The GRAPH MOTIF problem

Guillaume Fertin
LS2N, Université de Nantes, France
March 2017

Some slides in this talk are courtesy:

- C. Komusiewicz, FS U. Jena
- F. Sikora U. Paris Dauphine
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - $T =$ text, of length n
 - $M =$ motif, of length m
 - M and T built on some alphabet Σ
 - typical use: $m \ll n$
Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - $T =$ text, of length n
 - $M =$ motif, of length m
 - M and T built on some alphabet Σ
 - typical use: $m << n$

- Applications:
 - search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 - 70$)
 - bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)
Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - \(T \) = text, of length \(n \)
 - \(M \) = motif, of length \(m \)
 - \(M \) and \(T \) built on some alphabet \(\Sigma \)
 - typical use: \(m \ll n \)

- Applications:
 - search for a word in a text editor [ctrl-f] (\(|\Sigma| \sim 60 - 70\))
 - bioinformatics: DNA (\(|\Sigma| = 4\)), proteins (\(|\Sigma| = 20\))

- Algorithmics:
 - clearly polynomial (naive search w/ sliding window is in \(O(mn) \))
 - nice algorithms back from the 70s (KMP, Boyer-Moore, etc.)
 - see also e.g.
Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of $A \approx$ number of “elementary operations” executed by A
Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of $A \approx$ number of “elementary operations” executed by A

- Elementary operation:
 - arithmetic operation (+,-,/,*), memory access, assignment, comparison
 - unit cost assumed for each
Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of $A \simeq$ number of "elementary operations" executed by A
- Elementary operation:
 - arithmetic operation (+, -, /, *), memory access, assignment, comparison
 - unit cost assumed for each
- Running time = $f(n)$, function of input size n of the instance
O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
- $f(n) = O(g(n))$ if
 $\exists c > 0, n_0$ s.t. $f(n) \leq c \cdot g(n)$ $\forall n \geq n_0$
- $\rightarrow g()$ is an upper bound for $f()$
O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
- $f(n) = O(g(n))$ if
 \[\exists c > 0, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \quad \forall n \geq n_0 \]
- $\rightarrow g()$ is an upper bound for $f()$
- Roughly: take $f(n)$, keep dominant term, remove multiplicative constant
- Example:
 - $f(n) = 7n^2 + 3n \log n + 12\sqrt{n} - 7$
 - $f(n) = O(n^2)$
O() notation

▶ Goal: simplify \(f(n) \rightarrow g(n) \)

▶ \(f(n) = O(g(n)) \) if

\[
\exists c > 0, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \quad \forall n \geq n_0
\]

▶ \(g() \) is an upper bound for \(f() \)

▶ Roughly: take \(f(n) \), keep dominant term, remove multiplicative constant

▶ Example:

\[
\begin{align*}
\text{f}(n) &= 7n^2 + 3n \log n + 12\sqrt{n} - 7 \\
\text{f}(n) &= O(n^2)
\end{align*}
\]

▶ \(O() \) used for worst-case analysis – robustness of algorithm
void naive(M[0..m-1], T[0..n-1])
1. for i=0 to n-m do
2. j <-- 0;
3. while M[j]=T[i+j] && j<= m-1 do
4. j <-- j+1;
5. endwhile
6. if j=m then
7. printf('Motif found at position %d\n',i);
8. endif
9. endfor
Motif search - naive algorithm (sliding window)

```c
void naive(M[0..m-1], T[0..n-1])
1. for i=0 to n-m do
2.   j <-- 0;
3.   while M[j]=T[i+j] && j<= m-1 do
4.       j <-- j+1;
5.   endwhile
6.   if j=m then
7.       printf(‘‘Motif found at position %d\n’’,i);
8.   endif
9. endfor
```

- each line (individually): constant number of elementary operations
- Lines 3. and 4. most costly: executed at worse $m(n - m)$ times
- $f(n) = O(m(n - m)) = O(nm)$
Motif Search in Graphs

- species: yeast
- vertices ↔ proteins (∼ 3 500)
- edges ↔ interactions (∼ 11 000)

Source: http://compbio.pbworks.com/
Motif Search in Graphs

- species: yeast
- vertices ↔ proteins (∼ 3 500)
- edges ↔ interactions (∼ 11 000)
Motif Search in Graphs

Goal: search one/all occurrence/s of a small graph H in a big graph G.

- $G =$ target graph
- $H =$ query graph (motif)
- typical use: $|V(H)| << |V(G)|$
Motif Search in Graphs

Goal: search one/all occurrence/s of a small graph H in a big graph G.

- G = target graph
- H = query graph (motif)
- typical use: $|V(H)| << |V(G)|$

Remarks

- H: biologically known pathway or a complex of interest
- occurrence = induced subgraph of G isomorphic to H
- \rightarrow topology-based approach
Towards topology-free motifs

Two views for Motif Search in Graphs

- **Topological view:**
 - find a small graph in a big graph
 - \Rightarrow subgraph isomorphism problems
Towards topology-free motifs

Two views for Motif Search in Graphs

- **Topological view:**
 - find a small graph in a big graph
 - \Rightarrow subgraph isomorphism problems

- **Functional view:**
 - topology is less important
 - **functionalities** of network vertices \Rightarrow governing principle
 - initiated in Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06
Topology-free motifs

Applicable in broader scenarios

- motif (pathway or complex) whose topology is not completely known
- noisy networks (missing connections)
- query between well and poorly annotated species
Functional approach

Model

- function \leftrightarrow color
- \Rightarrow graph is vertex-colored (but not properly!)
Functional approach

Model

- function \leftrightarrow color
- \Rightarrow graph is vertex-colored (but not properly!)
- motif (query): multiset of colors
Functional approach

Model

- function \(\leftrightarrow \) color
- \(\Rightarrow \) graph is vertex-colored (but not properly!)
- motif (query): multiset of colors
- motif occurs (and thus “accepted”) if connected in graph
Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06)

Input: A graph $G = (V, E)$, a set of colors C, a coloring function $\chi : V \rightarrow C$, a motif* M over C

* motif = multiset of colors whose underlying set is C.
Graph Motif

Definition (Graph Motif — Lacroix et al., IEEE/ACM TCBB 06)

Input: A graph $G = (V, E)$, a set of colors C, a coloring function $\chi : V \rightarrow C$, a motif* M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of M in G?
Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06)

Input: A graph $G = (V, E)$, a set of colors C, a coloring function $\chi : V \to C$, a motif* M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of M in G?

Occurrence = subset $V' \subseteq V$ s.t.

- $\chi(V') = M$, and
- $G[V']$ is connected
Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06)

Input: A graph $G = (V, E)$, a set of colors C, a coloring function $\chi : V \to C$, a motif* M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of M in G?

Occurrence = subset $V' \subseteq V$ s.t.

- $\chi(V') = M$, and
- $G[V']$ is connected

Note: if $\chi : V \to C'$ with $C \subseteq C'$, pre-process G by deleting vertices $u \in V(G)$ s.t. $\chi(u) \notin C$
Example
Example
Example
Graph Motif

Applications

- **metabolic networks analysis** [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- **PPI networks analysis** [Bruckner et al., J. Comp. Biol. 10]
Applications

- **metabolic networks analysis** [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- **PPI networks analysis** [Bruckner et al., J. Comp. Biol. 10]
- **mass spectrometry** (identification of metabolites) [Böcker & Rasche, Bioinformatics 08]
Applications

- **metabolic networks analysis** [*Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06*]
- **PPI networks analysis** [*Bruckner et al., J. Comp. Biol. 10*]
- **mass spectrometry** (identification of metabolites) [*Böcker & Rasche, Bioinformatics 08*]
- **also study of social networks** [*Pinter-Wollman et al., Behavioral Ecology 14*]
Graph Motif

A well-studied problem

- **Graph Motif** widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
Graph Motif

A well-studied problem

- Graph Motif widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
Graph Motif

A well-studied problem

- **Graph Motif** widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)

- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices

- Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.
A well-studied problem

- **Graph Motif** widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)

- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices

- Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

This talk

- Algorithmic results for **Graph Motif**: a guided tour
- Multiplicity of proof techniques: classical, *ad hoc*, imported from other contexts
Some notations

- M^* = underlying set of M
- M is colorful if $M^* = M$
Some notations

- $M^* = \text{underlying set of } M$
- M is \textbf{colorful} if $M^* = M$
- \textbf{COLORFUL GRAPH MOTIF} (or CGM): restriction of GRAPH MOTIF to colorful motifs
Some notations

- $M^* = \text{underlying set of } M$
- M is colorful if $M^* = M$

COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs

- $\mu(G, c) = \text{number of vertices having color } c \text{ in } G$
- $\mu(G) = \max\{\mu(G, c) : c \in C\}$
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
Theorem (Lacroix et al., IEEE/ACM TCBB 06)

Graph Motif is **NP-complete** even if **G** is a tree.
Did you say \textbf{NP}-complete? \\

Algorithmic complexity of Problems \\

- $Pb=$a problem, $n=$size of the input
Did you say **NP-complete**?

Algorithmic complexity of Problems

- Pb = a problem, n = size of the input
 - Pb is **tractable** if solvable in $O(n^c)$ (c=constant) $\Rightarrow Pb \in P$
Did you say \textbf{NP}-complete \ ?

\textbf{Algorithmic complexity of Problems}

\begin{itemize}
 \item \textit{Pb}=a problem, \textit{n}=size of the input
 \item \textit{Pb} is \textbf{tractable} if solvable in $O(n^c)$ ($c=$constant) $\Rightarrow \ \textit{Pb} \in \mathbf{P}$
 \item \textit{Pb} is \textbf{intractable} if no $O(n^c)$ algo. exists for solving it
 $\Rightarrow \ \textit{Pb} \notin \mathbf{P}$
\end{itemize}
Did you say **NP-complete**?

Algorithmic complexity of Problems

- Pb is a problem, n=size of the input
- Pb is **tractable** if solvable in $O(n^c)$ (c=constant) $\Rightarrow Pb \in P$
- Pb is **intractable** if no $O(n^c)$ algo. exists for solving it $\Rightarrow Pb \notin P$
- very often: we do not know
Very often:

- cannot prove $Pb \in \mathbf{P}$
- cannot prove $Pb \notin \mathbf{P}$
Very often:
- cannot prove $Pb \in P$
- cannot prove $Pb \notin P$

Meanwhile...

New class: NP-complete

- Idea: identify the *most difficult* such problems
- Pb is NP-complete if *reduction* from another NP-complete problem applies
Very often:
- cannot prove $Pb \in P$
- cannot prove $Pb \notin P$

Meanwhile...

New class: NP-complete

- Idea: identify the **most difficult** such problems
- Pb is **NP-complete** if reduction from another **NP-complete** problem applies
- In this talk I will deliberately **not discuss NP-hard vs NP-complete**
Recess 2 (Cont’d)

Reduction – Principle

- Two problems: Pb and Pb'
- Pb and Pb' are decision problems (answer: YES/NO)
- Pb' is known to be NP-complete
Reduction – Principle

- Two problems: Pb and Pb'
- Pb and Pb' are decision problems (answer: YES/NO)
- Pb' is known to be NP-complete
- For any instance I' of Pb'
Reduction – Principle

- Two problems: \(Pb \) and \(Pb' \)
- \(Pb \) and \(Pb' \) are decision problems (answer: Yes/No)
- \(Pb' \) is known to be \(\text{NP} \)-complete
- For any instance \(I' \) of \(Pb' \)
- build in polynomial time a specific instance \(I \) of \(Pb \)
Reduction – Principle

- Two problems: Pb and Pb'
- Pb and Pb' are decision problems (answer: YES/NO)
- Pb' is known to be NP-complete
- For any instance l' of Pb'
- build in polynomial time a specific instance l of Pb
- YES for $l \iff$ YES for l'
Recess 2 (Cont’d)

Meaning of all this

► If reduction applies, Pb is at least as hard as Pb'
Recess 2 (Cont’d)

Meaning of all this

- If reduction applies, Pb is at least as hard as Pb'
- $Pb \in \mathbf{P} \Rightarrow Pb' \in \mathbf{P}$ (using reduction)
Meaning of all this

- If reduction applies, \(Pb \) is at least as hard as \(Pb' \)
- \(Pb \in P \Rightarrow Pb' \in P \) (using reduction)
- \(\Rightarrow \) \textbf{NP}-complete = class of hardest such problems
- problems in \textbf{NP}-complete thought not to be polynomial-time solvable
- but remains unknown (cf “\(P = \text{NP} \) ?”)
Theorem (Lacroix et al., IEEE/ACM TCBB 06)

GRAPH MOTIF is **NP-complete** even if **G** is a tree.
Graph Motif: first results

Theorem (Lacroix et al., IEEE/ACM TCBB 06)

Graph Motif is NP-complete even if G is a tree.

- Reduction from Exact Cover by 3-Sets
Theorem (Lacroix et al., IEEE/ACM TCBB 06)

GRAPH MOTIF is **NP-complete** even if **G** is a tree.

- Reduction from **EXACT COVER BY 3-SETS**
- Proof **does not hold** for **COLORFUL GRAPH MOTIF**
- **Is** **COLORFUL GRAPH MOTIF** any “simpler”?
Graph Motif: bad news

Colorful Graph Motif is NP-complete even when:

- \(G \) is a tree and
- \(G \) has maximum degree 3 and
- \(\mu(G) = 3 \)
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- Boolean formula Φ
 - set $X = \{x_1, x_2 \ldots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \ldots c_m$, each c_i built from X
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- Boolean formula Φ
 - set $X = \{x_1, x_2 \ldots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \ldots c_m$, each c_i built from X

- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\lor)
 - Φ contains clauses connected by logical AND only (\land)
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- Boolean formula Φ
 - set $X = \{x_1, x_2 \ldots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \ldots c_m$, each c_i built from X

- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\lor)
 - Φ contains clauses connected by logical AND only (\land)

- Example:

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- variable: x_i
- literal: x_i or $\overline{x_i}$
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- variable: x_i
- literal: x_i or $\overline{x_i}$

$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$
COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

- variable: x_i
- literal: x_i or $\overline{x_i}$

- $\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

- Goal: satisfy Φ
 - assign TRUE/FALSE to each x_i
 - s.t. Φ evaluates to TRUE, i.e.
 - each clause evaluates to TRUE
 - in each clause, at least one literal evaluates to TRUE
COLORFUL GRAPH MOTIF is NP-complete

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \ldots x_n\}$.

Question: Is there an assignment TRUE/FALSE of each x_i s.t. Φ is satisfied?
COLORFUL GRAPH MOTIF is NP-complete

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \ldots x_n\}$.

Question: Is there an assignment TRUE/FALSE of each x_i s.t. Φ is satisfied ?

- SAT is **NP**-complete (classical result)
COLORFUL GRAPH MOTIF is NP-complete

3-SAT-x
Many constrained versions of SAT are NP-complete, e.g.:
- each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses
COLORFUL GRAPH MOTIF is NP-complete

3-SAT-x
Many constrained versions of SAT are NP-complete, e.g.:

- each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

variable x_3, literal $\overline{x_3}$
COLORFUL GRAPH MOTIF is NP-complete

From any instance of 3-SAT-\(x\) to an instance of CGM

\[
\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})
\]

- from \(\Phi\)
- construct graph \(G\) as above
- \(M = \{1, 2 \ldots n, 1', 2 \ldots n', x_1, x_2 \ldots x_n, c_1, c_2 \ldots c_m\}\)
Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- G is a tree of maximum degree 3 (literal appears in ≥ 2 clauses)
- $\mu(G) = 3$ (clause contains ≤ 3 literals)
- M is colorful
Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- \(G \) is a tree of maximum degree 3 (literal appears in \(\geq 2 \) clauses)
- \(\mu(G) = 3 \) (clause contains \(\leq 3 \) literals)
- \(M \) is colorful

Equivalence \(\text{YES/NO} \) answer

- \(\Rightarrow \) Pick color \(x_i \) corresponding to assignment
- \(\Leftarrow \) Pick vertices \(x_i \) and \(c_j \) corresponding to occurrence of motif
Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

Colorful Graph Motif is \textbf{NP-complete} even when:

- \(G \) is a tree and
- \(G \) has maximum degree 3 and
- \(\mu(G) = 3 \)
Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)
Colorful Graph Motif is **NP-complete** even when:
- G is a tree and
- G has maximum degree 3 and
- $\mu(G) = 3$

- Restrictions on G and $\mu(G) \rightarrow \text{NP-complete}$
- What if M uses few colors?
Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

GRAPH MOTIF is **NP-complete** even when:

- G is bipartite and
- G has maximum degree 4 and
- $|M^*| = 2$

- Reduction from **EXACT COVER BY 3-SETS**
Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

GRAPH MOTIF is in P whenever G is a tree and $\mu(G) = 2$.
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

[Diagram of a boolean expression tree with variables x_1, $\overline{x_2}$, $\overline{x_1}$, and x_2, rooted at r.]
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

\[(x_4 \Rightarrow \overline{x_5})\]
GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

\[(\overline{x_3} \Rightarrow x_1) \land (x_5 \Rightarrow x_1) \land (x_3 \Rightarrow \overline{x_2}) \land (x_2 \Rightarrow \overline{x_1}) \land \ldots\]

2-SAT formula as \((A \Rightarrow B) \iff (\overline{B} \lor A)\)
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
Remarks

- motifs tend to be small in practice (compared to the target graph)
Remarks

- motifs tend to be small in practice (compared to the target graph)

 → Question 1: algorithm whose running time is

 - polynomial in $n = |V(G)|$ and
 - exponential in $k = |M|$?
Remarks

- motifs tend to be small in practice (compared to the target graph)

- Question 1: algorithm whose running time is
 - polynomial in \(n = |V(G)| \) and
 - exponential in \(k = |M| \) ?

- Question 2: algorithm whose running time is
 - polynomial in \(n = |V(G)| \) and
 - exponential in \(c = |M^*| \) ?
Remarks

- **motifs tend to be small** in practice (compared to the target graph)

- **Question 1:** algorithm whose running time is
 - polynomial in \(n = |V(G)| \) and
 - exponential in \(k = |M| \)

- **Question 2:** algorithm whose running time is
 - polynomial in \(n = |V(G)| \) and
 - exponential in \(c = |M^*| \)

- Fixed Parameterized Tractability (FPT) issues
Parameterized complexity

Definition (Fixed-parameter tractability)
A problem P is fixed-parameter tractable (FPT) w.r.t. parameter k if it can be solved in time

$$O(f(k) \cdot poly(n))$$

- f: any computable function depending only on k
- n: size of the input
- $poly(n)$: any polynomial function of n
Parameterized complexity

Definition (Fixed-parameter tractability)
A problem P is fixed-parameter tractable (FPT) w.r.t. parameter k if it can be solved in time

$$O(f(k) \cdot \text{poly}(n))$$

- f: any computable function depending only on k
- n: size of the input
- $\text{poly}(n)$: any polynomial function of n

- complexity also noted $O^*(f(k))$ (hidden polynomial factor)
- \rightarrow corresponding complexity class: FPT
Parameterized complexity

Definition (Parameterized hierarchy)

\[\text{FPT} \subseteq \text{W[1]} \subseteq \text{W[2]} \subseteq \ldots \subseteq \text{XP} \]

In a nutshell

- FPT problems: (hopefully) efficiently solvable for small values of parameter
- \text{W[1]}: first class of problems not believed to be in FPT
- \text{W[1]}-complete vs FPT ↔ NP-complete vs P
Parameterized complexity

Definition (Parameterized hierarchy)

$$\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{XP}$$

In a nutshell

- **FPT** problems: (hopefully) efficiently solvable for small values of parameter
Parameterized complexity

Definition (Parameterized hierarchy)

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{XP} \]

In a nutshell

- **FPT** problems: (hopefully) efficiently solvable for small values of parameter
- **W[1]**: first class of problems not believed to be in **FPT**
- **W[1]**-complete vs **FPT** \(\leftrightarrow \) **NP**-complete vs **P**
FPT: an ever-growing topic

Monographs

FPT: an ever-growing topic

Monographs

▶ Dedicated website http://fpt.wikidot.com/
FPT: main techniques

- Dynamic Programming (table size and computation exponential in parameter only)

- Bounded Search Tree: test all possible cases, show there are $O(f(k))$ such cases

- Kernelization: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot \text{poly}(n))$

- Iterative Compression

- Color-Coding

- etc.
FPT: main techniques

- **Dynamic Programming** (table size and computation exponential in parameter only)

- **Bounded Search Tree**: test all possible cases, show there are $O(f(k))$ such cases

- **Kernelization**: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot \text{poly}(n))$
FPT: main techniques

- **Dynamic Programming** (table size and computation exponential in parameter only)
- **Bounded Search Tree**: test all possible cases, show there are $O(f(k))$ such cases
- **Kernelization**: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot \text{poly}(n))$
- **Iterative Compression**
FPT: main techniques

- **Dynamic Programming** (table size and computation exponential in parameter only)
- **Bounded Search Tree**: test all possible cases, show there are $O(f(k))$ such cases
- **Kernelization**: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot poly(n))$
- **Iterative Compression**
- **Color-Coding**
- etc.
The choice is yours

- **Size of the motif** $k = |M| = \text{solution size}$ → classical parameter
The choice is yours

- **Size of the motif** $k = |M| = \text{solution size}
 \rightarrow \text{classical parameter}

- **Number of colors** of the motif $c = |M^*|$
 Remark: $c \leq k$ ($k = c$ for **COLORFUL GRAPH MOTIF**) thus “stronger” than k
GRAPH MOTIF and FPT: which parameters?

The choice is yours

- **Size** of the motif $k = |M| = \text{solution size}$
 \rightarrow classical parameter

- **Number of colors** of the motif $c = |M^*|$
 Remark: $c \leq k$ ($k = c$ for COLORFUL GRAPH MOTIF) thus “stronger” than k

- **Dual parameter** $\ell = n - k$ (with $n = |V(G)|$)
 Dual = number of vertices *not* in the solution
Did you say dual?

Dual parameter $\ell = n - k$ is probably large... but:

- Reduction rules \rightarrow smaller components in which $\ell \sim k$
- Worst case running time vs experimental running time
- Current-best algorithms for some subgraph mining problems use ℓ (HARTUNG ET AL., JGAA 15)
GRAPH MOTIF: parameter c

Reminder: $c = |M^*| = \#\text{colors in } M$
Graph Motif: parameter c

Reminder: \(c = |M^*| = \text{#colors in } M \)

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

Graph Motif is \(\text{W[1]} \)-complete when parameterized by \(c \), even in *trees.*
Reminder: $c = |M^*| = \#\text{colors in } M$

Graph Motif is **W[1]-complete** when parameterized by c, even in *trees*.

- Reduction from **CLIQUE**
GRAPH MOTIF: parameter c

Reminder: \(c = |M^*| = \#\text{colors in } M \)

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)\)

Graph Motif is \(W[1] \)-complete when parameterized by \(c \), even in trees.

- Reduction from **CLIQUE**
- \(\Rightarrow \) \(c \) can be discarded for **Graph Motif**
- In proof of theorem, motif \(M \) is **not** colorful
- ... but in **Colorful Graph Motif**: \(c = k \)
- \(\Rightarrow \) \(c \) useless for **Colorful Graph Motif**
Rest of the talk

- We are left with k and ℓ
- First COLORFUL GRAPH MOTIF (or CGM)
- Then GRAPH MOTIF
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
Colorful Graph Motif is FPT in $k = |M|$

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

Colorful Graph Motif is solvable in $O^*(64^k)$ time.
COLORFUL GRAPH MOTIF is FPT in $k = |M|$

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07)

COLORFUL GRAPH MOTIF is solvable in $O^*(64^k)$ time.

Remarks

- Deterministic (Dynamic Programming)
- Exponential space
- Proof of concept!
Colorful Graph Motif is FPT in k

Theorem *(Betzler et al., CPM 08)*
Colorful Graph Motif *is solvable in* $O^*(3^k)$ *time.*

Remarks

- Simpler (and faster) version of previous result
- Deterministic (Dynamic Programming)
- Exponential space $O^*(2^k)$
- Adapted from [Scott et al., J. Comp. Biol. 06]
COLORFUL GRAPH MOTIF is FPT in k

Key elements of Dynamic programming algorithm

- Boolean table $B(v, S)$ with
 - v a vertex of G
 - S a subset of M

- $B(v, S) = \text{TRUE}$ if there is in G a colorful subtree T
 - v is the root of T
 - colors of T “agree” with S
COLORFUL GRAPH MOTIF is FPT in k

Key elements of Dynamic programming algorithm

For any S s.t. $|S| = 1$

$$B(v, S) = \begin{cases} \text{TRUE} & \text{if } S = \{\chi(v)\} \\ \text{FALSE} & \text{otherwise} \end{cases}$$

$$B(v, S) = \bigvee_{u \in N(v)} \big(B(v, S_1) \land B(u, S_2) \big)$$

$O^*(3^k) \rightarrow$ all 3-partitions of a set of size k
COLORFUL GRAPH MOTIF is FPT in k

Theorem *(Guillemot & Sikora, Algorithmica 13)*

COLORFUL GRAPH MOTIF is solvable in $O^*(2^k)$ time.

Remarks

- Randomized
- Polynomial space
- Uses the “Multilinear Detection” technique (2010)
A detour by polynomials

\[P(X) = \text{a polynomial built on a set } X = \{x_1, x_2 \ldots x_p\} \text{ of variables} \]

- a monomial \(m \) in \(P(X) \) is **multilinear** if each variable in \(m \) occurs at most once
- **degree** of a multilinear monomial = number of its variables
- example:

\[P(X) = x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6 \]

- \(x_1 x_2 x_4 x_6 \): multilinear monomial of degree 4
- \(x_1^2 x_3 x_5 \): not a multilinear monomial
A detour by arithmetic circuits

- arithmetic circuit C over a set X of variables = DAG s.t.
 - internal nodes are the operations \times or $+$,
 - leaves are variables from X
- polynomial $P(X) \rightarrow$ arithmetic circuit C over X
A detour by arithmetic circuits

- arithmetic circuit C over a set X of variables = DAG s.t.
 - internal nodes are the operations \times or $+$,
 - leaves are variables from X

- polynomial $P(X) \rightarrow$ arithmetic circuit C over X

- Example: $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$
Problem $\text{ISML-}k$: given an arithmetic circuit C, determine whether $P(X)$ contains a multilinear monomial of degree k.

Theorem (Koutis & Williams, ICALP 09)

$\text{ISML-}k$ is solvable in $O^*(2^k)$ time using polynomial space.
Multilinear Detection problem

Problem ISML-\(k\): given an arithmetic circuit \(C\), determine whether \(P(X)\) contains a multilinear monomial of degree \(k\)

Theorem (Koutis & Williams, ICALP 09)

ISML-\(k\) is solvable in \(O^*(2^k)\) time using polynomial space.

Remarks

- Randomized algorithm
- If \(C\) is an arithmetic circuit representing \(P\):
 - Running time: poly. factor depends on \#arcs of \(C\)
 - Space: depends on \#internal nodes of \(C\)
$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- variables \leftrightarrow colors in M
- monomial \leftrightarrow colors in a k-node subtree of G

\Rightarrow multilinear monomial of degree k \leftrightarrow colorful k-node subtree in G
$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- variables \leftrightarrow colors in M
- monomial \leftrightarrow colors in a k-node subtree of G

\Rightarrow multilinear monomial of degree k \leftrightarrow colorful k-node subtree in G

- if circuit size polynomial in k and input size
- then algorithm in $O^*(2^k)$ for CGM
Polynomial P built from G

\[P_{1,u} = x_\chi(u) \]

\[P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v} \]

\[P = \sum_{u \in V(G)} P_{k,u} \]

(Partial) computation of $P_{3,u} \ (k = 3)$
Polynomial P built from G

\[P_{1,u} = x_{\chi}(u) \]

\[P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u}P_{i-i',v} \]

\[P = \sum_{u \in V(G)} P_{k,u} \]

(Partial) computation of $P_{3,u}$ ($k = 3$)

\[P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \ldots \]
Polynomial P built from G

\[P_{1,u} = x_\chi(u) \]

\[P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v} \]

\[P = \sum_{u \in V(G)} P_{k,u} \]

(Partial) computation of $P_{3,u}$ $(k = 3)$

\[P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \ldots \]

\[= x_R \cdot (P_{2,v} + P_{2,w}) + \ldots \]
Polynomial P built from G

\[P_{1,u} = x_{\chi(u)} \]

\[P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v} \]

\[P = \sum_{u \in V(G)} P_{k,u} \]

(Partial) computation of $P_{3,u}$ ($k = 3$)

\[P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \ldots \]

\[= x_{R} \cdot (P_{2,v} + P_{2,w}) + \ldots \]

\[= x_{R} \cdot (x_{Y} \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \ldots \]
Polynomial P built from G

$$P_1,u = x_{\chi}(u)$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u}P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ ($k = 3$)

$$P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \cdots$$

$$= x_R \cdot (P_{2,v} + P_{2,w}) + \cdots$$

$$= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \cdots$$

$$= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \cdots$$
Polynomial P built from G

\[P_{1,u} = x_{\chi(u)} \]

\[P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v} \]

\[P = \sum_{u \in V(G)} P_{k,u} \]

(Partial) computation of $P_{3,u}$ ($k = 3$)

\[P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \ldots \]
\[= x_R \cdot (P_{2,v} + P_{2,w}) + \ldots \]
\[= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \ldots \]
\[= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \ldots \]
\[= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \ldots \]
Polynomial P built from G

$$P_{1,u} = x_{\chi}(u)$$

$$P_{i,u} = \sum_{i' = 1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ ($k = 3$)

$$P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \cdots$$

$$= x_R \cdot (P_{2,v} + P_{2,w}) + \cdots$$

$$= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \cdots$$

$$= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \cdots$$

$$= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \cdots$$

$$= x_R x_Y x_R + x_R x_Y x_R + x_R x_Y x_B + \cdots$$
CGM w.r.t. k: a tight lower bound

Can we do better than $O^*(2^k)$?
CGM w.r.t. k: a tight lower bound

Can we do better than $O^*(2^k)$?

Theorem (Björklund et al., Algorithmica 15)

Under SeCoCo, **COLORFUL GRAPH MOTIF** cannot be solved in $O^*((2 - \epsilon)^k)$ time, $\epsilon > 0$.

*SeCoCo = SET COVER Conjecture [Cygan et al., CCC 12]:

if $P \neq NP$, for any $\epsilon > 0$, **SET COVER** cannot be solved in $O^*((2 - \epsilon)^p)$ where $p = |U|$ is the size of the universe.
CGM w.r.t. k: a tight lower bound

Reduction

- **SET COVER:**
 - $U = \{x_1, x_2 \ldots x_n\}$
 - $S = \{S_1, S_2 \ldots S_m\}$
 - integer t
CGM w.r.t. k: a tight lower bound

Reduction

- **SET COVER:**
 - $U = \{x_1, x_2 \ldots x_n\}$
 - $S = \{S_1, S_2 \ldots S_m\}$
 - integer t

- **CGM:**
 - Graph G
 - $V(G) = \{r\} \cup U \cup \{s_i^j : i \in [m], j \in [t]\}$
 - r connected to every s_i^j, x_p connected to all s_i^j s.t. $x_p \in S_i$
 - colors: $x_i \rightarrow c_i$, $r \rightarrow c_{n+1}$, $s_i^j = c_{n+1+j}$ ($i \in [m], j \in [t]$)
 - Motif $M = \{c_1, c_2 \ldots c_{n+t+1}\}$ (thus $k = n + t + 1$)

$O^*((2 - \epsilon)^k)$ for CGM \Rightarrow $O^*((2 - \epsilon)^{n+t})$ for SET COVER

[CYGAN ET AL., CCC 12]:

$O^*((2 - \epsilon)^{n+t})$ for SET COVER \Rightarrow $O^*((2 - \epsilon')^n)$ for SET COVER
Summary: COLORFUL GRAPH MOTIF w.r.t. k

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Technique</th>
<th>Algorithm</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O^*(64^k)$</td>
<td>Dyn. Prog.</td>
<td>Det.</td>
<td>Exp.</td>
</tr>
<tr>
<td>no $O^*((2 - \epsilon)^k)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
CGM is FPT in ℓ

Reminder: $\ell = n - k$ ($=$#nodes not kept in solution)

Theorem (Betzler et al., IEEE/ACM TCBB 11)

CGM *is solvable in* $O^*(2^\ell)$ *time.*

Bounded Search Tree
Branching Rule: if there exists two vertices u, v s.t. $\chi(u) = \chi(v)$, remove either u or v from the graph.
CGM is FPT in ℓ

Branching Rule: if there exists two vertices u, v s.t. $\chi(u) = \chi(v)$, remove either u or v from the graph.
CGM is FPT in ℓ

Branching Rule: if there exists two vertices u, v s.t. $\chi(u) = \chi(v)$, remove either u or v from the graph.
Branching Rule: if there exists two vertices u, v s.t. $\chi(u) = \chi(v)$, remove either u or v from the graph
CGM is FPT in ℓ

Algorithm Analysis

- at least 1 vertex removed at each step
- \rightarrow height of tree at most ℓ
- 2 choices per step
- $\rightarrow 2^\ell$ possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return Yes, otherwise No
CGM is FPT in ℓ

Algorithm Analysis

- at least 1 vertex removed at each step
- \rightarrow height of tree at most ℓ
- 2 choices per step
- $\rightarrow 2^\ell$ possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return **YES**, otherwise **NO**

Can we do better?
FPT lower bound for CGM and ℓ

Theorem (F. & Komusiewicz, CPM’16)

Under SETH*, CGM **cannot be solved in** $O^*((2 - \epsilon)^{\ell})$ **time**, $\epsilon > 0$.

* SETH = Strong Exponential Time Hypothesis [Impagliazzo et al., JCSS 01]:

if $P \neq NP$, for any $\epsilon > 0$, CNF-SAT cannot be solved in $O^*((2 - \epsilon)^p)$, with $p=$number of variables of CNF formula
FPT lower bound for CGM and ℓ

Reduction from CNF-SAT with $\ell = p$

$$F = (x \lor \overline{y} \lor z) \land (y \lor \overline{z})$$

![Graph Motif problem](image-url)
FPT lower bound for CGM and ℓ

Reduction from CNF-SAT with $\ell = p$

$$F = (x \lor y \lor z) \land (y \lor z)$$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\end{figure}

$X \lor \bar{X} \lor Y \lor \bar{Y} \lor Z \lor \bar{Z}$

$(x \lor \bar{y} \lor z) \land (y \lor \bar{z})$
FPT lower bound for CGM and ℓ

Reduction from CNF-SAT with $\ell = p$

$$F = (x \lor \overline{y} \lor z) \land (y \lor \overline{z})$$
FPT lower bound for CGM and ℓ

Reduction from CNF-SAT with $\ell = p$

$$F = (x \lor \neg y \lor z) \land (y \lor \neg z)$$
CGM and \(\ell \) for trees

Theorem (F. & Komusiewicz, CPM’16)

CGM in trees is solvable in \(O^*(\sqrt{2^\ell}) \) time.
A kernel for CGM in trees

Kernelization

- Use reduction rules
- Instance \((T, M) \rightarrow (T', M')\) with same answer \text{YES}/\text{NO}
- Reduced instance \((T', M')\) called \textit{kernel}
- If size of kernel = \(O(f(\ell))\) then FPT in \(\ell\)
A kernel for CGM in trees

Kernelization

- Use reduction rules
- Instance \((T, M) \rightarrow (T', M')\) with same answer YES/NO
- Reduced instance \((T', M')\) called kernel
- If size of kernel = \(O(f(\ell))\) then FPT in \(\ell\)

Theorem \((F. \& \text{ Komusiewicz}, \text{ CPM'16})\)
CGM in trees admits a kernel of size \(2\ell + 1\).
A kernel for CGM in trees

$T =$ the input tree

Definition
A vertex is **unique** if no other vertex has the same color in T

Observation: at most 2ℓ vertices are not unique in T.
A kernel for CGM in trees

\(T = \) the input tree

Definition

A vertex is **unique** if no other vertex has the same color in \(T \)

Observation: at most \(2\ell \) vertices are not unique in \(T \).

- \(C^+ = \) set of colors occurring more than once in \(C \); \(|C^+| = c^+\)
- \(n^+ = \sum_{c \in C^+} \mu(T, c) \); \(n^- = \) # non-unique vertices
A kernel for CGM in trees

T = the input tree

Definition
A vertex is unique if no other vertex has the same color in T

Observation: at most \(2\ell\) vertices are not unique in T.

- \(C^+\) = set of colors occurring more than once in C; \(|C^+| = c^+\)
- \(n^+ = \sum_{c \in C^+} \mu(T, c)\); \(n^- = \#\) non-unique vertices
 - \(n = n^+ + n^-\)
 - \(|M| = c^+ + n^-\)
 - \(\ell = n - |M| \Rightarrow \ell = n^+ - c^+\)
A kernel for CGM in trees

\(T = \) the input tree

Definition
A vertex is **unique** if no other vertex has the same color in \(T \)

Observation: at most \(2\ell \) vertices are not unique in \(T \).

- \(C^+ = \) set of colors occurring more than once in \(C ; |C^+| = c^+ \)
- \(n^+ = \sum_{c \in C^+} \mu(T, c) ; n^- = \# \) non-unique vertices
 - \(n = n^+ + n^- \)
 - \(|M| = c^+ + n^- \)
 - \(\ell = n - |M| \implies \ell = n^+ - c^+ \)
- \(n^+ \geq 2c^+ \implies \ell \geq \frac{n^+}{2} \)
A kernel for CGM in trees

- root T at arbitrary unique vertex r
- if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ and kernel already exists
A kernel for CGM in trees

- root T at arbitrary unique vertex r
- if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ and kernel already exists

Definition

- **pendant** subtree of root v: contains all descendants of v.
- **pendant non-unique subtrees**: maximal pendant subtrees in which no vertex is unique
A kernel for CGM in trees

- Left: input instance w/ pendant non-unique subtrees
- Middle: after Phase I, all vertices on paths between unique vertices are contracted into \(r \).
- Right: after Phase II, all vertices with a color that was removed in Phase I are removed together with their descendants.
CGM and ℓ for trees

- Phases I and II: reduction rules
- After application: root r + non-unique vertices only
CGM and ℓ for trees

- Phases I and II: reduction rules
- After application: root r + non-unique vertices only
- by Observation, \# non-unique vertices $\leq 2\ell$
- \Rightarrow new tree with $\leq 2\ell + 1$ vertices
<table>
<thead>
<tr>
<th>General graphs</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O^*(2^\ell)$</td>
<td>$O^*(\sqrt{2}^\ell)$</td>
</tr>
<tr>
<td>no $O^*((2 - \epsilon)^\ell)$</td>
<td></td>
</tr>
<tr>
<td>no poly. kernel</td>
<td>$(2\ell + 1)$-vertex kernel</td>
</tr>
</tbody>
</table>
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
From **COLORFUL GRAPH MOTIF** to **GRAPH MOTIF**

- 2 results can be transferred from CGM to **GRAPH MOTIF**
- Price to pay:
 - Increased time complexity (but still exp. in k only)
 - Randomized algorithm
- Secret ingredient: the **Color-Coding** technique
Color-Coding for GRAPH MOTIF

For a color c in M, $\text{occ}_M(c) = \#\text{occurrences of } c\text{ in } M$

Color Coding: General Idea

- for each color $c \in C$ s.t. $\text{occ}_M(c) \geq 2$
 - create $\text{occ}_M(c)$ new colors
 - replace c in M by these colors → new motif is colorful
 - randomly recolor vertices of G with color c with one of new colors
- colorful motif → use your favorite CGM algorithm!
Color-Coding for Graph Motif
Color-Coding for **GRAPH MOTIF**

\[M \Rightarrow \]

\[G \]

G. Fertin The Graph Motif problem
Color-Coding for **GRAPH MOTIF**

$M \Rightarrow$

$G \Rightarrow$
Color-Coding for GRAPH MOTIF

\[M \implies \]

\[G \implies \]
Running-time increase

- random coloring: a “good” solution may not be colorful
 - may lead to false negatives
- repeat process until probability of success is $1 - \epsilon$ ($\epsilon > 0$)
- probability of a good coloring of G: $\frac{k!}{k^k} \geq e^{-k}$
- needs $|\ln(\epsilon)|e^k$ iterations (i.e., random colorings of G)
In a nutshell:

- Fellows et al. 2007: \(O^*(64^k) \rightarrow O^*(87^k) \)
- Betzler et al. 2008: \(O^*(3^k) \rightarrow O^*(4.32^k) \)
Adapting MLD to GRAPH MOTIF

$O^*(2^k)$ algorithm by Guillemot & Sikora 2013

- works only for CGM
- if $M \neq M^*$, solution is not a multilinear monomial
- previous construction needs to be adapted
- introduction of variables for each vertex of G
Adapting MLD to GRAPH MOTIF

- One variable x_u per vertex u of G
- Each color c that appears m times in $M \rightarrow$ variables $y_{c,1}, y_{c,2}, \ldots, y_{c,m}$
- Circuit is modified: $P_{u,1} = x_u \cdot (y_{c,1} + y_{c,2} + \ldots + y_{c,m})$
 - Variables $x_u \rightarrow$ a node of G is used only once
 - Variables $y_j \rightarrow$ right #colors required by M
- Solution: multilinear monomial of degree $k' = 2k$ (k nodes + k colors)
- Complexity $O^*(2^{k'}) \rightarrow O^*(4^k)$
Adapting MLD to GRAPH MOTIF – Example

\[x_u(y_{R,1} + y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1} + y_{R,2}) \cdot x_t y_{B,1} + \ldots \]
Adapting MLD to \textbf{GRAPH MOTIF} – Example

\[x_u(y_{R,1} + y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1} + y_{R,2}) \cdot x_t y_{B,1} + \cdots \]

\[= x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,1} \cdot x_t y_{B,1} + \cdots \]
Adapting MLD to \textbf{G}raph \textbf{M}otif – Example

\begin{align*}
x_u(y_{R,1} + y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1} + y_{R,2}) \cdot x_t y_{B,1} + \ldots \\
= x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,1} \cdot x_t y_{B,1} + \\
x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,2} \cdot x_t y_{B,1} + \ldots
\end{align*}
Adapting MLD to GRAPH MOTIF – Example

\[x_u(y_{R,1} + y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1} + y_{R,2}) \cdot x_t y_{B,1} + \ldots = x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,1} \cdot x_t y_{B,1} + \]

\[x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,2} \cdot x_t y_{B,1} + \ldots \]

- solution: a multilinear monomial of degree

\[2k = 8 \]

Graph Motif is FPT in k

Previous results superseded by following theorem

Theorem (Björklund, Kaski & Kowalik, Algorithmica 15)

Graph Motif is solvable in $O^*(2^k)$ time using polynomial space.

Remarks

- Randomized
- *Constrained* Multilinear Detection
- Result independently published in [Pinter, Zehavi - 2016]
Summary: GRAPH MOTIF w.r.t. k

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Technique</th>
<th>Algorithm</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O^*(2.54k)$</td>
<td>Constrained Multilinear Det.</td>
<td>Random</td>
<td>Exp.</td>
</tr>
<tr>
<td>no $O^*((2 - \epsilon)^k)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: best **deterministic** algorithm in $O^*(5.22k)$ [PINTER ET AL., DAM 16]
Theorem (BETZLER ET AL., IEEE/ACM TCBB 11)

Graph Motif is $W[1]$-complete when parameterized by ℓ.
Theorem *(Betzler et al., IEEE/ACM TCBB 11)*

Graph Motif is \(W[1]\)-complete when parameterized by \(\ell\).

Remarks

- reduction from *Independent Set*
- \(M\) has only 2 colors
Example

\[u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_5 \]

\[n = 5, \, m = 5, \, p = 3 \]
Graph Motif is $W[1]$-complete w.r.t. ℓ

Example

$n = 5$, $m = 5$, $p = 3$
GRAPH MOTIF is W[1]-complete w.r.t. ℓ

Example

$n = 5, m = 5, p = 3$
Example

\[n = 5, m = 5, p = 3 \]
Graph Motif is $W[1]$-complete w.r.t. ℓ

Example

$n = 5, m = 5, p = 3$
Graph Motif is $\mathcal{W}[1]$-complete w.r.t. ℓ

Example

$n = 5$, $m = 5$, $p = 3$

$M = \{ n - p; \quad m + 1 \}$
Graph Motif is \(W[1] \)-complete w.r.t. \(\ell \)

Example

\[
\begin{align*}
n &= 5, \\
m &= 5, \\
p &= 3
\end{align*}
\]

\[
M = \{v^{*}, \text{red nodes} \setminus \{v^{*}\}, \text{blue nodes} \}
\]
Graph Motif is $W[1]$-complete w.r.t. ℓ

Example

$n = 5, m = 5, p = 3$

$M = \{n-p; m+1\}$
Example

$n = 5$, $m = 5$, $p = 3$

$M = \{\text{red: } n-p; \text{ blue: } m+1\}$
Example

$G. Fertin$ The Graph Motif problem

$\text{GRAPH MOTIF is W[1]-complete w.r.t. } \ell$

$n = 5, m = 5, p = 3$

$M = \{ \text{red circles: } n-p; \text{ blue circles: } m+1 \}$
Theorem (F. & Komusiewicz, CPM 16)

Graph Motif is solvable in $O^*(4^\ell)$ time when G is a tree.

→ Dynamic Programming
Summary: **GRAPH MOTIF w.r.t.** ℓ

<table>
<thead>
<tr>
<th>General graphs</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W[1]$-complete</td>
<td>$O^*(4^\ell)$</td>
</tr>
<tr>
<td></td>
<td>no poly. kernel</td>
</tr>
</tbody>
</table>
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
GRAPH MOTIF and variants: practical issues

- **Motus** [Lacroix et al., Bioinformatics 06]
- **Torque** [Bruckner, Hüffner, Karp, Shamir & Sharan, Bruckner et al., J. Comp. Biol. 10]
- **GraMoFoNe** [Blin, Sikora & Vialette, BICoB 10]
- **RANGI** [Rudi et al., IEEE ACM/TCBB 13]
- **SIMBio** [Rubert et al., BIBE 15]
- **CeFunMo** [Kouhsar et al., Computers in Biology and Medicine 16]
A focus on GraMoFoNe

- cytoscape plugin (open-source java platform, popular in bioinfo)
- supports queries up to 20–25 proteins
- colorful and multiset motifs
- can report all solutions
- deals with approx. solutions (insertions, deletions)
- also deals list-coloring
- technique: Pseudo-Boolean programming
Querying biological networks

Example

- **Query**: Mouse DNA synthesome complex (13 proteins)
- **Target**: Yeast network (∼ 5 300 proteins, ∼ 40 000 interactions)
- **Output**: match consists of 12 proteins with 2 insertions and 3 deletions
Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
 Colorful Graph Motif and parameter k
 Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
 Graph Motif and parameter k
 Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion
About GRAPH MOTIF

Quick Summary

► Biologically motivated problem (also applies in other contexts)
► Very large literature (∼140 citations in 10 years)
► Survey ? Work in progress! (with J. Fradin, G. Jean and F. Sikora)
► Multiple improvements over the time (see parameter k)
► Recent, sometimes involved techniques
 ▶ SeCoCo (2012)
 ▶ MLD (2010) and constrained versions
 ▶ mixed techniques
► Many variants
► Several software
Open Questions?

- Yes and no!
- Yes: many questions, many variants
- No(t so much) if (COLORFUL) GRAPH MOTIF general case and parameter k...
- ...unless you require deterministic algorithms! \rightarrow beat current-best solutions
- Yes:
 - further study parameter ℓ
 - specific case of trees + inquire about treewidth
A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more “interesting”
 - discrete data structures
 - more and more “complicated” graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - → more and more intricate (thus interesting) problems
A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more “interesting”
 - discrete data structures
 - more and more “complicated” graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - → more and more intricate (thus interesting) problems

- FPT well-adapted
 - together with data reduction rules (complexity often collapses on real data)
 - allows to “advertise” new FPT techniques
 - sometimes initiate new techniques
From Computer Science to Bioinfo

- FPT + data reduction rules should be advertised and used
- see the different GRAPh MOTIF software
- how can we convince potential users?
- e.g. why relatively fast exact rather than very fast heuristic?
From Computer Science to Bioinfo

▶ FPT + data reduction rules should be advertised and used
▶ see the different GRAPH MOTIF software
▶ how can we convince potential users?
▶ e.g. why relatively fast exact rather than very fast heuristic?

Thank you for your attention