).

Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes of

G
(
n, 1

n + λ
n4/3

)
in decreasing order, and let Sn

1 ,S
n
2 , . . . be the

corresponding surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).

Convergence of the sizes and surpluses

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S) as n→∞.

Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

with the usual `2-distance ‖x− y‖2 =
√∑∞

i=1(xi − yi)2. For the
second co-ordinate, convergence is in the distance

d(u, v) = 2− inf{i≥1:ui 6=vi}

between integer sequences u and v.

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.

x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.

x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.

Proof technique: depth-first exploration

As for our random trees, a key tool is a depth-first exploration.

For a rooted ordered tree, we defined the depth-first walk by
X (0) = 0 and, for 1 ≤ k ≤ m,

X (k) =
k−1∑
i=0

(c(vi)− 1),

where c(v) is the number of children of vertex v and
v0, v1, . . . , vm−1 are the vertices in depth-first order.

We need to adapt this idea to the setting of graphs with multiple
components, which are not a priori ordered or rooted.

Depth-first exploration

We root each component at its lowest-labelled vertex, and also use
the vertex labels to provide a canonical ordering of the neighbours
of a vertex.

To deal with the fact that a component is no longer necessarily a
tree, we simply ignore any edges which lead to vertices we have
already explored.

So we start by exploring from the vertex 1, and there’s no need to
stop when we hit the end of the first component: we can just keep
going by starting again from the next lowest-labelled vertex that
we have not yet explored.

X (k) will then be the number of vertices seen but not visited at
step k minus the number of components already fully explored.

Depth-first exploration

We root each component at its lowest-labelled vertex, and also use
the vertex labels to provide a canonical ordering of the neighbours
of a vertex.

To deal with the fact that a component is no longer necessarily a
tree, we simply ignore any edges which lead to vertices we have
already explored.

So we start by exploring from the vertex 1, and there’s no need to
stop when we hit the end of the first component: we can just keep
going by starting again from the next lowest-labelled vertex that
we have not yet explored.

X (k) will then be the number of vertices seen but not visited at
step k minus the number of components already fully explored.

Depth-first exploration

We root each component at its lowest-labelled vertex, and also use
the vertex labels to provide a canonical ordering of the neighbours
of a vertex.

To deal with the fact that a component is no longer necessarily a
tree, we simply ignore any edges which lead to vertices we have
already explored.

So we start by exploring from the vertex 1, and there’s no need to
stop when we hit the end of the first component: we can just keep
going by starting again from the next lowest-labelled vertex that
we have not yet explored.

X (k) will then be the number of vertices seen but not visited at
step k minus the number of components already fully explored.

Depth-first exploration

We root each component at its lowest-labelled vertex, and also use
the vertex labels to provide a canonical ordering of the neighbours
of a vertex.

To deal with the fact that a component is no longer necessarily a
tree, we simply ignore any edges which lead to vertices we have
already explored.

So we start by exploring from the vertex 1, and there’s no need to
stop when we hit the end of the first component: we can just keep
going by starting again from the next lowest-labelled vertex that
we have not yet explored.

X (k) will then be the number of vertices seen but not visited at
step k minus the number of components already fully explored.

Depth-first exploration: an example

Step 0

6

5 7 10

2 9 8

43

1

Current: 1 Seen: none Visited: none X (0) = 0.

Depth-first exploration: an example

Step 1

6

2 9 8

43

1

5 7 10

Current: 5 Seen: 7, 10 Visited: 1 X (1) = 2.

Depth-first exploration: an example

Step 2

6

8

43

1

5 7 10

2 9

Current: 2 Seen: 9, 7, 10 Visited: 1, 5 X (2) = 3.

Depth-first exploration: an example

Step 3

6

8

4

1

5 7 10

9

3

2

Current: 3 Seen: 9, 7, 10 Visited: 1, 5, 2 X (3) = 3.

Depth-first exploration: an example

Step 4

6

8

4

1

5 7 10

2 9

3

Current: 9 Seen: 7, 10 Visited: 1, 5, 2, 3 X (4) = 2.

Depth-first exploration: an example

Step 5

6

8

4

1

5 7 10

2 9

3

Current: 7 Seen: 10 Visited: 1, 5, 2, 3, 9 X (5) = 1.

Depth-first exploration: an example

Step 6

6

8

4

1

5 7

2 9

3

10

Current: 10 Seen: none Visited: 1, 5, 2, 3, 9, 7 X (6) = 0.

Depth-first exploration: an example

Step 7

1

5 7 10

2 9

3

8

4 6

Current: 8 Seen: none Visited: 1, 5, 2, 3, 9, 7, 10 X (7) = 0.

Depth-first exploration: an example

Step 8

1

5 7 10

2 9

3

8

4 6

Current: 4 Seen: 6 Visited: 1, 5, 2, 3, 9, 7, 10, 8 X (8) = 1.

Depth-first exploration: an example

Step 9

1

5 7 10

2 9

3

8

4 6

Current: 6 Seen: none Visited: 1, 5, 2, 3, 9, 7, 10, 8, 4
X (9) = 0.

Depth-first exploration: an example

We explored the graph as if the dashed edges weren’t there:

5 7 10

2 9

3

8

4 6

1

Depth-first walk

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

If there are several components, T (k) = inf{i ≥ 0 : X (i) = −k}
marks the beginning of the (k + 1)th component. So the
component sizes are {T (k + 1)−T (k), k ≥ 0}. This sequence can
clearly be reconstructed from the path of (X (i), i ≥ 0).

Depth-first walk

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

If there are several components, T (k) = inf{i ≥ 0 : X (i) = −k}
marks the beginning of the (k + 1)th component. So the
component sizes are {T (k + 1)−T (k), k ≥ 0}. This sequence can
clearly be reconstructed from the path of (X (i), i ≥ 0).

Convergence of the depth-first walk

Let X n
λ be the depth-first walk associated with G

(
n, 1

n + λ
n4/3

)
.

Theorem. (Aldous (1997)) As n→∞,

(n−1/3X n
λ (bn2/3tc), t ≥ 0)

d→ (Wλ(t), t ≥ 0),

uniformly on compact time-intervals.

Sketch of proof
X n is a (time-inhomogeneous) Markov process. We need to
understand its step distribution.

At time i ,

I vi is the current vertex;

I i vertices are dead;

I X n(i) vertices are alive;

I we want to know c(vi), the number of children of vi .

We have not yet looked at the possible edges from vi to any of the
other n− i −X n(i) unexplored vertices in the graph. Each of these
is present with probability 1

n + λ
n4/3 independently. So, given X n(i),

c(vi) ∼ Bin

(
n − i − X n(i),

1

n
+

λ

n4/3

)
.

As long as X n(i) = o(n) and i = O(n2/3),

(n − i − X n(i))

(
1

n
+

λ

n4/3

)
≈ 1 +

λ

n1/3
− i

n
+ o(n−1/3),

and so we approximately have

X n(i + 1)− X n(i) ∼ Poisson

(
1 +

λ

n1/3
− i

n

)
− 1.

So X n is close to being a random walk with a deterministic (but
time-dependent) drift. Let

Mn(i) = X n(i)−
i−1∑
j=0

(
λ

n1/3
− i

n

)
≈ X n(i)− λi

n1/3
+

i2

2n
.

X n(i + 1)− X n(i) ∼ Poisson

(
1 +

λ

n1/3
− i

n

)
− 1

and so if

Mn(i) ≈ X n(i)− λi

n1/3
+

i2

2n

then (Mn(i), i ≥ 0) is approximately a martingale.

Plug in i = btn2/3c:

n−1/3Mn(btn2/3c) ≈ n−1/3X n(btn2/3c)− λt +
t2

2
.

Since the Poisson distribution here has variance ≈ 1 for all i , we
can apply the martingale functional CLT (a more general version of
Donsker’s theorem) to obtain(

n−1/3X n(btn2/3c)− λt +
t2

2
, t ≥ 0

)
d→ (W (t), t ≥ 0).

Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff-Prokhorov distance.

Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff-Prokhorov distance.

Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff-Prokhorov distance.

Approach

Consider the components one by one.

Simple but important fact: a component of G (n, p) conditioned to
have a particular set of m vertices and s surplus edges is a uniform
connected graph on those m vertices with m + s − 1 edges.

So, given the vertex-sets of the components and their surpluses, we
can just sample uniform connected graphs in order to get back the
whole graph.

Approach

Consider the components one by one.

Simple but important fact: a component of G (n, p) conditioned to
have a particular set of m vertices and s surplus edges is a uniform
connected graph on those m vertices with m + s − 1 edges.

So, given the vertex-sets of the components and their surpluses, we
can just sample uniform connected graphs in order to get back the
whole graph.

4. CONNECTED GRAPHS

Joint work with Louigi Addario-Berry (McGill) and Nicolas Broutin
(Sorbonne Université).

[L. Addario-Berry, N. Broutin & C. Goldschmidt, The continuum limit of critical random graphs, Probability
Theory and Related Fields 152(3-4), 2012, pp.367–406.]

[L. Addario-Berry, N. Broutin & C. Goldschmidt, Critical random graphs: limiting constructions and distributional
properties, Electronic Journal of Probability 15, 2010, paper no. 25, pp.741–775.]

Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges (so that G k
n has surplus

k).

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that (

G k
n ,

dk
n√
n
, µkn

)
d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.

Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges (so that G k
n has surplus

k).

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that (

G k
n ,

dk
n√
n
, µkn

)
d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.

Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges (so that G k
n has surplus

k).

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that (

G k
n ,

dk
n√
n
, µkn

)
d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.

Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges (so that G k
n has surplus

k).

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that (

G k
n ,

dk
n√
n
, µkn

)
d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.

Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges (so that G k
n has surplus

k).

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that (

G k
n ,

dk
n√
n
, µkn

)
d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.

Scaling limit

Let e be a standard Brownian excursion. Define a random
excursion ẽk : [0, 1]→ R+ via a change of measure as follows. For
any suitable test-function f : C([0, 1],R+)→ R,

E
[
f (ẽk(t), 0 ≤ t ≤ 1)

]
=

E
[
f (e(t), 0 ≤ t ≤ 1)

(∫ 1
0 e(u)du

)k]
E
[(∫ 1

0 e(u)du
)k]

Scaling limit

Use 2ẽk to encode a continuum random tree (T̃ k , d̃k , µ̃k).

Each
mark picks out two points of the tree.

Scaling limit

Sample k independent uniform marks in the area under the curve.
Each mark picks out two points of the tree.

Identify them.

Scaling limit

Sample k independent uniform marks in the area under the curve.
Each mark picks out two points of the tree. Identify them.

Vertex identifications

Write πk for the usual projection [0, 1]→ T̃ k .

We have marks (x1, y1), . . . , (xk , yk) which are uniform in the area
under the excursion. For 1 ≤ i ≤ k, let

ti = inf{t ≥ xi : 2ẽk(t) = yi}.

Define an equivalence relation ∼ this time on T̃ k by declaring
πk(xi) ∼ πk(ti) for each 1 ≤ i ≤ k and let Gk = T̃ k/ ∼.

Let dk be the metric and µk the measure induced in the obvious
way from d̃k and µ̃k respectively.

Vertex identifications

Write πk for the usual projection [0, 1]→ T̃ k .

We have marks (x1, y1), . . . , (xk , yk) which are uniform in the area
under the excursion. For 1 ≤ i ≤ k, let

ti = inf{t ≥ xi : 2ẽk(t) = yi}.

Define an equivalence relation ∼ this time on T̃ k by declaring
πk(xi) ∼ πk(ti) for each 1 ≤ i ≤ k and let Gk = T̃ k/ ∼.

Let dk be the metric and µk the measure induced in the obvious
way from d̃k and µ̃k respectively.

Vertex identifications

Write πk for the usual projection [0, 1]→ T̃ k .

We have marks (x1, y1), . . . , (xk , yk) which are uniform in the area
under the excursion. For 1 ≤ i ≤ k, let

ti = inf{t ≥ xi : 2ẽk(t) = yi}.

Define an equivalence relation ∼ this time on T̃ k by declaring
πk(xi) ∼ πk(ti) for each 1 ≤ i ≤ k and let Gk = T̃ k/ ∼.

Let dk be the metric and µk the measure induced in the obvious
way from d̃k and µ̃k respectively.

Vertex identifications

Write πk for the usual projection [0, 1]→ T̃ k .

We have marks (x1, y1), . . . , (xk , yk) which are uniform in the area
under the excursion. For 1 ≤ i ≤ k, let

ti = inf{t ≥ xi : 2ẽk(t) = yi}.

Define an equivalence relation ∼ this time on T̃ k by declaring
πk(xi) ∼ πk(ti) for each 1 ≤ i ≤ k and let Gk = T̃ k/ ∼.

Let dk be the metric and µk the measure induced in the obvious
way from d̃k and µ̃k respectively.

Scaling limit (Gk , dk , µk) for k = 4

[Picture by Nicolas Broutin]

Proof technique: back to the depth-first exploration

In a depth-first exploration of a connected graph G , we effectively
explore a spanning tree; the dashed surplus edges make no
difference.

5 7 10

2 9

3

8

4 6

1

Call the spanning tree the depth-first tree associated with the
graph G , and write T (G). X is also the depth-first walk of T .

Permitted edges

Look at things the other way round: for a given tree T , which
connected graphs G have depth-first tree T (G) = T?

In other words, where can we put surplus edges so that they don’t
change T?

Call such edges permitted.

Depth-first walk and permitted edges

6

5 7 10

2 9 8

43

1

Step 0: X (0) = 0.

Depth-first walk and permitted edges

6

8

43

1

5 7 10

2 9

Step 1: X (1) = 2.

Depth-first walk and permitted edges

6

8

4

1

5 7 10

9

3

2

Step 2: X (2) = 3.

Depth-first walk and permitted edges

6

8

4

1

5 7 10

2 9

3

Step 3: X (3) = 3.

Depth-first walk and permitted edges

6

8

4

1

5 7 10

2 9

3

Step 4: X (4) = 2.

Depth-first walk and permitted edges

6

8

4

1

5 7

2 9

3

10

Step 5: X (5) = 1.

Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 6: X (6) = 0.

Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 7: X (7) = 0.

Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 8: X (8) = 1.

Depth-first walk and permitted edges

5 7 10

2 9

3

8

4 6

1

Step 10: X (9) = 0.

Area
At step k ≥ 0, there are X (k) permitted edges. So the total
number is

a(T) =
n−1∑
k=0

X (k).

We call this the area of T .

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G) = T . It follows
that |GT | = 2a(T), since each permitted edge may either be
included or not.

Let T[n] be the set of trees with label-set [n] = {1, 2, . . . , n}. Then{
GT : T ∈ T[n]

}
is a partition of the set of connected graphs on [n].

Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G) = T . It follows
that |GT | = 2a(T), since each permitted edge may either be
included or not.

Let T[n] be the set of trees with label-set [n] = {1, 2, . . . , n}. Then{
GT : T ∈ T[n]

}
is a partition of the set of connected graphs on [n].

Recipe for creating a uniform connected graph

Then we can create a uniform connected graph G k
n as follows.

I Pick a random labelled tree T̃ k
n such that

P
(
T̃ k
m = T

)
∝
(
a(T)
k

)
, T ∈ T[n].

I Choose a uniform k-set from among the a(T̃ k
n) permitted

edges and add them to the tree.

Recipe for creating a uniform connected graph

Then we can create a uniform connected graph G k
n as follows.

I Pick a random labelled tree T̃ k
n such that

P
(
T̃ k
m = T

)
∝
(
a(T)
k

)
, T ∈ T[n].

I Choose a uniform k-set from among the a(T̃ k
n) permitted

edges and add them to the tree.

Recipe for creating a uniform connected graph

Then we can create a uniform connected graph G k
n as follows.

I Pick a random labelled tree T̃ k
n such that

P
(
T̃ k
m = T

)
∝
(
a(T)
k

)
, T ∈ T[n].

I Choose a uniform k-set from among the a(T̃ k
n) permitted

edges and add them to the tree.

Taking limits

We essentially need to show

I the tree T̃ k
n converges to an R-tree coded by the excursion ẽk ;

I the locations of the surplus edges converge to the locations in
the limiting picture.

Taking limits for the tree

Write X̃ k
n for the depth-first walk associated with T̃ k

n . Then

a
(
T̃ k
n

)
=

n−1∑
i=0

X̃ k
n (i) =

∫ n

0
X̃ k
n (bsc)ds = n3/2

∫ 1

0
n−1/2X̃ k

n (bnuc)du,

by changing variable in the integral.

If Tn is a uniform random tree on [n] and Xn is its depth-first walk,
then

(n−1/2Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).

So by the continuous mapping theorem,∫ 1

0
n−1/2Xn(bnuc)du d→

∫ 1

0
e(u)du.

Taking limits for the tree

Write X̃ k
n for the depth-first walk associated with T̃ k

n . Then

a
(
T̃ k
n

)
=

n−1∑
i=0

X̃ k
n (i) =

∫ n

0
X̃ k
n (bsc)ds = n3/2

∫ 1

0
n−1/2X̃ k

n (bnuc)du,

by changing variable in the integral.

If Tn is a uniform random tree on [n] and Xn is its depth-first walk,
then

(n−1/2Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).

So by the continuous mapping theorem,∫ 1

0
n−1/2Xn(bnuc)du d→

∫ 1

0
e(u)du.

Taking limits for the tree

Write X̃ k
n for the depth-first walk associated with T̃ k

n . Then

a
(
T̃ k
n

)
=

n−1∑
i=0

X̃ k
n (i) =

∫ n

0
X̃ k
n (bsc)ds = n3/2

∫ 1

0
n−1/2X̃ k

n (bnuc)du,

by changing variable in the integral.

If Tn is a uniform random tree on [n] and Xn is its depth-first walk,
then

(n−1/2Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).

So by the continuous mapping theorem,∫ 1

0
n−1/2Xn(bnuc)du d→

∫ 1

0
e(u)du.

Taking limits for the tree

Use the change of measure to get from X̃ k
n to Xn: for any bounded

continuous function f ,

E
[
f
(
n−1/2X̃ k

n (bntc), 0 ≤ t ≤ 1
)]

=

E
[
f
(
n−1/2Xn(bntc), 0 ≤ t ≤ 1

)(n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]
E
[(

n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]

We have

n−3k/2

(
n3/2

∫ 1
0 n−1/2Xn(bnuc)du

k

)
d→

(∫ 1
0 e(s)ds

)k
k!

as n→∞.

Taking limits for the tree

Use the change of measure to get from X̃ k
n to Xn: for any bounded

continuous function f ,

E
[
f
(
n−1/2X̃ k

n (bntc), 0 ≤ t ≤ 1
)]

=

E
[
f
(
n−1/2Xn(bntc), 0 ≤ t ≤ 1

)(n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]
E
[(

n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]
We have

n−3k/2

(
n3/2

∫ 1
0 n−1/2Xn(bnuc)du

k

)
d→

(∫ 1
0 e(s)ds

)k
k!

as n→∞.

Taking limits for the tree

It turns out that we also have uniform integrability, so we obtain

E
[
f
(
n−1/2X̃ k

n (nt), 0 ≤ t ≤ 1
)]
→

E
[
f (e)

(∫ 1
0 e(u)du

)k]
E
[(∫ 1

0 e(u)du
)k]

= E
[
f (ẽk)

]
.

This (after converting to the height process) entails that(
T̃ k
n ,

dk
n√
n
, µkn

)
d→ (T̃ k , d̃k , µ̃k).

Taking limits for the tree

It turns out that we also have uniform integrability, so we obtain

E
[
f
(
n−1/2X̃ k

n (nt), 0 ≤ t ≤ 1
)]
→

E
[
f (e)

(∫ 1
0 e(u)du

)k]
E
[(∫ 1

0 e(u)du
)k]

= E
[
f (ẽk)

]
.

This (after converting to the height process) entails that(
T̃ k
n ,

dk
n√
n
, µkn

)
d→ (T̃ k , d̃k , µ̃k).

Taking limits for the surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk.

Since we
pick a uniform k-set from among these points, in the limit what we
see is just k points picked independently and uniformly from the
area under the limit curve.

5 7 10

2 9

3

8

4 6

1

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

Taking limits for the surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk. Since we
pick a uniform k-set from among these points, in the limit what we
see is just k points picked independently and uniformly from the
area under the limit curve.

5 7 10

2 9

3

8

4 6

1

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

Taking limits for the surplus edges
Surplus edges almost go to ancestors... In fact, they always go to
younger children of ancestors of the current vertex.

6

8

43

1

5 7 10

2 9

6

8

4

1

5 7 10

9

3

2

6

8

4

1

5 7 10

2 9

3

6

8

4

1

5 7 10

2 9

3 6

8

4

1

5 7

2 9

3

10

1

5 7 10

2 9

3

8

4 6

Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The marks corresponding to the surplus edges, when rescaled,
straightforwardly converge to the required independent uniform
points.

Taking care over the details, this completes the proof.

Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The marks corresponding to the surplus edges, when rescaled,
straightforwardly converge to the required independent uniform
points.

Taking care over the details, this completes the proof.

Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The marks corresponding to the surplus edges, when rescaled,
straightforwardly converge to the required independent uniform
points.

Taking care over the details, this completes the proof.

Back to the critical Erdős-Rényi random graph

Let p = 1/n + λn−4/3 for fixed λ ∈ R. Recall that Cn
1 ,C

n
2 , . . . are

the sizes of the components of G (n, p) listed in decreasing order of
size and Sn

1 , S
n
2 , . . . are the associated surpluses.

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).

Back to the critical Erdős-Rényi random graph

Let Cn1 , Cn2 , . . . be the components of G (n, p) listed in decreasing
order of size. Let dn

1 , d
n
2 , . . . be the graph distances and χn

1, χ
n
2, . . .

be the counting measures respectively, so that χn
i (Cni) = Cn

i .

Theorem. (Addario-Berry, Broutin & G. (2012))

Jointly with the convergence (n−2/3Cn,Sn)
d→ (C,S), as n→∞,((

Cn1 ,
dn

1

n1/3
,

1

n2/3
χn

1

)
,

(
Cn2 ,

dn
2

n1/3
,

1

n2/3
χn

2

)
, . . .

)
d→ ((C1, d1, χ1), (C2, d2, χ2), . . .)

in an `4 version of GHP, where χi (Ci) = Ci for each i ≥ 1, and
conditionally on (C,S),

(Ci , di , χi)
d
= (GSi ,

√
Ci · dSi ,Ci · µSi),

independently for different i ≥ 1.

5. PERSPECTIVES

Universality

Just as for the Brownian continuum random tree, there are several
critical random graph models with the same scaling limit as the
critical Erdős-Rényi random graph. Examples are random graphs
generated according to the configuration model, and rank-one
inhomogeneous random graphs (under various conditions). In each
case we must assume that the empirical degree distribution has
finite third moment.

[S. Bhamidi, N. Broutin, S. Sen & X. Wang, Scaling limits of random graph models at criticality: Universality
and the basin of attraction of the Erdős-Rényi random graph, arXiv:1411.3417.]

[S. Bhamidi & S. Sen, Geometry of the vacant set left by random walk on random graphs, Wright’s constants,
and critical random graphs with prescribed degrees, Random Structures and Algorithms, 56, 2020, pp.676-721]

Stable trees
The BGW trees we considered were all critical and had finite
offspring variance. If we assume instead that the offspring
distribution is in the domain of attraction of a stable law of index
α ∈ (1, 2), we obtain the so-called α-stable trees as scaling limits.

[Pictures by Igor Kortchemski]

[T. Duquesne & J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque 281,
2002, vi+147.]

[T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Annals of
Probability, 31, 2003, pp.996?1027.]

Stable trees

There is an analogue of Rémy’s algorithm due to Marchal (2008)
and there is also a (more complicated) line-breaking construction.

[P. Marchal, A note on the fragmentation of a stable tree, Fifth Colloquium on Mathematics and Computer
Science (DMTCS), 2008, pp.489–500.]

[C. Goldschmidt & B. Haas, A line-breaking construction of the stable trees, Electronic Journal of Probability 20,
2015, Paper no. 16, pp.1–24.]

Stable graphs
The natural graph model whose scaling limit involves the stable
trees is the configuration model with i.i.d. degrees having
appropriate power-law tail behaviour.

[Picture by Delphin Sénizergues]

[G. Conchon-Kerjan & C. Goldschmidt, The stable graph: the metric space scaling limit of a critical random
graph with i.i.d. power-law degrees, arXiv:2002.04954]

[C. Goldschmidt, B. Haas and D. Sénizergues, Stable graphs: distributions and line-breaking construction,
arXiv:1811.06940]

[A. Joseph, The component sizes of a critical random graph with given degree sequence, Annals of Applied
Probability 24(6), 2014, pp.2560–2594.]

The scaling limit of the minimum spanning tree of the
complete graph

Consider the complete graph on n vertices with independent
edge-weights which are uniformly distributed on [0, 1].

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24
0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

The scaling limit of the minimum spanning tree of the
complete graph

Find the minimum spanning tree (MST).

to make everything sit in
the right place

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24

0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

The scaling limit of the minimum spanning tree of the
complete graph

Question. Does the MST of the complete graph on n vertices
possess a scaling limit?

[Picture by Louigi Addario-Berry]

The scaling limit of the minimum spanning tree of the
complete graph

Let Mn be the MST of the complete graph on n vertices, let dn be
its graph distance, and µn its uniform measure.

Theorem. (Addario-Berry, Broutin, G. & Miermont (2017))
There exists a random compact measured real tree (M, d , µ) such
that (

Mn,
dn
n1/3

, µn

)
d→ (M, d , µ)

as n→∞, in GHP. M is binary and has Minkowski dimension 3
almost surely.

The key to understanding this result is a connection between the
Erdős-Rényi random graph and Kruskal’s algorithm for
constructing the MST.

[L. Addario-Berry, N. Broutin, C. Goldschmidt & G. Miermont, The scaling limit of the minimum-spanning tree of
the complete graph, Annals of Probability 45(5), 2017, pp.3075–3144.]

Random directed graphs

Consider the directed version D(n, p) of the G (n, p) model, in
which each of the n(n − 1) possible directed edges is included
independently with probability p. Consider the strongly connected
components (SCCs):

1. µ := E[D−] = E[D+] = E[D−D+]

2. ν− := E[Z−]− 1 = E[(D−)2]−µ
µ

3. σ2
− := Var(Z−) = µE[(D−)3]−E[(D−)2]2

µ2

4. σ2
+ := Var(Z+) = E[D−(D+)2]−µ

µ

5. σ−+ := Cov(Z−, Z+) = E[(D−)2D+]−E[(D−)2]
µ

1.4 Metric directed multigraphs and kernels

Fig. 3: The largest SCC from samples of a directed configuration model with independent
Poisson(1) in- and out-degrees

Figure 3 shows the largest SCC from samples of a directed configuration model. As can be
seen, while the lengths of paths in the SCC are long, the actual structure of the SCC is often
quite simple. Previous work by Goldschmidt and Stephenson [26] shows that this is true for
the directed Erdős–Rényi model in the critical window. The directed Erdős–Rényi model on
n vertices with parameter p, denoted by #G(n, p), is a random digraph with vertex set [n] in
which each of the n(n−1) possible directed edges is included with probability p independently.
The cases p = (1 + λn−1/3)/n for λ ∈ R are referred to as the critical window, and the case
p = 1/n is called criticality. In [26], it was shown that, for the directed Erdős–Rényi model in
the critical window, while the lengths of paths in the SCCs scale like n1/3, the combinatorial
structure of the SCCs remains finite. The same turns out to be true in our setting.

This idea was formalised in [26], and we will use the same formalism in this work. We
will first introduce metric directed multigraphs (MDMs). These are simply weighted directed
multigraphs, but in our context it is more appropriate to think of the weights as lengths,
which motivates the change in naming. Formally, a directed multigraph is a tuple (V,E, r)
where

1. V is a set of vertices,

2. E is a set of edges, and

5

Random directed graphs

This model also undergoes a phase transition from at p = 1/n:
below we have only microscopic SCCs; above, there is a unique
giant SCC.

Using similar methods to those deployed in the undirected setting,
we can prove that there is a scaling limit for D(n, 1

n + λn−4/3) with

components having sizes (and lengths!) on the order of n1/3.

[C. Goldschmidt & R. Stephenson, The scaling limit of a critical random directed graph, arXiv:1905.05397]

Thank you!

