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Avant-propos

Le but de ce mini-cours est d’introduire et d’illustrer des méthodes pour l’étude des systèmes
désordonnés en mécanique statistique, sur l’exemple de modèles de polymères dirigés en inter-
action avec un environnement aléatoire.

Le polymère est décrit comme une marche aléatoire simple sur le réseau, collectant des récompenses
aléatoires disposées sur son chemin (marche aléatoire dans un potentiel dépendant du temps et
de l’espace). Le modèle est donné par une mesure de Gibbs, qui interpole entre la loi uniforme
sur l’ensemble des trajectoires possibles, et la géodésique du problème de percolation orientée
de dernier passage. Si les récompenses sont suffisamment fortes, le polymère adopte un com-
portement totalement différent de celui de la marche aléatoire sous-jacente, afin de profiter des
environnement favorables. Cela donne lieu à une transition de phase, entre phases localisée et
délocalisée.

Si le modèle est compliqué sur le réseau Z
d, il est explicitement résoluble sur l’arbre.

Une application combinatoire sera donnée dans le cadre de la ρ-percolation: en chaque site
du réseau N

d+1 est plaçé un 0 ou un 1 aléatoirement, et l’on s’intéresse au nombre N(n) de
chemins orientés (arètes nord ou est) de longueur n pour lesquels la densité de 1 est au moins
ρ (1 > ρ > p avec p la probabilité de tirer un 1). Nous déduirons des estimations de Nn.

Quelques mots clés:
1- Mesures de Gibbs, energie (libre), entropie, diagramme de phases, transition de phases, percola-

tion, polymères.

2- Méthode du second moment, martingales, inégalités de concentration, séries génératrices, inégalités

de corrélation FKG-Harris.
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Chapter 1

Directed polymers in random

environment

1.1 Introduction

1.1.1 A polymer model

We start with an informal description of the situation we will discuss in these notes. Consider
a hydrophilic polymer chain wafting in water. Due to the thermal fluctuation, the shape of the
polymer should be understood as a random object. We now suppose that the water contains
randomly placed hydrophobic molecules as impurities, which repel the hydrophilic monomers
which the polymer consists of. The question we address here is:

How does the impurities affect the global shape of the polymer chain?

We try to answer this question in a mathematical framework. However, as is everywhere
else in mathematical physics, it is very difficult to do so without compromising with a rather
simplified picture of the initial problem. Here, our simplification goes as follows. We first
suppress entanglement, self-intersections and U-turns of the polymer; we shall represent the
polymer chain as a graph {(j, ωj)}n

j=1 in N × Z
d, so that the polymer is supposed to live in

(1 + d)-dimensional discrete lattice and to stretch in the direction of the first coordinate. Such
a model is called directed. Each point (j, ωj) ∈ N × Z

d on the graph stands for the position
of j-th monomer in this picture. Secondly, we assume that, the transversal motion {ωj}n

j=1

performs a simple random walk in Z
d, if the impurities are absent. We then define the energy

of the path {(j, ωj)}n
j=1 by the formula (1.1.3) at some (inverse) temperature β > 0, where

{η(n, x) : n ≥ 1, x ∈ Z
d} is a field of real i.i.d. random variables, with η(n, x) describing

the presence (or strength) of an impurity at site (n, x). The typical shape {(j, ωj)}n
j=1 of

the polymer is then given by the one that minimizes the energy (1.1.3). Let us suppose for
example that η(n, x) takes two different values +1 (“presence of a water molecule at (n, x)”)
and −1 (“presence of the hydrophobic impurity at (n, x)”). Then, the energy of the polymer is
decreased by β each time a monomer is in contact with the impurity (η(j, ωj) = −1). Therefore,
the typical shape of the polymer for each given configuration of {η(j, x)} is given by the one
which tries to avoid the impurities as much as possible.

The purpose of these lecture notes is to introduce rigorous results which answer the above
question roughly as follows: (i) If the space dimension is large and the temperature is high, the
impurities do not affect the global shape of the polymer; (ii) If the dimension is small or the
environment is strong, then the impurities change the global shape of the polymer drastically.
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The informal description given below has been put into a mathematical framework by the
formalism of a Gibbs measure, in the framework of statistical mechanics.

1.1.2 Simple random walk model for directed polymers

The model we consider here is defined as a random walk in a random potential. We first fix the
notations for the random walk and the random environment, and then introduce the polymer
measure.

• The random walk: ({Sn}n≥0, P
x) is a simple random walk on the d-dimensional integer

lattice Z
d starting from x ∈ Z

d. More precisely, we let Ωω be the path space Ωω = {ω =
(ωn)n≥0;ωn ∈ Z

d, n ≥ 0}, F be the cylindrical σ-field on Ω, and, for all n ≥ 0, Sn : ω 7→ ωn

be the projection map. We consider the unique probability measure P x on (Ωω,F) such that
S1 − S0, . . . , Sn − Sn−1 are independent and

P x{Sx = 0} = 1, P x{Sn−Sn−1 = ±ej} = (2d)−1, j = 1, 2, . . . , d,

where ej = (δkj)
d
k=1 is the j-th vector of the canonical basis of Z

d. In the sequel, P x[X] denotes
the P x-expectation of a r.v.(random variable) X on (Ωω,F , P x),and P 0 will be simply written
by P .

• The random environment: η = {η(n, x) : n ∈ N, x ∈ Z
d} is a sequence of r.v.’s which

are real valued, non-constant, and i.i.d.(independent identically distributed) r.v.’s defined on a
probability space (Ωη,G, Q) such that

Q[exp(βη(n, x))] <∞ for all β ∈ R. (1.1.1)

Here, and in the sequel, Q[Y ] denotes the Q-expectation of a r.v. Y on (Ωη,G, Q). We will

take Ωη = R
N∗×Zd

the canonical space for definiteness.
• The polymer measure: For any n > 0, define the probability measure µη

n,β on the path
space (Ωω,F) by

µη
n,β(dω) =

1

Zη
n,β

exp{βHn(S)} P (dω), (1.1.2)

where β > 0 is a parameter (the inverse temperature), where

Hn(ω) = Hη
n(ω) =

∑

1≤j≤n

η(j, ωj) (1.1.3)

and

Zn = Zη
n,β = P


exp


β

∑

1≤j≤n

η(j, Sj)




 (1.1.4)

is the normalizing constant, so-called partition function. Of course, in the present context, the
above expectation is simply a finite sum,

Zη
n,β =

∑

ω

(2d)−n exp (βHn(ω))

where ω ranges over the (2d)n possible paths of length n for the simple random walk.
The polymer measure µn can be thought of as a Gibbs measure on the path space (Ωω,F)

with the Hamiltonian Hn. We stress that the random environment η is contained in both Zη
n,β

and µn without being integrated out, so that they are r.v.’s on the probability space (Ωη,G, Q).
The polymer is attracted to sites where the random environment is positive, and repelled by
sites where the environment is negative.
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ω

N

x ∈ Z
d

n

η(t, ωt)

t

Figure 1.1: The walk picks up all the environment variables it meets up to time n

In view of our assumptions, an important quantity for this model is the logarithmic moment
generating function λ of η(n, x),

λ(β) = lnQ[exp(βη(n, x))], β ∈ R. (1.1.5)

The function λ(β) can be explicitly computed for some typical choice of the distribution of
η(n, x). For example, λ(β) = ln(pe−β +(1−p)eβ) for the Bernoulli environment and λ(β) = 1

2β
2

for the Gaussian environment.

History, litterature

This model was originally introduced in physics literature [34] to mimic the phase boundary
of Ising model subject to random impurities. Later on, the model reached the mathematics
community [35, 7], where it was reformulated as above.

• A physical realization: torn paper sheets [39] A rectangular sheet of paper is tightened
by a machine. The strain is applied on two opposite sides, and it is slowly increased. A small
notch is made on a third side to initiate the tear. The fracture is governed by the random
geometry of the fiber network. The fracture line is highly correlated the weakest bonds in the
sheet, as can be checked by microdensiometry. Directed polymers with d = 1 and its zero
temperature counterpart, oriented first passage percolation, are natural model for the fracture
line.

• Particle in a random potential: In the case η(t, x) ≤ 0, we can interpret the model in terms
of a walker moving among deadly obstacles. A walker starts at the origin at time 0, it jumps at
integer times and immediately after, it dies or survives. It moves according to a simple random
walk when alive, but it has a probability expβη(t, x) ∈ (0, 1] to die at time t if it is still alive
at time t−1 and has jumped at location x at time t, and probability 1− exp βη(t, x) to survive
the obstacle. Then, the polymer measure µη

n,β is equal to the law of the path conditionned to
be alive at time n.
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• Corresponding to β = ∞, the ground states, i.e. the paths ω maximizing Hn, are the
geodesics of last passage percolation. Relations to percolation, last passage percolation, and
all the related models (tandem queueing systems, totally asymmetric exclusion process,. . . )

• Model for normal growth with deposition, see Kardar-Parisi-Zhang equation.

1.2 Thermodynamics

We start with some preliminaries. On the space Ωη of environments, define for i ≥ 1, x ∈ Z
d,

the shift operator θi,x : Ωη = R
N∗×Zd → Ωη given by η 7→ θi,xη,

(θi,xη)t,y = η(i+ t, x+ y) . (1.2.6)

Observe that (θi,xη) is simply the field of environment variables which is seen from the “point”
(i, x). Its law is the same as the law of η itself, i.e., the product law Q.

Markov property and the partition function. For n,m ≥ 1, x ∈ Z
d, the random

variable

Z
θn,xη
m,β = P x


exp



∑

1≤t≤m

(βη(t+ n, St))




 , (1.2.7)

is the partition function of the polymer of length m starting at x at time n. Since η and its

shift θn,xη have the same law, Z
θn,xη
m,β has the same law as Zη

m,β. By the Markov property, we
can also write it in the form of a conditional expectation given Fn = σ{St, t ≤ n},

Z
θn,xη
m,β = P [exp β{Hn+m(S) −Hn(S)}|Fn] on the event {Sn = x}.

For n,m ≥ 1, we can express the partition function of the polymer of length n+m by condi-
tioning:

Zη
n+m,β = P

[
eβHn+m(S)

]

=
∑

x∈Zd

P
[
eβHn+m(S);Sn = x

]

=
∑

x∈Zd

P
[
eβHn(S)P

[
eβ{Hn+m(S)−Hn(S)}|Fn

]
;Sn = x

]

=
∑

x∈Zd

P
[
eβHn(S)P

[
eβ{Hn+m(S)−Hn(S)}|Fn

]
;Sn = x

]

=
∑

x∈Zd

P
[
eβHn(S);Sn = x

]
× Z

θn,xη
m,β , (1.2.8)

using the previous observation. This important property is usually called Markov property. It
can be reformulated as

Zη
n+m,β = Zη

n,β

∑

x

µη
n,β{Sn = x}Zθn,xη

m,β

= Zη
n,β × µη

n,β

[
Z

θn,Snη
m,β

]
. (1.2.9)
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1.2.1 Free energy

As it is well known in statistical mechanics, one can understand the Gibbs polymer measure
by studying the (specific) free energy1

pn = pη
n,β =

1

n
lnZη

n,β ,

more precisely to know if it converges as n→ ∞, and, if this is the case, how the limit depends
on the environment η.

Theorem 1.2.1 As n→ ∞,
pη

n,β −→ p(β) = sup
n
Qpη

n,β

Q-a.s. and in Lp-norm, for all p ∈ [1,∞).

The theorem states that the sequence pη
n,β converges a.s. to a limit, the limit is deterministic

and given by as a supremum over the polymer length.

✷ The proof splits in two steps, with the first one showing that mean value converge, and
the second one showing that random fluctuations are neglegible.
• Step 1: We first consider expected values and show that:

lim
n→∞

Qpη
n,β = sup

n∈N

Qpη
n,β ∈ R

For m,n ≥ 1, recall the identity (1.2.9), and also that Zη
m,β and Z

θn,xη
m,β have the same law. By

Jensen’s inequality, we obtain

lnZη
n+m,β ≥ lnZη

n,β +
∑

x

µη
n,β{ωn = x} lnZ

θn,xη
m,β .

Let Gn be the σ-field generated by η(t, ·), t ≤ n. Taking expectation and using independence
of the η(i, y)’s, we obtain

Q[lnZη
n+m,β] ≥ Q[lnZη

n,β] +
∑

x

Q[µη
n,β{ωn = x}]Q[lnZ

θn,xη
m,β ]

= Q[lnZη
n,β] +Q[lnZη

m,β]
∑

x

Q[µη
n,β{ωn = x}] (Z

θn,xη
m,β

law
= Zη

m,β)

= Q[lnZη
n,β] +Q[lnZη

m,β]

i.e., Q[lnZη
n,β] is super-additive. From the super-additive Lemma (see Appendix, section 3.2),

we see that

lim
nր∞

1

n
Q[lnZη

n,β] = sup
n

1

n
Q[lnZη

n,β].

Now, the finiteness of p follows from the annealed bound (1.2.12) below.

• Step 2: We will apply to X = lnZη
n,β a concentration inequality, given in Lemma 3.3.4 in the

Appendix. We prove below that X = lnZη
n,β satisfies the estimate (3.3.8) with some B ∈ (0,∞)

and some δ > 0: by Borel-Cantelli lemma, this implies that lim supn

∣∣pn − Q[pn]
∣∣ ≤ ǫ Q-a.s.,

for all ǫ ≤ Bδ. Hence,
lim sup

n→∞

∣∣pn −Q[pn]
∣∣ = 0 Q− a.s.,

1In the physics litterature, pn is rather called the pressure; the specific free energy is defined as −β−1pn, it
has the same unit as the energy −Hn. The name specific means that it has been normalized by the number n
of monomers.
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which, together with Step 1 above, completes the proof of almost sure convergence in Theorem
1.2.1. To get Lp convergence, one checks from the concentration inequality that the sequence
(pη

n,β)n is uniformly integrable.

All what is left is to prove (3.3.8) for X = lnZη
n,β. For that, we introduce a probability

measure µn,j on (Ωω,F) by

µn,j(dω) =
1

Zn,j
exp(βHn,j)P (dω), j = 1, ..., n,

where Hn,j =
∑

1≤k≤n,k 6=j η(k, ωk). We also introduce the σ-field Gj generated by η(t, x) for

t ≤ j and x ∈ Z
d. We fix arbitrary n and check (3.3.7) for

X = lnZη
n,β, Xj = lnZn,j, j = 1, ..., n.

Since Xj does not depend on η(·, j), we have QGj−1 [Xj ] = QGj [Xj ]. Note on the other hand
that the function u 7→ uδ is convex for δ ∈ R\(0, 1), and then

exp(δ(X −Xj)) =

(
Zη

n,β

Zn,j

)δ

= µn,j[exp(βη(ωj , j))]
δ

≤ µn,j[exp(βδη(ωj , j))].

Now, the random measure µn,j is measurable with respect to G′j
def.
= σ[η(·, k) ; k 6= j]. Therefore,

QG
′
j [exp(δ(X −Xj))] ≤ QG

′
j [µn,j[exp(βδη(ωj , j))]]

= µn,j

[
QG

′
j [exp(βδη(ωj , j))]

]

= eλ(δβ).

This, together with Gj−1 ⊂ G′j , implies

QGj−1 [exp(|X −Xj |)] ≤ A := eλ(β) + eλ(−β).

We have shown that a concentration (self-averaging) property holds in all generality:

Corollary 1.2.2 With B = 2
√

6
(
eλ(β) + eλ(−β)

)2
we have for all ε ≤ B and all n ≥ 1,

Q
[
|pη

n,β −Qpη
n,β| ≥ ε

]
≤ 2 exp{−nε2/4B}. (1.2.10)

1.2.2 Upper bounds on the free energy

By Jensen inequality,

Q[pη
n,β] =

1

n
Q lnZη

n,β ≤ 1

n
lnQZη

n,β = λ(β) , (1.2.11)

hence
p(β) ≤ λ(β) (1.2.12)

This bound is rather universal in the realm of random medium, it is known as the annealed
bound.

For other upper bounds, we can use standard monotonicity properties from thermodynam-
ics:
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Proposition 1.2.3 .
(i) pη

n,β is a smooth convex function, pη
n,0 = 0; p is convex with p(0) = 0.

(ii) β 7→ β−1pη
n,β is increasing.

(iii) β 7→ β−1[pη
n,β + ln(2d)] is decreasing.

✷ By differentiation, one gets

d

dβ
npη

n,β = µη
n,β[Hn] ,

d2

dβ2
npη

n,β = Varµη
n,β

[Hn] > 0 ,

and all properties in (i) follow easily. By convexity, β−1pη
n,β = β−1[pη

n,β−p
η
n,0] is non-decreasing.

Turning to (iii), we have the identity

d

dβ

1

β
[pη

n,β + ln(2d)] = − 1

β2
[pη

n,β + ln(2d)] +
1

nβ
µη

n,β[Hn] =
1

nβ2
h(µη

n,β) ,

where h(µn) is the Boltzmann entropy of a probability measure on the n steps path space,

h(ν) :=
∑

ω

ν(ω) ln ν(ω) . (1.2.13)

Clearly, h(ν) ≤ 0 for all ν, which ends the proof.

Remark 1.2.4 In fact, the Boltzmann entropy is related to the relative entropy as defined in
the Appendix, Section 3.1: h(ν) is equal to the entropy H(ν|µ) of the probability ν with respect
to the uniform probability measure µ on the n steps path space, i.e., µ is the law of (ωi)i≤n

under P . Since h(ν) ≤ ln
(∑

ω ν(ω)2
)
, h(ν) is non-positive, and negative if ν is not a Dirac

mass.

Remark 1.2.5 At this point the reader wonders whether the strict inequality may hold in the
annealed bound (1.2.12) or not. In this remark, we answer with the positive, in the particular
case of the standard gaussian distribution N (0, 1) for η. In this case, λ(β) = β2/2, and
for all ω, Hn(ω) ∼ N (0, n). Recall the standard Gaussian tail estimate: if X has density
g(x) = (2π)−1/2 exp−x2/2,

x

1 + x2
g(x) ≤ P(X > x) ≤ 1

x
g(x) , x > 0 ,

– see (??)–. Then, we have for all a >
√

2 ln(2d),

∑

n≥1

Q
(
max

ω
Hn(ω) > na

)
≤

∑

n≥1

∑

ω:length n

Q (Hn(ω) > na)

≤
∑

n≥1

(2d)n
1

a
√
n

exp{−na2/2}

< ∞ .

By Borel-Cantelli’s lemma, we see that a.s.,

n−1 lnZη
n,β ≤ n−1βmax

ω
{Hn(ω)} ≤ βa

for n large enough. Hence,
p ≤ β

√
2 ln(2d) . (1.2.14)

Since this bound is of smaller order than λ(β) as β → ∞, we conclude that p(β) < λ(β) for β
large enough.
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We derive an upper bound, which is sharper than the annealed bound (1.2.12). Its relevance
is that it yields a sufficient condition for the strict inequality to hold in the annealed bound. It
improves on the argument in the Remark 1.2.5, being however less transparent than the above
argument. It is essentially of the same nature, in the sense that it does not take into account
the correlation structure of the random vector (Hn(ω))ω.

To simplify the notation, we introduce

γ(β) = βλ′(β) − λ(β), ϕ(β) =
λ(β) + ln(2d)

β
. (1.2.15)

Note that ϕ′(β) = (γ(β) − ln(2d))/β2 and that γ(β) is increasing in β ≥ 0. Moreover,

Q[pη
n,β + ln(2d)]

prop. 1.2.3 (iii)
= inf

m∈]0,1]

1

m
Q[pη

n,mβ + ln(2d)]

(1.2.11)

≤ β inf
m∈]0,1]

ϕ(mβ)

= β inf
β′∈]0,β]

ϕ(β′) , (1.2.16)

which is depicted in figure 1.2. This gives the bound (1.2.17) below. Now, the optimal m is

λ(β)

− ln 2d

ββ1
mβ

Figure 1.2: An upper bound.

equal to 1 if γ(β) ≤ ln(2d); In this case we recover the annealed bound. Assume there exists
β1 ∈ (0,∞) such that γ(β1) = ln(2d). When β > β1, the optimal m is such that mβ = β1 and
we find the bound

Qpη
n,β ≤ βϕ(β1) − ln(2d) < λ(β)

where the last inequality is strict by strict convexity of λ. We summarize the above discussion
in the next proposition.

Proposition 1.2.6 We have

p(β) ≤ inf
m∈]0,1]

λ(mβ) + ln(2d)

m
− ln(2d) . (1.2.17)

Hence, under Condition (T),

(T) : βλ′(β) − λ(β) > ln(2d) , (1.2.18)
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we have

p(β) < λ(β).

More precisely, if there exists a positive root β1 to the equation βλ′(β) = ln(2d) + λ(β), then
for all β > β1 it holds

p(β) ≤ β

β1

[
λ(β1) + ln(2d)

]
− ln(2d) < λ(β) . (1.2.19)

Example 1.2.7 We consider again the Gaussian case, η(i, x) ∼ N (0, 1). We easily compute
β1 =

√
2 ln(2d), we check that the bound in (1.2.19) is equal to β

√
2 ln(2d) − ln(2d), and

therefore is strictly smaller than the one from (1.2.14).

We now look for conditions ensuring p(β) < λ(β) for large β, in terms of the marginal
distribution of q of η.

Corollary 1.2.8 Set q(dh) = Q(η(x, n) ∈ dh) and s = sup supp[q]. If q({s}) < 1
2d , then, there

exists β1 ∈ (0,∞) such that p(β) < λ(β) for β > β1.

✷ exercise

Remark 1.2.9 Lower bounds are less useful. We can use the formula as a supremum from
theorem 1.2.1, and the simplest application leads to

p(β) ≥ Qp1(β) = Q lnP [exp{βη(1, ω1)}]

which is already better than using Jensen inequality

p(β) ≥ lnP [exp{βQη(1, ω1)}] = βQη(1, ω1).

But all these bounds correspond to local optimization in comparison with the polymer measure
which is in fact highly non local.

1.2.3 Monotonicity and phase diagram

The function p being convex, its left and right derivatives p′g(β), p′d(β), are non-decreasing. The
function λ is increasing. Their difference has a nice monotonicity property.

Proposition 1.2.10 The functions β 7→ λ(β)−Qpη
n,β and β 7→ λ(β)−p(β) are non-decreasing

on R
+.

✷ With ζn = exp βHn, it is straightforward to check

∂

∂β
Q lnZη

n,β = Q
∂

∂β
lnZη

n,β

= Q[(Zη
n,β)−1 ∂

∂β
Zη

n,β]

= P
[
Q[(Zη

n,β)−1Hnζn]
]

At this point, we will use the fact that independent variables are positively associated, and
satisfy the Harris-FKG inequality given in the appendix.
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For any fixed path ω, the probability measure ζne
−nλ(β)dQ is product, and therefore the

family η satisfies the FKG inequality. Note that the function Hn is increasing in η, while
(Zη

n,β)−1 is a decreasing for β ≥ 0. We apply Proposition 3.4.2 for fixed ω, and we find

Q[(Zη
n,β)−1Hnζn] ≤ e−nλ(β)Q[(Zη

n,β)−1ζn] ×Q[Hnζn]

= Q[(Zη
n,β)−1ζn] × nλ′(β)

using that

Q[η(t, x)eβη(t,x)] = λ′(β)eλ(β . (1.2.20)

Integrating with respect to P , we get

∂

∂β
Q lnZη

n,β ≤ nλ′(β)P
[
Q[(Zη

n,β)−1ζn]
]

= nλ′(β)Q
[
(Zη

n,β)−1P [ζn]
]

= nλ′(β)

which yields the desired result, since pη
n,β and λ are both equal to zero when β = 0.

Theorem 1.2.11 (Critical temperature) There exists βc = βc(Q, d) ∈ [0,∞] such that

{
p(β) = λ(β) if β ≤ βc,
p(β) < λ(β) if β > βc

(1.2.21)

✷ This is a direct consequence of Proposition 1.2.10

We call high temperature region (or low β region) the set of β’s such that p = λ, and the
low temperature region (or large β region) the set of β’s such that p < λ. One expects that
the polymer measure has completely different behavior in these two regions. If both have a
nonempty interior, the function p is nonanalytic at β = βc. (Indeed, it is given by p(β) = λ(β)
for β ∈ [0, βc], which analytic continuation on R is λ(β), under the assumption (1.1.1).) The
value βc is called critical.

Remark 1.2.12 (i) We have trivially p(0) = 0 = λ(0), showing that β = 0 is in the low
temperature region.
(ii) We have seen sufficient conditions for βc <∞, e.g., condition (T) in (1.2.18).
(iii) Theorem 1.2.11 implies the absence of reentrant phase transition in the phase diagram of
the model. Of course, in complete generality, we may have βc = 0 or ∞, i.e., absence of one of
the two regimes in the interval (0,∞).
(iii) For more information on FKG inequality, see [48, p.77–83].

1.3 The martingale approach

Martingale theory is a powerful tool to study random sequences. In this section, we start to
use in our context. Firs of all, it is efficient for proving that equality can hold in (1.2.12).
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1.3.1 Weak disorder versus strong disorder

Classical considerations from thermodynamics and common sense made us consider lnZη
n,β, a

rather difficult quantity to study directly since we cannot even compute its expectation! It is
far easier to consider the partition function Zη

n,β itself, for which we easily see that QZη
n,β =

exp(nλ). All through, we will consider the normalized partition function, defined by

Wn = Zη
n,β exp(nλ(β)) , n ≥ 1. (1.3.22)

This variable has expectation 1, which explains why we call it “normalized”. To keep notations
simple, we drop the subscripts n, β, and the superscript η.

Fix a path ω of the simple random walk. Then, the sequence (Hk(ω))k is the sum of inde-
pendent identically distributed real random variables on (Ωη,G, Q) – the randomness coming
from the environment –, it is itself a random walk. The corresponding exponential martingale
is

ζ̄n = ζ̄n(ω) = exp
(
βHn(ω) − nλ(β)

)
, (1.3.23)

for β ∈ R: this is a positive, mean 1 martingale on (G,G, Q), with respect to the filtration
(Gn)n, where

Gn = σ{η(j, x) ; j ≤ n, x ∈ Z
d} ,

This holds for all path ω. By making a linear combination of those martingales indexed by ω,
we will get another martingale. In particular,

Wn = P (ζ̄n) is a positive martingale.

This is much stronger a property than Q[Wn] = 1, and it will make the sequence Zη
n,β much

easier to study than lnZη
n,β itself, a fact which was used first by Bolthausen in [7].

By Doob’s martingale convergence theorem [70](corollary 11.7), the limit W∞ exists Q-a.s.,
and is non-negative.

It is easy to see that the event {W∞ = 0} is measurable with respect to the tail σ-field

T =
⋂

n≥1

Tn , Tn = σ{η(j, x) ; j ≥ n, x ∈ Z
d} .

Indeed, we can write

Wn+m = P [ζ̄nZ
θn,Snη
m,β e−mλ(β)] ,

= P
[
ζ̄n × lim

m→∞
(Z

θn,Snη
m,β e−mλ(β))

]
(finite sum)

= Zη
n,β ×

∑

x∈Zd

µη
n,β(Sn = x) lim

m→∞
(Z

θn,xη
m,β e−mλ(β)) .

For all n, by strict positivity of ζ̄n, the event under consideration is equal to

{W∞ = 0} =
{

lim
m→∞

Z
θn,xη
m,β e−mλ(β) = 0 ; x ∈ Z

d, P (Sn = x) > 0
}
.

We conclude that {W∞ = 0} ∈ Tn, and then {W∞ = 0} ∈ T . By Kolmogorov’s zero-one law
[26], every event in the tail σ-field T has probability 0 or 1. Summarizing all this, we can state
the following.
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Theorem 1.3.1 The limit

W∞ = lim
nր∞

Wn (1.3.24)

exists Q-a.s. Moreover, there are only two possibilities for the positivity of the limit;

Q{W∞ > 0} = 1 , (1.3.25)

or

Q{W∞ = 0} = 1 . (1.3.26)

The above contrasting situations (1.3.25) and (1.3.26) will be called the weak disorder
phase and the strong disorder phase, respectively. Again, observe that, for β = 0, Wn = 1
for all n, so that weak disorder takes place.

We will see later that the polymer is diffusive in the regime (1.3.25), as well as other
consequences.

Remark 1.3.2 (i) It is an interesting question to find a characterization of (1.3.25) (or (1.3.26))
in terms of the distribution of η(n, x). It will be addressed in section 1.4.1 below.

(ii)The question of whether the positive martingale Wn vanishes or not as n → ∞, has
somewhat similar flavor to some other topics in the probability theory such as Kakutani’s
dichotomy for infinite product measure (e.g.,[26, page 244]), nontriviality of the limit of the
normalized Galton-Watson process [3] and of multiplicative chaos [37].

(iii) It is not difficult to see that

W∞ > 0 =⇒ p(β) = λ(β) . (1.3.27)

Indeed, we have a.s.

p(β) = lim
n→∞

n−1 lnZη
n,β = λ(β) + lim

n→∞
n−1 lnWn ,

where limn→∞ lnWn = lnW∞ is finite if W∞ > 0.

(iv) Except for β = 0, the random variable W∞ is not T -measurable in the weak disorder
phase. To see this, observe that it has to depend in a significant manner of η(1, x) with x
nearest neighbor of the origin.

Proposition 1.3.3 There exists β̄c = β̄c(Q, d) ∈ [0,∞] such that

{
W∞ > 0 a.s. if β ∈ {0} ∪ (0, β̄c),
W∞ = 0 a.s. if β > β̄c

(1.3.28)

Remarks analogous to 1.2.12 can be formulated here.

✷ Let δ ∈ (0, 1) arbitrary. Since QWn = 1, the sequence (W δ
n)n is uniformly integrable. In

addition to a.s. convergence, this imply that

lim
n→∞

QW δ
n = QW δ

∞ ,

which is either 0 in the strong disorder case, or strictly positive in the weak disorder case. We
claim that

β 7→ QW δ
n is non − increasing on R+ . (1.3.29)
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This will imply that QW δ
∞ also is non-increasing on the positive half-line. Then, we obtain the

proposition by putting β̄c = inf{β ≥ 0 : QW δ
∞ = 0} (with the convention inf ∅ = +∞). It only

remains to prove (1.3.29). We have

d

dβ
Q[W δ

n ] = Q

[
d

dβ
W δ

n

]

= δQ
[
W δ−1

n P{(Hn − nλ′)ζ̄n}
]

= δP
[
Q
{
ζ̄nW

δ−1
n (Hn − nλ′)

}]

≤ δP
[
Q
{
ζ̄nW

δ−1
n

}
Q
{
ζ̄n(Hn − nλ′)

}]
(by FKG)

= 0 (by 1.2.20)

The FKG inequality from Proposition 3.4.2 was applied above to the product measure ζ̄ndQ
for fixed ω, and to the decreasing function W δ−1

n of η and the non-decreasing one Hn − nλ′.

Open problem: Is βc = β̄c ? The inequality βc ≥ β̄c holds trivially. Does (1.3.26) in a
neighborhood of β0 implies p(β) < λ(β) in a neighborhood of β0 ? In other words, do we have
a reciproque to Remark 1.3.2, (iii) ? We will see in Theorem 1.5.6 that the answer is yes when
d = 1, and when d = 2 in [Lacoin]. But this will come out by finding explicitely the set of β’s
such that W∞ = 0, and the set of β’s such that p(β) < λ(β). The question is open in dimension
d ≥ 3.

1.3.2 The second moment method and the L2 region

In this section, we show how to prove that weak disorder holds for some values of the parameters
d and β. The proof will be based on a second moment computation. The second moment of
the normalized partition function can be written explicitly in terms of the expectation of a
function of two independent copies of the random walk, the function being the exponent of the
number of intersections between the walks.

We first recall the following fact about the return probability πd for the simple random
walk,

πd
def.
= P{Sn = 0 for some n ≥ 1} is

{
= 1 if d ≤ 2,
< 1 if d ≥ 3.

(1.3.30)

More precisely, it is known that πd+1 < πd for all d ≥ 3 (e.g., [59, Lemma 1]) and that
π3 = 0.3405... [66, page 103]. In particular, πd ≤ 0.3405... for all d ≥ 3.

Theorem 1.3.4 [7] Suppose that d ≥ 3 (hence πd < 1) and that condition (L2) holds:

(L2) γ1(β)
def.
= λ(2β) − 2λ(β) < ln(1/πd). (1.3.31)

Then, W∞ > 0 a.s.

Note first that γ1(β) is continuous with γ1(0) = 0, so that, for d ≥ 3, the condition (L2) does
hold if β is small, whatever the distribution of the environment is. More precisely, since λ is
increasing, γ′1(β) = 2[λ′(2β) − λ′(β)] is positive for β ≥ 0, and so γ1(β) is increasing on R

+;
similarly, it is decreasing on R

−. Hence, for d ≥ 3, the condition (L2) is equivalent to β in
some open interval around 0. In particular, p = λ holds for β in this interval.

✷ Proof of Theorem 1.3.4. We compute the L2-norm of the martingale Wn. To do so, we
consider on the product space (Ω2,F⊗2), the probability measure P⊗2 = P⊗2(dω, dω̃), that
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we will view as the distribution of the couple (S, S̃) with S̃ = (S̃k)k≥0 an independent copy of
S = (Sk)k≥0.

Q[W 2
n ] = Q

[
P⊗2

n∏

t=1

eβ[η(t,St)+η(t,S̃t)]−2λ(β)

]

= P⊗2

[
n∏

t=1

(
eλ(2β)−2λ(β)1St=S̃t

+ 1St 6=S̃t

)]

= P⊗2
[
eγ1(β)Nn

]
,

with Nn the number of intersections of the paths S, S̃ up to time n,

Nn = Nn(S, S̃) =

n∑

t=1

1St=S̃t
(1.3.32)

As n → ∞, Nn ր N∞, and by monotone convergence Q[W 2
n ] ր P⊗2

[
eγ1(β)N∞

]
. It is easy to

see that N∞ is the number of visit to 0 of the simple random walk starting from 0. Hence, N∞
is geometrically distributed with success probability πd, and

sup
n
Q[W 2

n ] <∞ ⇐⇒ γ1 + lnπd < 0 ,

i.e., iff (1.3.31) is fulfiled. Then, the martingale Wn is bounded in L2, and by a classical
convergence result [70], it converges in L2 to a limit, which is necessarily equal to W∞. So
QW∞ = limnQWn = 1, which excludes the possibility that the limit vanishes in theorem 1.3.1.

Remark 1.3.5 Finer sufficient conditions for weak disorder, improving on (1.3.31), were ob-
tained: [4] making use of size-biasing; [9] by a comparison of environment entropy and lattice
entropy, following the approach of [28].

Corollary 1.3.6 Assume the η is bounded, and let s = sup supp[q] < +∞, with q(dh) =
Q(η(x, n) ∈ dh) the law of η. If q((−∞, s)) < 1 − 1

πd
, then, the condition (L2) (1.3.31) holds

for all β ≥ 0.

✷ In view of Theorem 1.3.4, it is enough to show that

γ1(β)
βր∞−→

{
∞, if s = ∞
− ln q({s}) if s <∞.

(1.3.33)

Interpolating λ(2β) and 2λ(β) by f(θ) = 21−θλ(2θβ), θ ∈ [0, 1], we have f ′(θ) = (21−θ ln 2)γ(2θβ)
with γ(β)=βλ′(β) − λ(β) as in the proof of Corollary 1.2.8, and then

γ1(β) = ln 2

∫ 1

0
21−θγ(2θβ)dθ . (1.3.34)

We know from the proof of Corollary 1.2.8 that

γ(β)
βր∞−→

{
∞, if s = ∞,
− ln q({s}) if s <∞.

This, together with (1.3.34), implies (1.3.33).
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Example 1.3.7 Gaussian environment. If η is standard gaussian N (0, 1), then γ1(β) = β2

and hence (1.3.31) holds if β <
√

ln(1/πd).

Example 1.3.8 Absence of strong disorder regime. Consider the case of Bernoulli environ-
ment, where η(t, x) = 1 or 0 with probability p and 1 − p respectively. By Corollary 1.3.6,
(1.3.31) holds for all β ≥ 0 if p > πd. Theorem 1.3.4 shows that, in this case, weak disorder
holds for all β ≥ 0.

We call L2 region, the set of parameters β such that (1.3.31) holds. In this region, the natural
martingale is bounded in L2, and it allows second moment computations. Therefore, a number
of results are known, we will see some in the next sections. As observed below Theorem
Theorem 1.3.4, the intersection of the L2 region with (0,+∞) is an interval (0, β1) with some
β1 ∈ [0,∞].

1.3.3 Diffusive behavior in L2 region

All through this section we assume that d ≥ 3, and that β belongs to the L2 region.

The next theorem states that, in this region, the random environment do not change the
transversal fluctuations of the polymer for large d and small enough β.

Theorem 1.3.9 [35, 7, 64]) Under the assumptions of Theorem 1.3.4, we have

lim
nր∞

µη
n,β[|Sn|2]/n = 1 Q-a.s. , (1.3.35)

and for all f ∈ C(Rd) with at most polynomial growth at infinity

lim
nր∞

µη
n,β

[
f
(
Sn/

√
n
)]

= (2π)−d/2

∫

Rd

f
(
x/

√
d
)

exp(−|x|2/2)dx, Q-a.s. (1.3.36)

In particular, with Z a d-dimensional gaussian vector Z ∼ Nd(0, d
−1Id), we have

µη
n,β

(
Sn√
n
∈ ·
)

−→ P(Z ∈ · ) Q− a.s.

Remark 1.3.10 The first rigorous proof of (1.3.35) was obtained by Imbrie and Spencer [35]
in the case of Bernoulli environment. The fact that the polymer is diffusive in some regime was
much of a surprise. Soon afterwards, a more transparent proof based on the martingale analysis
was given by Bolthausen [7]. The martingale proof was then extended to general environment
under condition (1.3.31) by Song and Zhou [64]. The diffusive behavior (1.3.35) follows from
(1.3.36) by choosing f(x) = |x|2. In [7], (1.3.36) is obtained for the Bernoulli environment
only. However, with the help of the observation made in [64], it is not difficult to extend the
central limit theorem to general environment under the assumption in Theorem 1.3.9. In [2]
Albeverio and Zhou proved, under the assumptions of Theorem 1.3.4, that under the polymer
measure µn, the path S satisfies the invariance principle for almost every realization of the
environment.

We will not prove theorem 1.3.9, but we rather give a elementary proof of (1.3.36), in a
weaker version with convergence in probability instead of almost sure. (The reader interested
in the full proof of Theorem 1.3.9 is refered to Bolthausen [7] and later taken up by Song and
Zhou [64]; the arguments are based on the L2 analysis of certain martingales on (Ωη,G, Q).)
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✷ Writing the gaussian law ν = Nd(0, d
−1Id), we will prove that for all bounded continuous

function g : R → R,

µn

[
g
(
n−1/2Sn

)]
→ ν(g) (1.3.37)

in Q-probability as n → ∞. We let νn(·) = P [n−1/2Sn ∈ ·]. By the central limit theorem,
νn → ν weakly as n→ ∞.

Q

(∣∣∣µn

[
g
(
n−1/2Sn

)]
− νn(g)

∣∣∣
2
W 2

n

)

= P 2Q
(
eβHn(S)+βHn(S̃)−2nλ

[
g
(
n−1/2Sn

)
− νn(g)

] [
g
(
n−1/2S̃n

)
− νn(g)

])

= P 2
(
eγ1Nn

[
g
(
n−1/2Sn

)
− νn(g)

] [
g
(
n−1/2S̃n

)
− νn(g)

])
(1.3.38)

We know that, under P 2, the r.v. Nn converges to N∞ a.s., and that n−1/2Sn – and similarly
n−1/2S̃n – converges to ν in law. Now, we claim that, under P 2, the triple

(Nn, n
−1/2Sn, n

−1/2S̃n)
law−→ (N,Z, Z̃) (1.3.39)

with (N,Z, Z̃) an independent triple where N has the same law as N∞, Z and Z̃ have the law
ν. The proof of this fact makes use of the observation that

sup
n≥m

P 2(Nn 6= Nm) → 0 as m→ ∞

since Nn ր N∞ < ∞ a.s. Fix m ≥ 1 and f, g, g̃ continuous and bounded. For all n ≥ m, we
write

P 2
[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2Sn

)]

= P 2
[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2Sn

)
1Nn=Nm

]
+ ε(n,m)

= P 2
[
f(Nm)g

(
n−1/2Sn

)
g̃
(
n−1/2Sn

)
1Nn=Nm

]
+ ε(n,m)

= P 2
[
f(Nm)g

(
n−1/2(Sn − Sm)

)
g̃
(
n−1/2(S̃n − S̃m)

)
1Nn=Nm

]
+ ε′(n,m)

= P 2
[
f(Nm)g

(
n−1/2(Sn − Sm)

)
g̃
(
n−1/2(Sn − Sm)

)]
+ ε”(n,m)

= P 2[f(Nm)] × P
[
g
(
n−1/2(Sn − Sm)

)]
× P

[
g̃
(
n−1/2(Sn − Sm)

)]
+ ε”(n,m) ,

which equalities define the terms ε(n,m), ε′(n,m), ε′′(n,m) on their first occurence. Here,

|ε(n,m)| ≤ ‖f‖∞‖g‖∞‖g̃‖∞P (Nn 6= Nm)

tends to 0 as m → ∞ uniformly in n ≥ m, ε′(n,m) − ε(n,m) → 0 as n → ∞ for all fixed
m, and supn≥m ε′′(n,m) → 0 as m → ∞. The last equality comes from independence in the

increments of the random walks, and of the two random walks S and S̃. Hence, letting n→ ∞
and then m→ ∞, we get

P 2
[
f(Nn)g

(
n−1/2Sn

)
g̃
(
n−1/2Sn

)]
→ P 2[f(N∞)] × ν[g] × ν[g̃]

which proves (1.3.39). Coming back to (1.3.38), and since P 2(eγNn) <∞ for some small enough
γ > γ1, (1.3.39) implies that

Q

(∣∣∣µn

[
g
(
n−1/2Sn

)]
− νn(g)

∣∣∣
2
W 2

n

)
→ P 2(eγ1N∞) [ν(g) − ν(g)]2 = 0

Since W−2
n converges to a finite limit, it is bounded in probability, so the previous limit yields

(1.3.37).
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1.4 The semimartingale approach

The next step in our martingale analysis is to consider lnWn as a semimartingale and to write
its Doob’s decomposition. Although this is quite natural, it was realized only recently. Viewed
as a “conditional second moment” method, this step is most a natural continuation of chapter
1.3.

1.4.1 Semimartingale decomposition and overlap

It is convenient to introduce some more notation. For a sequence (an)n≥0 (random or non-
random), we set ∆an = an − an−1 for n ≥ 1. Let us now recall Doob’s decomposition in this
context [70]: any (Gn)-adapted process X = {Xn}n≥0 ⊂ L1(Q) can be decomposed in a unique
way as

Xn = Mn(X) +An(X), n ≥ 1,

where M(X) is an (Gn)-martingale and

A0 = 0, ∆An = Q[∆Xn|Gn−1], n ≥ 1.

Mn(X) and An(X) are called respectively, the martingale part and compensator of the process
X. If X is a square integrable martingale, then the compensator An(X2) of the process
X2 = {(Xn)2}n≥0 ⊂ L1(Q) is denoted by 〈X 〉n and is given by the following formula:

∆〈X 〉n = Q[(∆Xn)2|Gn−1]

Here, we are interested in the Doob’s decomposition of Xn = − lnWn, whose martingale part
and the compensator will be denoted Mn and An respectively

− lnWn = Mn +An. (1.4.40)

To compute Mn and An, we introduce

Un = µη
n−1,β[eβη(n,ωn)−λ(β)] − 1 .

It is then clear that
Wn/Wn−1 = 1 + Un (1.4.41)

and hence that

∆An = −Q
[
ln(1 + Un)|Gn−1

]
, (1.4.42)

∆Mn = − ln(1 + Un) +Q
[
ln(1 + Un)|Gn−1

]
. (1.4.43)

A key role in the asymptotics of the model is played by the following random variables on
(Ωη,G, Q),

In =
∑

x∈Zd

µη
n−1,β{ωn = x}2 . (1.4.44)

We now mention to an interpretation of In. On the product space (Ω2
ω,F⊗2), we consider

the probability measure
µη⊗2

n,β = µη
n,β⊗µ

η
n,β(dω, dω̃) ,

that we will view as the distribution of the couple (ω, ω̃) with ω̃ = (ω̃k)k≥0 an independent
copy of ω = (ωk)k≥0 with law µn. We then have that

In = µη⊗2
n−1,β(ωn = ω̃n) . (1.4.45)
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Hence, the summation ∑

1≤k≤n

Ik (1.4.46)

is the expected amount of the overlap up to time n of two independent polymers in the same
(fixed) environment. This can be viewed as an analogue to the so-called replica overlap often
discussed in the context of disordered systems, e.g. mean field spin glass, and also of directed
polymers on trees [21].

The large time behavior of (1.4.46) and the normalized partition function Wn are related
as follows.

Theorem 1.4.1 Let β 6= 0. Then,

{W∞ = 0} =




∑

n≥1

In = ∞



 , Q-a.s. (1.4.47)

Moreover, if Q{W∞ = 0} = 1, there exist c1, c2 ∈ (0,∞) such that Q-a.s.,

c1
∑

1≤k≤n

Ik ≤ − lnWn ≤ c2
∑

1≤k≤n

Ik for large enough n’s. (1.4.48)

✷ Proof of Theorem 1.4.1: To conclude (1.4.47) and (1.4.48), it is enough to show the
following (1.4.49) and (1.4.50):

{W∞ = 0} ⊂




∑

n≥1

In = ∞



 , Q-a.s. (1.4.49)

There are c1, c2 ∈ (0,∞) such that



∑

n≥1

In = ∞



 ⊂ {(1.4.48) holds} , Q-a.s. (1.4.50)

In view of the second line in (1.4.42), and since the variance is bounded by the second
moment (conditionally on Gn−1),

∆〈M 〉n ≤ Q[ln2(1 + Un)|Gn−1]. (1.4.51)

We now claim that there is a constant c ∈ (0,∞) such that

1

c
In ≤ ∆An ≤ cIn, ∆〈M 〉n ≤ cIn. (1.4.52)

Indeed, both follow from (1.4.42), (1.4.51) and Lemma 1.4.2 below; {ei}, {αi} and Q in the
lemma play the roles of {eβη(n,z)−λ(β)}|z|1≤n, {µη

n−1,β(ωn = z)}|z|1≤n and Q[ · |Gn−1].
We now conclude (1.4.49) from (1.4.52) as follows (the equalities and the inclusions here

being understood as Q-a.s.):



∑

n≥1

In <∞



 ⊂ {A∞ <∞, 〈M 〉∞ <∞}

⊂ {A∞ <∞, lim
nր∞

Mn exists and is finite}

⊂ {W∞ > 0} .
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Here, on the second line, we have used a well-known property for martingales, e.g. [26, page
255, (4.9)]: a square integrable martingale converges a.s. on the event {〈M 〉∞ <∞}.

Finally we prove (1.4.50). By (1.4.52), it is enough to show that

{A∞ = ∞} ⊂
{

lim
nր∞

− lnWn

An
= 1

}
, Q-a.s. (1.4.53)

Thus, let us suppose that A∞ = ∞, and consider two cases. If 〈M 〉∞ <∞, then again by [26,
page 255, (4.9)], lim

nր∞
Mn exists and is finite and therefore (1.4.53) holds. If, on the contrary,

〈M 〉∞ = ∞, then we will use the law of large numbers for martingales, see [26, page 255,
(4.10)]: Mn/〈M 〉n → 0 a.s. on the event {〈M 〉n = ∞}. In this case we see that

− lnWn

An
=

Mn

〈M 〉n
〈M 〉n
An

+ 1 −→ 1 Q-a.s.

by (1.4.52). This completes the proof of Theorem 1.4.1. ✷

Lemma 1.4.2 Let ei, 1 ≤ i ≤ m be positive, non-constant i.i.d. random variables on a
probability space (H,G, Q) such that

Q[e1] = 1, Q[e31 + ln2 e1] <∞.

For {αi}1≤i≤m ⊂ [0,∞) such that
∑

1≤i≤m αi = 1, define a centered random variable U > −1
by U =

∑
1≤i≤m αiei − 1. Then, there exists a constant c ∈ (0,∞), independent of m and of

{αi}1≤i≤m, such that

1

c

∑

1≤i≤m

α2
i ≤ Q

[
U2

2 + U

]
, (1.4.54)

1

c

∑

1≤i≤m

α2
i ≤ −Q [ln(1 + U)] ≤ c

∑

1≤i≤m

α2
i , (1.4.55)

Q
[
ln2(1 + U)

]
≤ c

∑

1≤i≤m

α2
i . (1.4.56)

The readers are invited to try the proof of this lemma as an interesting exercise. A solution
can be found in [16]. Here, we prove it under the more restrictive assumption of bounded η’s.

✷ Proof of lemma 1.4.2, when |η(t, x)| ≤ K a.s. Then, for fixed β, Un stays in a fixed
interval I which is bounded away from −1 and +∞, and there exist constants C± ∈ (0,∞)
such that

u− C−u
2 ≤ ln(1 + u) ≤ u− C+u

2 , u ∈ I .
Recalling the first line of (1.4.42), we have by in one direction:

∆An = −QGn−1[ln(1 + Un)] ,

≤ −QGn−1[Un|] + C−Q
Gn−1 [U2

n] ,

= C−µ
η⊗2
n−1,βQ

Gn−1

[
(eβη(n,ωn)−λ(β) − 1)(eβη(n,ω̃n)−λ(β) − 1)

]

= C−
∑

x

µη⊗2
n−1,β(ωn = ω̃n = x)Q[(eβη(n,x)−λ(β) − 1)2]

= C−(eγ1(β) − 1)
∑

x

µη⊗2
n−1,β(ωn = ω̃n)

= Cst In .

Similarly, one gets the other direction ∆An ≥ Cst In, which proves (1.4.55). It is clear that
ln2(1 + u) ≤ Cu2 for u ∈ I with some constant finite C, which is enough to get (1.4.56).
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Corollary 1.4.3 Q-a.s.,

p(β) = lim
n→∞

1

n

n∑

t=1

QGt−1 lnµη
t−1,β[eβη(t,ωt)]

Observe that pη
n,β = (1/n)

∑n
t=1 ln(Zt/Zt−1), and recall that pη

n,β converge in L1 to a deter-
ministic limit. We have

p(β) = lim
n→∞

1

n

n∑

t=1

Q
[
lnµη

t−1,β[eβη(t,ωt)]
]

= a.s.− lim
n→∞

1

n

n∑

t=1

lnµη
t−1,β[eβη(t,ωt)] .

1.4.2 Weak disorder and diffusive regime

Remark: (L2 region) It is quite instructive to make a heuristic computation in the L2 region:

In =
∑

x

µη
n,β(ωn = x)2

≃
∑

x

[ W∞ ◦ θ←n,x]
2P [ωn = x]2

≃ Q[W 2
n ] ×

∑

x

P [ωn = x]2

= O(n−d/2) (1.4.57)

by arguing successively the local limit theorem, and the ergodic theorem. At a rigorous level,
only a slower polynomial decay has been so far achieved for In ((1.17) in [16]). In view of this
heuristic computation, a natural question is whether limnQW

2
n = ∞ implies that

∑
In = ∞

(and therefore W∞ = 0) ? The answer is no, as we have seen in Remark 1.3.5.

Observation: (weak disorder region). In the weak disorder region, it is not difficult to see
that the polymer measure is very similar to the simple random walk. Indeed, when W∞ > 0,
for any An ∈ Fn such that P (An) → 1 as n→ ∞, we have

µη
n,β(An) −→ 1 in Q− probability.

This follows from

µη
n,β(Ac

n) = W−1
n P (eβHn−nλ(β);Ac

n) −→W−1
∞ × 0 = 0

in Q-probability, since P (eβHn−nλ(β);Ac
n) → 0 in L1-norm.

This applies for instance to the set An = {|ωn| ∈ [an, bn]} with any positive sequences an, bn
such that an = o(n1/2), n1/2 = o(bn). This shows that the polymer does not spread out much
more than the simple random walk.

It is natural to expect that diffusive behavior takes place in the whole weak disorder region,
not only under the stronger assumption (1.3.31).

Theorem 1.4.4 [19] Assume d ≥ 3 and weak disorder (1.3.25). Then, for all bounded contin-
uous function F on the path space,

lim
n
µη

n,β[F (ω(n))] = EF (B)

in probability, where ω(n) is the rescaled path defined by ω(n) = (ωnt/
√
n)t≥0 and B is the

Brownian motion with diffusion matrix d−1Id. In particular, this holds for all β ∈ [0, βc).
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Exponents: Incidently, we see that that the scaling relation between exponents does hold
in the full weak disorder region, with ξ = 1/2 and χ = 0.

In the proof of theorem 1.4.4 convergence of the series
∑
In is used as a main technical

quantitative ingredient.

1.4.3 Localization and delocalization

We want to characterize the following phenomenom which can be observed experimentally or
numerically: For large β the polymer concentrates around the n-geodesics, i.e. the maximizers
of Hn. For instance we could try to study µη

n,β(ω ∈ Gn) for Gn a neighborhood of the set of the
n-geodesics. A difficulty is that little is known on the geodesics. For the case d = 1 the reader
can refer to Part ?? of [56]. We will also reduce our ambition in considering only the ending
point of the path. A simpler quantity is the random variable Jn, which is the probability of
the favourite site for the polymer at time n,

Jn = max
x∈Zd

µη
n−1,β{ωn = x} . (1.4.58)

Indeed, Jn is small when the measure is spread out – for instance if β = 0, Jn = O(n−d/2) –,
but Jn should be much larger when µη

n,β concentrates on a small number of paths (Jn ≤ 1).
The advantage is that we don’t need to know where is (are) located the favourite point(s) ! The
shift in the time index is harmless up to a constant factor, we could have taken in the definition
on In the maximum of µη

n−1,β{ωn−1 = x} without changing its essence, but the present one is
more natural.

In fact, Jn can be compared to In =
∑

x µ
η
n−1,β(ωn = x)2,

J2
n ≤ In ≤ Jn , (1.4.59)

as can be seen by keeping only the biggest term in the sum for the lower bound, and using that∑
x µ

η
n−1,β(ωn = x) = 1 for the upper bound. It follows that, In vanishes if and only if Jn does.

In view of the above discuccion, the following definition from [12], [16], is most natural:

Definition 1.4.5 We say that the polymer is localized if

lim inf
n→∞

1

n

n∑

t=1

Jt > 0, Q-a.s. (1.4.60)

and that the polymer is delocalized if

lim
n→∞

1

n

n∑

t=1

Jt = 0 Q-a.s. (1.4.61)

Roughly, delocalization and localization correspond to Jn vanishing or not as n→ ∞. The
following result shows that necessarily one of the two cases happens. But it is all the more a
criterion for localization and delocalization.

Theorem 1.4.6 (localization transition) Let β 6= 0. The polymer is

• localized if and only if p < λ ,

• delocalized if and only if p = λ .
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✷ In view of (1.4.59), Theorem 1.4.6 directly follows from Theorem 1.4.1 and (1.4.47).

Remark: From this and from (1.4.59), we observe that In and Jn have Cesaro limit of the
same nature. Either n−1

∑n
t=1 Jt and n−1

∑n
t=1 Jt have both a.s. positive limits (superior and

inferior), or they vanishes a.s. as n→ ∞.

At this point we recall well known facts [66] for the simple random walk, i.e. the behavior
of In and Jn in the case β = 0:

max
x∈Zd

P{ωn = x} = O(n−d/2) , (1.4.62)

P⊗2{ωn = ω̃n} = O(n−d/2) , (1.4.63)

as n ր ∞. The decay rate n−d/2 in (1.4.62) can be understood as the position of ωn being
roughly uniformly distributed over the euclidean ball in Z

d with radius const. ×√
n.

For β 6= 0 but in the weak disorder region, we first note from the convergence of
∑
In that

Jn → 0. In this region, can still prove (1.4.62) in some specific models – see e.g. see e.g.(1.4.57)
–, but, in general, only in a weaker form with a smaller exponent – see e.g. (1.17) in [16] –.
Anyway the picture remains similar, with the position ωn of the polymer being widely spread
out, or “delocalized”.

We summarize this in a table (α is some constant in (0, d/2]).

order of
∣∣ weak disorder strong disorder

magnitude
∣∣ β = 0 L2 p < λ

−−−− −−−− −−−− −−−− −−−− −−−− −−−−
In

∣∣ n−d/2 ≤ n−α → 0
∑
In = ∞ 1

Jn

∣∣ n−d/2 ≤ n−α/2 → 0
∑
Jn = ∞ 1

1.5 Low dimensions

Dimensions d = 1 and 2 are special, due to recurrence of the simple random walk – more
precisely, due to recurrence of the difference ωn − ω̃n under the the product measure P⊗2,
which enforce the interactions between the polymer and its environment. One of our main
results here is that strong disorder holds for all non-zero β in dimension 1 and 2.

Theorem 1.5.1 Assume d = 1 or d = 2. For all β 6= 0, W∞ = 0.

We first develop an approach based on overlap estimates. It will allow us for an elementary
proof of the theorem. In the second section, we develop a more sophisticated method to estimate
the fractional moments of the partition function. It will yield a more complicated proof of the
theorem, but it will give some quantitative estimates that will be crucial in the next section,
which shows that localization holds in dimension 1 for all non-zero β. (Note: The theorem
1.5.1 is due to Carmona and Hu [12] for gaussian environment, and to [16] in the general case.)
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1.5.1 Overlap estimates

Overlap estimate are based on the following elementary observation. For all z ∈ Z
d,

µη⊗2
t−1,β(ωt = ω̃t + z) =

∑

x

µη
t−1,β(ωt = x)µη

t−1,β(ωt = x+ z)

≤
(
∑

x

µη
t−1,β(ωt = x)2 ×

∑

x

µη
t−1,β(ωt = x+ z)2

)1/2

= µη⊗2
t−1,β(ωt = ω̃t)

= It

where the inequality is from Cauchy-Schwarz.

✷ First proof of theorem 1.5.1.
Dimension 1: We start with a simple computation which shows that, in dimension d = 1,

the series
∑
In diverge. Indeed,

1 =
∑

z:z=0[mod2],|z|≤2t

µη⊗2
t−1,β(ωt = ω̃t + z) ≤ (2t+ 1)It .

Hence, It ≥ 1/(2t+ 1) and
∑

t It = ∞, which shows that W∞ = 0 when d = 1. This is an easy
proof of the theorem when d = 1.

Dimension 2: We prove the theorem by contradiction. Assume that W∞ > 0 almost
surely. Consider on the path space the event

An = {|ω(1)
n | ≤ K

√
n lnn, |ω(2)

n | ≤ K
√
n lnn}

where the two coordinates of ωn are smaller in absolute value than K
√
n lnn. Let

Xn = P (eβHn−1−(n−1)λ(β);Ac
n) .

By Markov inequality, for large n,

Q

(
Xn ≥ e−

K2

4
ln n

)
≤ e

K2

4
lnnQ(Xn)

= e
K2

4
lnnP (Ac

n)

≤ 4e−
K2

4
ln n .

In the last line we have used Chernov’s bound (??) for the random walk in the following way:

P (±ω(1)
n > K

√
n lnn) ≤ exp{−nγ∗(K

√
n lnn)} ,

with γ∗ the convex dual of γ,

γ(u) := lnP (euω
(1)
n ) = ln

1 + coshu

2
≤ ln

1 + eu
2/2

2
≤ u2/2 ,

implying that γ∗(v) = supu(uv− γ(u)) ≥ v2/2. Taking K > 2, we get Xn → 0 Q-almost surely
by Borel Cantelli lemma. Then,

Yn := µη
n−1,β(Ac

n) −→ 0

W∞
= 0 Q− a.s..
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Hence, denoting by C(n,K) the cube C(n,K) = [−K
√
n lnn,K

√
n lnn]2,

(1 − Yn)2 =
∑

x,y∈C(n,K)

µη⊗2
n−1,β(ωn = x, ω̃n = y)

≤
∑

z∈C(n,2K)

µη⊗2
n−1,β(ωn = ω̃n + z)

≤ (4K
√
n lnn)2In

Therefore, Q-a.s., we have In ≥ 1/(17K2n lnn) ultimately, so
∑

n In = ∞, contradicting
W∞ > 0. This ends the proof.

1.5.2 Fractional moments estimates

We give another proof of theorem 1.5.1. We follow the strategy of proof of [16], which yields
additional information on the decay of Wn. This will be crucial in the sequel.

The proof is carried out by estimating fractional moment, and by using the following

Lemma 1.5.2 Suppose that there exist constants c ∈ (0,∞), θ ∈ (0, 1) and a sequence an ր ∞
such that

Q[W θ
n ] ≤ c exp(−an), n ≥ 1. (1.5.64)

Then Q{W∞ = 0} = 1. If moreover

∑

n≥1

exp(−δan) <∞ for some δ ∈ (0, 1),

then there exists c > 0 such that

lim
n→∞

1

an
lnWn ≤ −c Q− a.s. (1.5.65)

✷ Indeed, by Fatou’s lemma,

Q[W θ
∞] ≤ lim sup

n
Q[W θ

n ] = 0 ,

yielding the first statement. For the second one, use Markov inequality

Q(Wn ≥ exp{−ǫan}) ≤ c exp{−an(1 − ǫθ)}

with ǫ = θ−1(1 − δ), and apply the Borel-Cantelli lemma.

To prove Theorem 1.5.1, we will check (1.5.64) with

an =

{
c1n

1/3 if d = 1

c2
√

lnn if d = 2
(1.5.66)

where c1, c2 ∈ (0,∞) are some constants. In this respect, we first prove an auxiliary lemma.

Lemma 1.5.3 For θ ∈ [0, 1] and Λ ⊂ Z
d,

Q
[
W θ

n−1In

]
≥ 1

|Λ|Q
[
Zθ

n−1

]
− 2

|Λ|P (ωn 6∈ Λ)θ. (1.5.67)
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✷ Repeating the argument in [48, page 453], we see that

In ≥
∑

z∈Λ

µn−1(ωn = z)2

≥ 1

|Λ|µn−1(ωn ∈ Λ)2 (Cauchy − Schwarz)

=
1

|Λ| (1 − µn−1(ωn 6∈ Λ))2

≥ 1

|Λ| (1 − 2µn−1(ωn 6∈ Λ))

≥ 1

|Λ|
(
1 − 2µn−1(ωn 6∈ Λ)θ

)
(Convexity, θ ∈ (0, 1))

Note also that

Q
[
W θ

n−1µn−1(ωn 6∈ Λ)θ
]

≤ Q [Wn−1µn−1(ωn 6∈ Λ)]θ

= P (ωn 6∈ Λ)θ.

We therefore see that

Q
[
W θ

n−1In

]
≥ 1

|Λ|Q
[
W θ

n−1

]
− 2

|Λ|Q
[
W θ

n−1µn−1(ωn 6∈ Λ)θ
]

≥ 1

|Λ|Q
[
W θ

n−1

]
− 2

|Λ|P (ωn 6∈ Λ)θ.

✷ second proof of Theorem 1.5.1. Assume now that θ ∈ (0, 1), and define a function
f : (−1,∞) → [0,∞) by

f(u) = 1 + θu− (1 + u)θ.

It is then clear that there are constants c1, c2 ∈ (0,∞) such that

c1u
2

2 + u
≤ f(u) ≤ c2u

2 for all u ∈ (−1,∞). (1.5.68)

Using (1.4.41), (1.5.68) and (1.4.54) in this order, we see that

QGn−1∆(W θ
n) = W θ

n−1Q
Gn−1

(
(1 + Un)θ − 1

)

= −W θ
n−1Q

Gn−1f(Un)

≤ −c3W θ
n−1In.

We therefore have by (1.5.67) that

QW θ
n ≤

(
1 − c3

|Λ|

)
Q
[
W θ

n−1

]
+

2c3
|Λ|P (ωn 6∈ Λ)θ. (1.5.69)

Now, we proceed to the optimal choice for Λ, which will depend on the dimension.

• For d = 1, set Λ = (−n2/3, n2/3]. Then, by Cramer theorem,

P (ωn 6∈ Λ) = P
(∣∣∣

ωn

n1/2

∣∣∣ ≥ n1/6
)
≤ 2 exp(−n

1/3

2
),
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so that (1.5.69) reads,

QW θ
n ≤

(
1 − c3

2n2/3

)
Q
[
W θ

n−1

]
+ 4c3 exp(−n

1/3

2
). (1.5.70)

Now, one can conclude (1.5.64) with an = c1n
1/3, using Gronwall’s Lemma.

Lemma 1.5.4 Let u(t), t ≥ 0, be positive and absolutely continuous such that

u′(t) ≤ −b(t)u(t) + a(t)

with a, b measurable and locally bounded. Then, for B(t) =
∫ t
0 b(s)ds,

u(t) ≤ u(0)e−B(t) +

∫ t

0
a(s)eB(s)−B(t)ds (1.5.71)

(By assumption, (ueB)′ ≤ aeB , yielding by integration u(t)eB(t) − u(0) ≤
∫ t
0 a(s)e

B(s)ds.
This implies the result.)

In view of (1.5.70), we use Gronwall’s Lemma with piecewise constant functions b(t) =

c3/(2n
2/3) and a(t) = 4c3e

n1/3/2 for t ∈ (n− 1, n]. We easily check that each term in the
right-hand side of (1.5.71) is eventually bounded by exp−cn1/3 for some c > 0.

• For d = 2, we set

Λ = (−n1/2 ln1/4 n, n1/2 ln1/4 n]2

to get (1.5.64) with an = c2
√

lnn in a similar way as above.

For further use, we keep in mind the above estimate, although that the exponent is not
optimal, as we will see in Theorem 1.5.6.

Lemma 1.5.5 Assume d = 1 and β 6= 0. Then,

QW θ
n ≤ c4e

−c5n1/3
for d = 1. (1.5.72)

1.5.3 Localization in dimension 1

The next result shows that, in dimension d = 1, the polymer is always localized.

Theorem 1.5.6 Assume the dimension is d = 1.

βc = 0

Equivalently, for all non degenerate Q and all β 6= 0, p(β) < λ(β).

In this section we use the notation of section 1.3. In addition to (1.3.22) we introduce the
notation (k < n, x, y ∈ Z

d),

W x
k,n(y) = P x

(
exp{β

n−k∑

j=1

η(k + j, ωj) − (n− k)λ(β)}1ωn−k=y

)
, (1.5.73)
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with P x the law of the simple random walk starting from x at time 0. In the sequel, Wn(x)
will stand for W 0

0,n(x). The Markov property of the simple random walk yields

Wn =
∑

x,y∈Zd

Wk(x)W
x
k,n(y). (1.5.74)

We start with a lemma.

Lemma 1.5.7 In any dimension d ≥ 1 we have the following inequality

p(β) − λ(β) ≤ inf
m≥1,θ∈(0,1]

1

mθ
lnQ

∑

x

Wm(x)θ . (1.5.75)

Remark: Observe that for m = 1, one recovers the bound (1.2.16): since

QW1(x)
θ = (2d)−1 exp{λ(θβ) − θλ(β)} ,

the right-hand side of (1.5.75) with m = 1 is equal to

inf
θ∈(0,1]

1

θ
[(1 − θ) ln(2d) + λ(θβ) − θλ(β)] = inf

θ∈(0,1]

ln(2d) + λ(θβ)

θ
− λ(β) − ln(2d) ,

and we recover (1.2.16). Hence, the lemma improves on this upper bound we found in section
1.2.2.

✷ Let θ ∈ (0, 1) and m be a positive integer. By using the subadditive estimate

∀u, v > 0, (u+ v)θ < uθ + vθ, (1.5.76)

we have for all n ≥ 1,

Q
1

n
lnWnm = Q

1

θn
lnW θ

nm

(1.5.74)
= Q

1

θn
ln

(
∑

x1,...,xn

Wm(x1) . . . W
xn−1

(n−1)m,nm(xn)

)θ

(1.5.76)

≤ Q
1

θn
ln

∑

x1,...,xn

Wm(x1)
θ . . .W

xn−1

(n−1)m,nm(xn)θ

(Jensen)

≤ 1

θn
lnQ

∑

x1,...,xn

Wm(x1)
θ . . .W

xn−1

(n−1)m,nm(xn)θ

=
1

θn
ln

∑

x1,...,xn−1

Q
[
Wm(x1)

θ . . .W
xn−2

(n−2)m,nm(xn−1)
θ
]
Q
[∑

xn

W
xn−1

(n−1)m,nm(xn)θ
]

(stationarity)
=

1

θn
ln

(
Q
∑

x

Wm(x)θ

)n

=
1

θ
lnQ

∑

x

Wm(x)θ

The proof is complete by taking the limit as n → ∞ and then by taking the infimum over all
θ ∈]0, 1] and m ≥ 1.
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✷ Proof of Theorem 1.5.6: Let d = 1, θ ∈ (0, 1) and β > 0. By Lemma 1.5.5, there exists a
c(θ) > 0 such that

∀m ≥ 1 Q(W θ
m) ≤ e−c(θ)m

1
3 .

Let us fix an integer m ≥ 1 and define Lm to be the set of points visited by the simple random
walk at time m:

Lm
def
= {x ∈ Z

d;P (wm = x) > 0}.
Then,

Q(
∑

x∈Lm

(Wm(x))θ) ≤ | Lm | Q(W θ
m)

≤ | Lm | e−c(θ)m
1
3

−→ 0 , m→ ∞,

where we have used the fact that | Lm |= O(m). In particular, there exists m ≥ 1 such that

Q(
∑

x∈Lm

(Wm(x))θ) < 1.

We have lnQ(
∑

x∈Lm
(Wm(x))θ) < 0 and so by lemma 1.5.7 p(β) < 0.

Remark 1.5.8 (Case d = 2) Little was known in dimension 2 until recently. With computa-
tions similar to those in the cavity method in spin-glass models, Carmona and Hu [12] for a
gaussian environment, proved that, for all β 6= 0, there is a constant c ∈ (0,∞) such that

lim
nր∞

In ≥ c, Q-a.s. (1.5.77)

This was extended tothe general case, see [16, Proposition 1.4 (b)].
Lacoin proved recently that βc = 0 [45], hence the lim sup can be replaced with a lim inf in

the Cesaro sense.



Chapter 2

Oriented ρ-percolation

In this chapter we show how the directed polymer model relates to the oriented ρ-percolation
model. We will obtain estimates on the number of open paths in an ρ-percolation model in
dimension 1 + d, or, equivalenly, the number of ρ-open path in an oriented percolation model.

2.1 Model of ρ-percolation

We briefly introduce the model and outline our approach.

2.1.1 Orientation

Consider the graph N × Z
d, and fix some parameter p ∈ (0, 1). To each site of this graph

except the origin, assign a variable taking value 1 with probability p and 0 with probability
1 − p, independently of the other sites. An oriented (sometimes also called semi-oriented)
path of length n is a sequence (0, x0), (1, x1), (2, x2), . . . , (n, xn), where x0 = 0 and xi, xi+1 are
neighbours in Z

d, i = 0, . . . , n− 1: viewing the first coordinate as time, one can think of such
path as a path of the d-dimensional simple random walk. Fix another parameter ρ ∈ [0, 1];
the concept of ρ-percolation was introduced by Menshikov and Zuev in [53], as the occurence
of an infinite length path with asymptotic density of 1s larger of equal to ρ. As in classical
percolation [32], this event obeys a zero-one law [53], it has probability 1 or 0 according to p
larger or smaller than some critical threshold, which was later studied by Kesten and Su [41]
in the asymptotics of large dimension.

In the present chapter, we focus on paths of finite length n, in the limit n → ∞. An
oriented path of length n is called ρ-open, if the proportion of 1s in it is at least ρ. From
standard percolation theory [32] it is known that for large p there are 1-open oriented paths
with nonvanishing probability, and from [53] that for any p one can find ρ larger than p such
that, almost surely, there are ρ-open oriented paths for large n. in the literature. Here, we will
address the slightly different – but related – question of how many such paths of length n are
there in typical situation ?

We expect that the number of different ρ-open paths of length n behaves like enα(ρ)(1+o(1)) ,
for some deterministic exponent α(ρ), depending on p and d. We will prove this statement,
and also that the function α(·) is the negative convex conjugate of the free energy of directed
polymers in random environment. This will allow us to obtain, when d ≥ 3, the explicit
expression for α(ρ) in a certain range of values for ρ depending on the parameters p and d.
The reason for this remarkable fact is the existence of the weak-disorder region in the polymer
model (cf. Theorem 1.3.1), this reflects here into a parameter region where the number of paths
is of the same order as its expected value.

35
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At this point the reader may be tempted to use first and second moment methods to estimate
the number of paths, and this is performed in [42]. The first moment is easily computed, and
serves as an upper bound in complete generality. The second moment is more difficult to
analyse. However, it can be checked that in large dimension and for density close to the
parameter p of the Bernoulli, the ratio second-to-first-squared remains bounded in the limit of
an infinitely long path. This means that, under these circumstances, the upper bound gives
the right order of magnitude with a positive probability. However, (i) this method does not tell
us anything on α for general parameters, (ii) it fails to keep track of the correlation between
counts for different values of the density.

Our strategy is quite different. We will study the moment generating function of the number
of paths, which is not surprising in such a combinatorial problem. The point is that the moment
generating function is simply the partition function of the directed polymer in random, Bernoulli
environment. From the existence and known properties of the free energy, we will derive the
existence of α and its expression in thermodynamics terms.

Moreover, in a more restricted range of values for ρ, we even obtain an equivalent for the
number of paths which achieves exactly a given density of 1s. This is clearly a very sharp
estimate, that we obtain by using the power of complex analysis, and convergence of the
renormalized moment generating function in the sense of analytic functions. Certainly a naive
moments method cannot lead to such an equivalent.

2.1.2 The model

We start to define formally the model. Let η(t, x), t = 1, 2, . . . , x ∈ Z
d be a sequence of

independent identically distributed Bernoulli random variables, with common parameter p ∈
(0, 1), Q(η(t, x) = 1) = p = 1 −Q(η(t, x) = 0). We denote by (Ωη,G, Q) the probability space
where this sequence is defined. The vertex (t, x) is open if η(t, x) = 1 and closed in the opposite
case η(t, x) = 0. A nearest neighbour path ω in Z

d of length n (1 ≤ n ≤ ∞) is a sequence
ω = (ωt; t = 0, . . . , n), ωt ∈ Z

d, ω0 = 0, ‖ωt − ωt−1‖1 = 1 for t = 1, . . . , n. We denote by Pn the
set of such paths ω, and by P∞ the set of infinite length nearest neighbour paths. For ω ∈ Pn,
let

Hn(ω) =

n∑

t=1

η(t, ωt) (2.1.1)

be the number of open vertices along the path ω.
In oriented percolation, one is concerned with the event that there exists an infinite open

path ω, i.e.
Perc =

{
there exists ω ∈ P∞ : η(t, ωt) = 1 for all t ≥ 1

}
.

It is well known [27, 32] that there exists ~pc(d) ∈ (0, 1), called the critical percolation threshold,
such that

Q(Perc)

{
> 0 if p > ~pc(d),
= 0 if p < ~pc(d).

(2.1.2)

For ρ ∈ (p, 1], Menshikov and Zuev [53] introduced ρ-percolation as the event that there exists
an infinite path ω with asymptotic proportion at least ρ of open sites,

ρ-Perc =
{
there exists ω ∈ P∞ : lim inf

n→∞
Hn(ω)/n ≥ ρ

}
.

They showed that there also exists a threshold ~pc(ρ, d) such that (2.1.2) holds with ρ-Perc
instead of Perc. In fact, by tail triviality, the probability of ρ-Perc is equal to 0 or 1, the
former holding when p < ~pc(ρ, d) and the latter when p > ~pc(ρ, d). Very little has been proved
for ρ-percolation. The asymptotics of ~pc(ρ, d) for large d are obtained in [41] at first order,
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showing that d1/ρ~pc(ρ, d) has a limit as d→ ∞, and that the limit is different from the analogous
quantity for d-ary trees. As mentioned in this reference, the equality ~pc(1, d) = ~pc(d) follows
from Theorem 5 of [46].

In this paper we are interested in the number of oriented paths of length n which have
exactly k open vertices (k ∈ {0, . . . , n}),

Qn(k) = Card
{
ω ∈ Pn : Hn(ω) = k

}
(2.1.3)

(CardA denotes the cardinality of A) and the related quantity given, for ρ ∈ [0, 1], by

Rn(ρ) =

{
Card

{
ω ∈ Pn : Hn(ω) ≥ nρ

}
, ρ ≥ p,

Card
{
ω ∈ Pn : Hn(ω) ≤ nρ

}
, ρ < p.

(2.1.4)

Note that Qn(k), Rn(ρ) are random variables, that Rn(ρ) =
∑

k≥nρQn(k) when ρ ≥ p, and
that Perc =

⋂
n{Qn(n) ≥ 1} =

⋂
n{Rn(1) ≥ 1}. Since one expects that, typically, most paths

will have energy Hn close to np, Rn(ρ) represents the tails of the distribution Qn.

A word of warning: the reader will take a special care to distinguish the environmental
measure Q and the counts Qn(·), the Bernoulli percolation parameter p and the free energy p(β),
and finally, the partition function Zη

n,β of the polymer model and the unnormalized quantity Zn

defined below.

2.2 Rate of growth for the number of ρ-open paths

We start to relate these quantities to the model of directed polymers in random environment.
The generating function of Hn is defined by the first equality below, and the second one comes
from the definition (1.1.4) of the partition function:

Zn =
∑

ω∈Pn

exp{βHn(ω)} = (2d)nZη
n,β .

In chapter 1.2, we have seen that

φ(β) = lim
n→∞

1

n
Q lnZn = p(β) + ln(2d) (2.2.5)

exists in R, and that the event Ω0(β) defined by

Ω0(β) =
{

lim
n→∞

1

n
lnZn = φ(β)

}
(2.2.6)

has full measure, Q(Ω0(β)) = 1, see theorem 1.2.1. The function φ is a non-decreasing and
convex function of β. Consider the event Ω0 =

⋂
β∈Q Ω0(β): we have Q(Ω0) = 1, and observe,

for further purpose, that on this event the convergence (2.2.6) holds for all real number β by
convexity.

The Legendre conjugate

φ∗(ρ) = sup{βρ− φ(β);β ∈ R} , (2.2.7)

is a convex, lower semi-continuous function from [0, 1] to R∪{+∞}, such that φ∗(ρ) ≥ φ∗(p) =
− ln(2d). Legendre convex duality is better understood by taking a glance at the graphical
construction, e.g. figures 2.2.1 and 2.2.2 in [20]; here, on Figure 2.1 we illustrate how the
functions φ and φ∗ typically look in our situation.
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We now define two deterministic quantities,

ρ+ = lim
n→∞

max
ω∈Pn

Hn(ω)

n
, ρ− = lim

n→∞
min
ω∈Pn

Hn(ω)

n
, Q-a.s. (2.2.8)

which are called time constants in last passage percolation and first passage percolation prob-
lems. Their existence can be obtained by specifying a direction for the ending point ωn, which
allows using subadditive arguments [40], and then summing over the possible directions. We
give here a short, different proof for existence, which is in the spirit of this book. Since

exp{β max
ω∈Pn

Hn(ω)} ≤ Zn ≤ (2d)n exp{β max
ω∈Pn

Hn(ω)},

we have
1

nβ
lnZn − 1

β
ln(2d) ≤ max

ω∈Pn

Hn(ω)

n
≤ 1

nβ
lnZn .

Taking the limits n → ∞ and then β → +∞, we see that the quantity ρ+ from (2.2.8) is
well-defined as an a.s. limit and in L1, and is in fact equal to the slope

ρ+ = lim
β→+∞

φ(β)/β (2.2.9)

of the asymptotic direction of φ at +∞, which exists by convexity. In particular, ρ+ is deter-
ministic. Similarly, we have

ρ− = lim
β→−∞

φ(β)/β .

From standard properties of convex duality, the range of the derivative

(d/dβ)(1/n) lnZn(β)

converges almost surely to [ρ−, ρ+] in Hausdorff distance, and φ∗(ρ) < +∞ if and only if
ρ ∈ [ρ−, ρ+]. For such ρ, we have φ∗(ρ) ≤ 0.

Our first result is the existence of the rate of growth of Rn(ρ), together with the identification
of the rate.

Theorem 2.2.1 (Rate of growth) For all ρ ∈ [0, 1] with ρ 6= ρ+, ρ−, the following limit

α(ρ) = lim
n→∞

1

n
lnRn(ρ) (2.2.10)

exists Q-a.s. (possibly assuming the value −∞), and is given by

α(ρ) = −φ∗(ρ) .

Clearly, α is concave, with values in [0, ln(2d)] ∪ {−∞} and α(p) = ln(2d). On (ρ−, ρ+), the
functions α and φ∗ are finite, and they are infinite on (−∞, ρ−)∪ (ρ+,+∞). Note that, for all
ρ ∈ (ρ−, ρ+) and almost every η,

Rn(ρ) = expn[α(ρ) + o(1)] , as n→ ∞ ,

or, equivalently,

Rn(ρ)1/n −→ expα(ρ) , as n→ ∞ .
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β

ϕ

vu

slope = ̺+

slope = ̺−

ln(2d)

slope = p

0

0

̺− p ̺+

̺

ϕ∗

u v

− ln(2d)

Figure 2.1: The function φ and its Legendre transform φ∗
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Remark 2.2.2

By convexity the function α is continuous on (ρ−, ρ+). For now, it is not clear whether the
limit α(ρ+−0) = limρրρ+ α(ρ) should be equal to 0 in the case p ≤ ~pc(d), or should be positive
on the contrary. In the case p > ~pc(d), it is possible to show by subadditive arguments that,
conditionally on percolation, the limit α(1) in (2.2.10) exists and is positive, but it is not clear
whether α is continuous at 1.

Since η(t, x) are Bernoulli variables, we have QZn = exp{nλ̂(β)} with

λ̂(β) = λ(β) + ln(2d) , λ(β) = ln
[
1 + p(eβ − 1)

]
.

A direct computation shows that the Legendre conjugate λ̂∗(ρ) = sup{βρ − λ̂(β);β ∈ R} of λ̂
is equal to

λ̂∗(ρ) = − ln(2d) + ρ ln
ρ

p
+ (1 − ρ) ln

1 − ρ

1 − p
(2.2.11)

= ρ ln
ρ

2dp
+ (1 − ρ) ln

1 − ρ

2d(1 − p)
.

We now summarize what we know, from the results for the polymer model, on the growth rate
α and its relations with λ̂∗. (We recall that both functions depend on the Bernoulli parameter
p, but we don’t write explicitely the dependence.) Note that these two functions coincide at
ρ = p and take the value ln(2d).

Theorem 2.2.3 Let p ∈ (0, 1).

1. We have the annealed bound: For all ρ,

α(ρ) ≤ −λ̂∗(ρ) . (2.2.12)

2. The function α(ρ) + λ̂∗(ρ) is nonincreasing for ρ ∈ [p, ρ+) and is nondecreasing for
ρ ∈ (ρ−, p].

3. The set

V(p) = {ρ ∈ (0, 1) : α(ρ) = −λ̂∗(ρ)} (2.2.13)

is an interval containing p (here, “interval” is understood in broad sense, i.e., it can
reduce to the single point {p}).

4. In dimension d = 1 and d = 2, V(p) = {p}, i.e. the inequality in (2.2.12) is strict for all
ρ 6= p.

5. In dimension d ≥ 3, V(p) contains a neighborhood of p.

6. Let d ≥ 3, and πd be the probability for the d-dimensional simple random walk to ever
return to the starting point. When p > πd, then [p, 1) ⊂ V(p), so that the equality holds
in (2.2.12) for all ρ ∈ [p, 1). Similarly, when p < 1 − πd, then (0, p] ⊂ V(p), so that the
equality holds for all ρ ∈ (0, p].

7. If p < (1/2d), then supV(p) < 1. Similarly, if p > 1 − (1/2d), we have inf V(p) > 0.

✷ Proof of theorem 2.2.3.
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0 ̺
̺− ̺+ 1p

−λ̂∗

α

V(p)

Figure 2.2: Typical behaviour of the function α when d ≥ 3

1. By the annealed bound (1.2.11),

Q lnZn ≤ nλ̂(β) .

Then, φ(β) ≤ λ̂(β), which implies φ∗(ρ) ≥ λ̂∗(ρ) from the definition of Legendre trans-
form. The inequality now follows from α ≤ −φ∗.

2. Set φn(β) = n−1Q lnZn(β). From the monotonicity proposition 1.2.10 we have

λ̂′(β) ≥ φ′n(β)

for all β ≥ 0. Hence, for ρ ≥ p, the reciprocal functions are such that

(λ̂′)−1(ρ) ≤ (φ′n)−1(ρ) .

Since (λ̂′)−1 = (λ̂∗)′ and (φ′n)−1 = (φ∗n)′, we have

(λ̂∗)′(ρ) ≤ (φ∗)′(ρ)

for all ρ ≥ p where φ∗ is differentiable. Since α = −φ∗ for ρ 6= ρ+, this proves the first
half of the desired statement. The other half is similar.

3. From the monotonicity proposition 1.2.10, the “low temperature” region

W(p) = {β ∈ R : φ(β) = λ̂(β)}

is an interval containing 0. Let β ∈ W(p), and ρ = λ′(β) = λ̂′(β). From Theorem 2.3 (a)
in [16] it is known that β ∈ W(p) implies φ∗(ρ) ≤ 0. Then, the supremum defining λ̂∗(ρ)
is achieved at β, which implies the first equality in

−λ̂∗(ρ) = −[βρ− λ̂(β)] = −[βρ− φ(β)] = −φ∗(ρ) = α(ρ) ,

where the second equality holds for β ∈ W(p), the third one because of φ′(β) = λ̂′(β) = ρ,
and the last one because φ∗(ρ) ≤ 0.



42 fc

Let now β /∈ W(p), and ρ = λ′(β). Then,

−λ̂∗(ρ) = −[βρ− λ̂(β)] > −[βρ− φ(β)] ≥ −φ∗(ρ) ≥ α(ρ) .

Observe that λ′ is a diffeomorphism from R to (0, 1). From this we can identify the set
V(p) defined by (2.2.13),

V(p) = {λ′(β);β ∈ W(p)} , (2.2.14)

which is an interval containing p.

4. When d = 1, 2, it is known that W(p) = {0}, see theorem 1.5.6 [and Lacoin [45]]. Hence,
V(p) reduces to {p}.

5. When d ≥ 3, from celebrated results of Imbrie and Spencer [35], Bolthausen [7], it is
known that W(p) contains a neighborhood of 0. In view of (2.2.14), V(p) is in its turn a
neighborhood of p.

6. This is a consequence of [17, example 2.1.1], which shows for instance that, if p > πd,
then W(p) ⊃ R

+. Indeed, in view of (2.2.14), this implies that V(p) contains [p, 1), and
α is still equal to −λ̂∗ at ρ = 1 by upper semi-continuity of both functions. The case of
p < 1 − πd is similar.

7. This is a consequence of [17, example 2.2.1], which shows for instance that, if p < (1/2d),
then W(p) is bounded from above. The other case is similar.

We end with an interesting property of the rate α.

Theorem 2.2.4 The functions φ∗ and α are differentiable in the interior of their domains.

✷ Proof of Theorem 2.2.4: One can prove that φ is strictly convex. By a classical property of
Legendre duality, it implies the differentiability of φ∗.

2.3 Proof of the logarithmic asymptotics and large deviations for the energy

Recall the notation P for the simple random walk on Z
d starting from 0, and recall that

Zn = (2d)nZη
n,β. denote by νn = νη

n the law of (1/n)Hn under P : νn is the probability measure

on R which concentrates on n−1 × {0, 1, . . . , n}, given by νn({ρ}) := P (Hn(S) = nρ), is such
that

νn({ρ}) =
Qn(nρ)

(2d)n
if nρ ∈ {0, 1, . . . , n}. (2.3.15)

To prove Theorem 2.2.1, all what we need is an almost sure large deviation principle for
νn, see Proposition 2.3.1 below. Recall first the event Ω0 =

⋂
β∈Q Ω0(β) defined below (2.2.6),

where the convergence (2.2.6) holds for any real number β.

Proposition 2.3.1 The function

I(ρ) = ln(2d) + φ∗(ρ) ∈ [0, ln(2d)] ∪ {+∞}

is lower semi-continuous and convex on [0, 1]. Moreover, for all η ∈ Ω0 the sequence (νn, n ≥ 1)
obeys a large deviation principle with rate function I. That is,
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(i) for any closed F ⊂ [0, 1], we have

lim sup
n→∞

n−1 ln νn(F ) ≤ − inf
ρ∈F

I(ρ),

(ii) for any open (in the induced topology on [0, 1]) G ⊂ [0, 1], we have

lim inf
n→∞

n−1 ln νn(G) ≥ − inf
ρ∈G

I(ρ).

We first finish the proof of Theorem 2.2.1, and then prove the above proposition.

✷ Proof of Theorem 2.2.1. Assume that ρ ∈ [p, ρ+) and η ∈ Ω0. Applying (i) of Proposition
2.3.1 with F = [ρ, 1] and using (2.3.15) together with the fact that ρ ≥ p, we see that the
limit in (2.2.10) is not larger than ln(2d)− I(ρ) = α(ρ). Applying (ii) of Proposition 2.3.1 with
G = (ρ+ ε, 1] (ε > 0) and using the fact that ρ ≥ p, we see that the limit is at least α(ρ + ε).
Since ρ < ρ+, this quantity tends to α(ρ) as ε ց 0. This proves (2.2.10) for ρ ∈ [p, ρ+). The
case ρ ∈ (ρ−, p) is completely similar. Finally, when ρ > ρ+ (the case ρ < ρ− is similar) we
have I(ρ) = ∞ and then Rn(ρ) = 0 for large n, proving (2.2.10) in this case.

✷ Proof of Proposition 2.3.1. The properties of I are clear from the definition. Fix η ∈ Ω0. In
view of (2.2.5) and (2.2.6), the Laplace transforms of νn(·) = P (n−1Hn = ·) have logarithmic
asymptotics:

lim
n→∞

1

n
lnP (exp{βHn(S)}) = φ(β) − ln(2d)

for all real β. From the Gärtner-Ellis theorem (Theorem 2.3.6 in [20]), the full statement (i) in
Proposition 2.3.1 follows, and we obtain for open G ⊂ [0, 1] that

lim inf
n→∞

1

n
ln νn(G) ≥ − inf{I(ρ); ρ ∈ G ∩ E} , (2.3.16)

where

E =
{
ρ ∈ [0, 1] : ∃β ∀r 6= ρ, βρ− φ∗(ρ) > βr − φ∗(r)

}

is the set of exposed points of φ∗ from (2.2.7). Its complement is the set of all points ρ such
that φ∗ is linear in a neighborhood of ρ. We will improve (2.3.16) into (ii) of Proposition 2.3.1
with a subadditivity argument. We start by showing that φ is differentiable at 0 with that
φ′(0) = p. Indeed, using Jensen inequality twice, we have

1

n
lnP [eQβ(Hn−np)] ≤ Q

1

n
lnP [eβ(Hn−np)] ≤ 1

n
lnQP [eβ(Hn−np)]

Computing the extreme terms and taking the limit n→ ∞ for the middle one, we get

0 ≤ φ(β) − βp ≤ λ(β) − βp ,

which shows that φ′(0) = p since λ′(0) = p. This implies that p ∈ E and that E is a neigh-
borhood of p. Let ρ ∈ (ρ−, ρ+) ∩G be a non-exposed point of φ∗. For definiteness, we assume
ρ > p. Let

ρ1 = sup{ρ′ ∈ E ; ρ′ < ρ} , ρ2 = inf{ρ′ ∈ E ; ρ′ > ρ} .
Recall that φ is strictly convex. This implies that the function φ∗ cannot have a linear piece
that goes up to ρ+, cf. Figure 2.1. Then, p < ρ1 < ρ < ρ2 < ρ+, and ρ1, ρ2 ∈ E . Let γ ∈ (0, 1)
such that ρ = γρ1 + (1 − γ)ρ2. Since the interval (ρ1, ρ2) consists of non-exposed points, we
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have I(ρ) = γI(ρ1) + (1 − γ)I(ρ2). Since G is open and contains ρ, we can find ε > 0 and
k, ℓ ∈ N

∗ such that

|u− ρ1| < ε, |v − ρ2| < ε =⇒ ku+ ℓv

k + ℓ
∈ Gε

with Gε the set of r ∈ G at distance at least ε from the outside of G. The key fact is

Card
{
ω ∈ Pn(k+ℓ) :

Hn(k+ℓ)(ω)

n(k + ℓ)
∈ Gε

}

≥
∑

x∈Zd

Card
{
ω ∈ Pn(k+ℓ) :

Hnk(ω)

nk
∈ (ρ1 − ε, ρ1 + ε), Snk = x

}

× Card
{
ω ∈ Pn(k+ℓ) : Snk = x,

Hn(k+ℓ)(ω) −Hnk(ω)

nℓ
∈ (ρ2 − ε, ρ2 + ε)

}

≥ Card
{
ω ∈ Pn(k+ℓ) :

Hnk(ω)

nk
∈ (ρ1 − ε, ρ1 + ε)

}

× min
‖x‖1≤nk

Card
{
ω ∈ Pn(k+ℓ) : Snk = x,

Hn(k+ℓ)(ω) −Hnk(ω)

nℓ
∈ (ρ2 − ε, ρ2 + ε)

}

= Card
{
ω ∈ Pnk :

Hnk(ω)

nk
∈ (ρ1 − ε, ρ1 + ε)

}

× min
‖x‖1≤nk

Card
{
ω ∈ Pnℓ :

H
(nk,x)
nℓ (ω)

nℓ
∈ (ρ2 − ε, ρ2 + ε)

}

withH
(nk,x)
nℓ (ω) =

∑n
t=1 η(t+nk, ωt+x) the Hamiltonian in the time-space shifted environment.

Similarly, we denote by ν
(nk,x)
nℓ the measure ν

(nk,x)
nℓ (·) = P (H

(nk,x)
nℓ ∈ ·). The above display

implies that

lim inf
n→∞

1

n(k + ℓ)
ln νn(k+ℓ)(G

ε)

≥ k

k + ℓ
lim inf
n→∞

1

nk
ln νnk

(
(ρ1 − ε, ρ1 + ε)

)

+
ℓ

k + ℓ
lim inf
n→∞

1

nℓ
min
‖x‖1≤nk

ln ν
(nk,x)
nℓ

(
(ρ2 − ε, ρ2 + ε)

)

It is straightforward to check that

lim inf
n→∞

1

n(k + ℓ)
ln νn(k+ℓ)(G

ε) ≤ lim inf
n→∞

1

n
ln νn(G) ,

and it is not difficult to see that

lim inf
n→∞

1

nℓ
min
‖x‖1≤nk

ln ν
(nk,x)
nℓ

(
(ρ2 − ε, ρ2 + ε)

)
≥ −I(ρ2) , Q-a.s. (2.3.17)

We postpone the proof of (2.3.17) for the moment. Hence, the key inequality implies

lim inf
n→∞

1

n
ln νn(G) ≥ − k

k + ℓ
I(ρ1 + ε) − ℓ

k + ℓ
I(ρ2 + ε) ,

lim inf
n→∞

1

n
ln νn(G) ≥ −

[
γI(ρ1) + (1 − γ)I(ρ2)

]
= −I(ρ),
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letting εց 0 and k/(k + ℓ) → γ. This yields statement (ii) in Proposition 2.3.1.

Now, let us prove (2.3.17). By a standard concentration inequality (e.g., Theorem 4.2 in
[18]), we have

Q(| lnZn −Q lnZn| ≥ u) ≤ 2 exp
{
− u2

4β2n

}
.

Therefore we have, Q-a.s. as n→ ∞,

max
‖x‖1≤m≤n

∣∣∣
1

n
lnZ(m,x)

n (β) − φ(β)
∣∣∣→ 0 , β ∈ R ,

with Z
(m,x)
n the partition function associated to H

(m,x)
n . Since ρ2 is an exposed point for φ∗,

(2.3.17) follows from the Gärtner-Ellis theorem.

Let us comment on the above proof. We could improve (2.3.16) into the full lower bound
(ii) in Proposition 2.3.1 with a subadditivity argument, implying convexity of the rate function.
If we knew that (ρ−, ρ+) ⊂ E – or, equivalently, that φ is differentiable –, we could directly
conclude without this extra argument. We tried to prove it, but we could not. We state it as
a conjecture:

Conjecture 2.3.2 The functions p(β) and φ(β) are everywhere differentiable.

2.4 Sharp asymptotics

In some part of the parameter region – implying weak disorder –, we can improve on our
estimates.

2.4.1 An equivalent

We will obtain much sharper results for large dimension and ρ’s not too far from p. The reason
is that the partition function Zn behaves smoothly as nր ∞. The almost-sure limit

W∞(β) = lim
n→∞

Zn(β)e−nλ̂(β)

exists for all β, since the sequence is a positive (Gn)n-martingale, where Gn = σ{η(t, x); t ≤
n, x ∈ Z

d}. So, let us now concentrate on the case of large dimension, d ≥ 3. When β belongs to
some neighborhood of the origin (known as the weak disorder region), the limit W∞ is strictly
positive a.s. In a smaller neighborhood of the origin, the limit can be expressed as a (random)
perturbation series in L2 [65]. Moreover, the convergence holds in much stronger sense, namely,
in the sense of analytic functions [19]. We will use strong tools from complex analysis, as it is
classically done to obtain limit theorems for sums of random variables [?].

Theorem 2.4.1 Assume d ≥ 3. There exist a neighborhood U3 of p in R and an event Ω2 with
full probability such that for every sequence kn with kn/n → ρ ∈ U3 and all η ∈ Ω2,

Qn(kn) =

√
−α′′(ρ)

2πn
W∞(β(ρ)) exp

{
nα
(kn

n

)}
(1 + o(1))

where o(1) tends to 0 as n → ∞, and β(ρ) = ln (1−p)ρ
p(1−ρ) . The neighborhood U3 is contained

in V(p), hence we have α = −λ̂∗ with λ̂∗ given by (2.2.11).
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We note that the leading order is deterministic, but the prefactor is random (asW∞), depending
on the particular realization of the Bernoulli field. This theorem is a corollary of a more refined
result (Theorem 2.4.3), which can be found in Section 2.4. This will be proved by complex
analysis arguments, considering the Fourier transform of Hn under some (polymer) measure.
Fourier methods are quite strong, they are used in a different spirit in [6] to obtain sharp
results on the polymer path itself for small β. The disadvantage is that we have to restrict
the parameter domain. It would be tempting to use only real variable techniques as in the
Ornstein-Zernike theory for the Bernoulli bond percolation [10], but we take another, shorter
route.

Bibliographic note: The model is also interesting with real-valued η(t, x) with general dis-
tribution. This is motivated by first-passage time percolation. The results given here at the
exponential order, have been generalized in [11] to the case of variables with exponential mo-
ments. (The reader will find in this paper, a different, nice proof.) For the case of the Gaussian
law, we mention [44] on the so-called REM conjecture: it is proved that the local statistics of
(Hn(ω);ω ∈ Pn) approach that of a Poisson point process, provided that one focuses on values
distant from the mean QHn by at most o(n1−ε).

We can interpret our last result in this spirit. In our case, (Hn(ω);ω ∈ Pn) spreads on the
lattice, and natural local statistics of the energy levels are the ratios Qn(kn)/QQn(kn). For
d ≥ 3 and kn ∼ nρ ∈ U3,

Qn(kn)/QQn(kn) ≃W∞(β(ρ))

since QW∞(β) = 1. We emphasize that here the energy level kn is of order n (far from the bulk),
and that the limit is not universal but depends on the lattice and the law of the environment
η.

2.4.2 Analytic martingales

Assume d ≥ 3. Let U0 be the open set in the complex plane given by U0 = {β ∈ C : | Imβ| < π}.
Then, U0 is a neighborhood of the real axis, and λ(β) = logQ[exp{βη(t, x)}] is an analytic
function on U0. Define, for n ≥ 0 and β ∈ U0,

Wn(β) = P
[
exp

(
β

n∑

t=1

η(t, St) − nλ(β)
)]

. (2.4.18)

Then, for all β ∈ U0, the sequence (Wn(β), n ≥ 0) is a (Gn)n-martingale with complex values,
where Gn = σ{η(t, x); t ≤ n, x ∈ Z

d}. At the same time, for each n and η, Wn(β) is an analytic
function of β ∈ U0.

Define the real subset

U1 =
{
β ∈ R : λ(2β) − 2λ(β) < − lnπd

}
, (2.4.19)

which is an open interval (β−1 , β
+
1 ) containing 0 (−∞ ≤ β−1 < 0 < β+

1 ≤ +∞). The following
is established in [19]:

Proposition 2.4.2 Define U2 to be the connected component of the set
{
β ∈ U0 : λ(2Re β) − 2Reλ(β) < − lnπd

}

which contains the origin. Then, U2 is a complex neighborhood of U1. Furthermore, there exists
an event Ω1 with Q(Ω1) = 1 such that,

Wn(β) →W∞(β) as n→ ∞, for all η ∈ Ω1, β ∈ U2 ,
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where the convergence is locally uniform. In particular, the limit W∞(β) is holomorphic in U2,
and all derivatives of Wn converge locally uniformly to the corresponding ones of W∞. Finally,
W∞(β) > 0 for all β ∈ U1, Q-a.s.

For the sake of completeness we repeat the proof here.

Proof of Proposition 2.4.2: Since (ez) = ez and Q[f ] = Q[f ], we have λ(β) = λ(β), and

Q
[
|Wn(β)|2

]
= Q

[
P [exp{βHn(S) − nλ(β)}]P [exp{βHn(S̃) − nλ(β)}]

]

= P⊗2
[
Q
[
exp{βHn(S) + βHn(S̃) − 2nReλ(β)}

]]

= P⊗2
[
exp

{
[λ(2Re β) − 2Reλ(β)]

n∑

t=1

1{St = S̃t}
}]

≤ P⊗2
[
exp

{
[λ(2Re β) − 2Reλ(β)]

∞∑

t=1

1{St = S̃t}
}]

(2.4.20)

< ∞ (2.4.21)

if β ∈ U2. Indeed, the random variable
∑∞

t=1 1{St = S̃t} (which is the number of meetings
between two independent d-dimensional simple random walks) is geometrically distributed
with parameter πd.

For any real β ∈ U2, the positive martingale Wn(β) is bounded in L2, hence it converges
almost surely and in L2-norm to a non-negative limit W∞(β). Moreover, the event {W∞(β) =
0} is a tail event, so it has probability 0 or 1. Since QW∞(β) = 1, we have necessarily
W∞(β) > 0, Q-a.s.

We need a stronger convergence result. Fix a point β ∈ U2 and a radius r > 0 such that
the closed disk D(β, r) ⊂ U2. Choosing R > r such that D(β,R) ⊂ U2, we obtain by Cauchy’s
integral formula for all β′ ∈ D(β, r),

Wn(β′) =
1

2iπ

∫

∂D(β,R)

Wn(z)

z − β′
dz =

∫ 1

0

Wn(β +Re2iπu)Re2iπu

(β +Re2iπu) − β′
du ,

hence

Xn := sup{|Wn(β′)|;β′ ∈ D(β, r)} ≤ R

∫ 1

0

|Wn(β +Re2iπu)|
R− r

du .

Letting C = (R/(R − r))2, we obtain by the Schwarz inequality

(Q[Xn])2 ≤ CQ[

∫ 1

0
|Wn(β +Re2iπu)|2du]

≤ C sup{Q[|Wn(β′′)|2];n ≥ 1, β′′ ∈ D(β,R)}
< ∞

in view of (2.4.21). Notice now that Xn, a supremum of positive submartingales, is itself a
positive submartingale. Since supQ[Xn] < ∞, Xn converges Q-a.s. to a finite limit X∞.
Finally,

sup{|Wn(β′)|;β′ ∈ D(β, r), n ≥ 1} <∞ Q-a.s.,

and Wn is uniformly bounded on compact subsets of U2 on a set of environments of full
probability. On this set, (Wn, n ≥ 0) is a normal sequence [63] which has a unique limit on
the real axis: since U2 is connected, the full sequence converges to some limit W∞, which is
holomorphic on U2, and, as mentioned above, positive on the real axis.
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We do not know that W∞(β) 6= 0 for general β ∈ U2, only for β ∈ U1. Therefore, for all
η ∈ Ω1, we fix another complex neighborhood U3 of U1, included in U2 and depending on η,
such that W∞ and Wn (for n large) belongs to C \ R−. Recall that

Zn(β) = Wn(β) exp{nλ̂(β)} (2.4.22)

by definition.

It is sometimes convenient to consider, for real β, the β-tilted law

νn,β(k) = Zn(β)−1eβkQn(k) , k ∈ {0, 1, . . . , n} ,

which is a probability measure on the integers 0, 1, . . . , n. Its mean is equal to (d/dβ) lnZn(β),
and its variance is

Dn,β =
d2

dβ2
lnZn(β) . (2.4.23)

These quantities depend also on η, and Dn,β > 0 as soon as the Bernoulli configuration
(η(t, x), t ≤ n, ‖x‖1 ≤ n, ‖x‖1 = n mod 2) is not identically 0 or 1 on each “hyperplane” t = k,
k = 1, . . . , n. This happens eventually with probability 1, so we will not worry about degener-
acy of the variance Dn,β. By positivity of the variance, for all u in the range of (d/dβ) lnZn(·)
there exists unique β = βn(u) ∈ R such that

d

dβ
lnZn(βn(u)) = u . (2.4.24)

Observe that the function βn is itself random. Define for β ∈ R, k ∈ N,

In(k) = sup{βk − lnZn(β);β ∈ R} − n ln(2d) . (2.4.25)

(We will see in the proof of Theorem 2.4.1 below, that In(k) ∼ nI(k/n) with I as in Proposition
2.3.1.) For k in the range of (d/dβ) lnZn(·), we have

In(k) = βn(k)k − lnZn(βn(k)) − n ln(2d) . (2.4.26)

Recall (β−1 , β
+
1 ) defined in (2.4.19).

Theorem 2.4.3 There exist an event Ω2 with Q(Ω2) = 1 and a real neighborhood U4 of 0,
U4 ⊂ (β−1 , β

+
1 ), with the following property. Let kn ∈ {0, 1, . . . , n} be a sequence such that

βn(kn) remains in a compact subset K of U4, and let D̂n = Dn,βn(kn). Then, for all η ∈ Ω2,

Qn(kn) =
1√

2πD̂n

exp{−In(kn) + n ln(2d)} ×
(
1 + o(1)

)
,

where o(1) → 0 as n→ ∞.

Proof of Theorem 2.4.3. Suppose that β is a real number. Note that the Fourier transform of
the tilted measure is

n∑

k=0

eikuνn,β(k) =
Zn(β + iu)

Zn(β)
.

From the usual inversion formula for Fourier series we have

Qn(kn) = Zn(β)e−βkn × 1

2π

∫ π

−π

Zn(β + iu)

Zn(β)
e−iknu du .
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Taking β = βn(kn) and using (2.4.26) this becomes

Qn(kn) = e−In(kn)+n ln(2d) × 1

2π

∫ π

−π

Zn

(
βn(kn) + iu

)

Zn

(
βn(kn)

) e−iknu du . (2.4.27)

For the moment, K is any compact subset of (β−1 , β
+
1 ). From the Taylor expansion of Zn at

β = βn(kn) and (2.4.24), we have

logZn

(
βn(kn) + iu

)
= logZn

(
βn(kn)

)
+ iukn − u2

2
D̂n + Restn ,

where the remainder can be estimated by the Cauchy integral formula,

|Restn| ≤ |u|3δ−3
K max{| logZn(β′)|;β′ ∈ D(β′′, δK), β′′ ∈ K}

for all |u| ≤ δK , with δK > 0 equal to half of the distance from K to the complement of U3.
From Proposition 2.4.2 and the definition of U3, the above maximum is less that CKn for all
n ≥ 1, with CK random but finite and independent of n.

Moreover, in view of Proposition 2.4.2 and (2.4.22,2.4.23), we see that

D̂n = nλ′′(βn(kn)) +W ′′n (βn(kn)) (2.4.28)

is such that C ′Kn ≤ D̂n ≤ C ′′Kn for some positive constants C ′K , C
′′
K .

We split the integral in (2.4.27) according to |u| ≤ εn := (lnn/n)1/2 or not, and the first
contribution is

∫

|u|≤εn

Zn

(
βn(kn) + iu

)

Zn

(
βn(kn)

) e−iknu du

=

∫

|u|≤εn

exp
{
− u2

2
D̂n

}
du(1 + o(1))

=
1√
D̂n

∫

|u|≤εnD̂
1/2
n

exp
{
− u2

2

}
du(1 + o(1))

=
1√

2πD̂n

(1 + o(1)) (2.4.29)

since εnD̂
1/2
n → ∞ by (2.4.28).

Finally, to show that the other contribution is negligible, we need the following fact:

Lemma 2.4.4 There exist an event Ω3 with Q(Ω3) = 1, an integer random variable n0, a
neighborhood U5 of 0 in R, and κ > 0 such that n0(η) <∞ for η ∈ Ω3 and

∣∣∣
Zn(β + iu)

Zn(β)

∣∣∣ ≤ exp{−κnu2} + exp{−κn}

for η ∈ Ω3, β ∈ U5, u ∈ [−π, π], and n ≥ n0(η).

With the lemma to hand, for η, β, u as above, we bound

∫

εn<u≤π

Zn

(
βn(kn) + iu

)

Zn

(
βn(kn)

) e−iknu du = o
(
D̂−1/2

n

)
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where we have used n = O(D̂n) of (2.4.28). Combined with (2.4.29) and (2.4.27) this estimate
yields the proof of the theorem, with Ω2 = Ω1 ∩ Ω3, and U4 = U5 ∩ U3.

We turn to the proof of Lemma 2.4.4, which states that the distribution νn,β does not
concentrate on a sublattice of Z, and is not too close from such a distribution. In our proof we
take advantage of some (conditional) independance in the variables η(t, St) under νn,β. This is
reminiscent of a construction of [24] for central limit theorem and equivalence of ensembles for
Gibbs random fields.

Proof of Lemma 2.4.4: To simplify notations, for real β, we abreviate µn = µη
n,β the Gibbs

polymer measure, and write Eµn for its expectation. Introduce

I(x, y) = {z ∈ Z
d : ‖x− z‖1 = ‖z − y‖1 = 1} , x, y ∈ Z

d (2.4.30)

the set of lattice points which are next to both x and y, and the event

M(η, t, y, z) =
{

Card
{
η(t, x);x ∈ I(y, z)

}
= 2
}
.

The reason for introducing M(η, t, y, z) is that on this event, a path ω conditioned on ωt−1 =
y, ωt+1 = z, has the option to pick up a η(t, ωt) value that can be either 0 or 1, bringing
therefore some amount of randomness. This event plays a key role here. Note for further
purpose that

Q
(
M(η, t, y, z)

)
= 1 −

(
qCardI(y,z) + (1 − q)CardI(y,z)

)
=: q̄(y − z) . (2.4.31)

We have

∣∣∣
Z2n(β + iu)

Z2n(β)

∣∣∣ =
∣∣∣Eµ2ne

iuH2n

∣∣∣

=
∣∣∣Eµ2nEµ2n

[
eiuH2n

∣∣Σe
]∣∣∣

≤ Eµ2n

∣∣∣Eµ2n

[
eiuH2n

∣∣Σe
]∣∣∣

= Eµ2n

n∏

t=1

∣∣∣Eµ2n

[
eiuη(2t−1,S2t−1)

∣∣Σe
]∣∣∣

by conditional independence of Σ1,Σ3, . . . ,Σ2n−1 under µ2n given Σe = σ(Σ2k, k ≥ 0). Recall
the notation I from (2.4.30) and denote by

mℓ = Card
{
x ∈ I(S2t−2, S2t) : η(2t− 1, x) = ℓ

}
, ℓ = 0, 1, . . . ,

the number of sites which can be reached by the walk at time 2t− 1 and where η(·) equals to
0 and 1 respectively (m1 +m0 ≤ 2d). Then, for m0,m1 ≥ 1,

∣∣∣Eµ2n

[
eiuη(2t+1,S2t+1)

∣∣Σe
]∣∣∣ =

∣∣∣
m1e

β+iu +m0

m1eβ +m0

∣∣∣

≤ exp{−Cu2} , |u| ≤ π ,

where the constant C is uniform for β ∈ K, and 1 ≤ m0,m1 ≤ 2d. We obtain

∣∣∣Eµ2ne
iuH2n

∣∣∣ ≤ Eµ2n exp
{
− Cu2

n∑

t=1

1{M(η, 2t − 1,Σ2t−2,Σ2t)}
}
.
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So far our arguments do not require β to be small. From this point, we will use a perturbation
argument. Since µ2n = µη

2n,β is equal to P for β = 0, we study the term on the right-hand side
for the simple random walk measure P instead of the polymer measure µ2n, and estimate the
error from this change of measure. This procedure is rather weak, we believe that the result of
the lemma holds for a much larger range of β, but we we do not know how to control the term
in the right-hand side in a different way.

For ε > 0 we split the last expectation according to the sum being larger or smaller than
nε,

∣∣∣Eµ2ne
iuH2n

∣∣∣ ≤ e−Cεu2
+ µ2n

( n∑

t=1

1{M(η, 2t−1,Σ2t−2 ,Σ2t)} ≤ nε
)

≤ e−Cεu2
+ e2nβP

( n∑

t=1

1{M(η, 2t−1,Σ2t−2,Σ2t)} ≤ nε
)

(2.4.32)

by the obvious inequalities 0 ≤ H2n ≤ 2n. For γ ∈ (0, 1], note that

Q exp
{
− γ1{M(η, 2t − 1, S2t−2, S2t)}

}
= e−γq(S2t−2 − S2t)

+ [1 − q(S2t−2 − S2t)] ,

with q defined in (2.4.31). Then, there exists some C1 > 0 such that

sup
x:P (Σ2=x)>0,
‖x‖∞≤1

(
e−γq(x) + [1 − q(x)]

)
≤ exp{−C1γ} , γ ∈ (0, 1].

Hence,

QP exp
{
− γ

n∑

t=1

1{M(η, 2t − 1,Σ2t−2,Σ2t)}
}

= P exp
{
− C1γ

n∑

t=1

1{‖Σ2t−2 − Σ2t‖∞ ≤ 1}
}

=
(
P exp

{
− C1γ1{‖Σ2‖∞ ≤ 1}

})n

=
((2d − 1)e−C1γ + 1

2d

)n

≤ e−nC2γ

with C2 > 0. Now, we choose ε = C2/2, γ = 1, and we get

QP
( n∑

t=1

1{M(η, 2t − 1,Σ2t−2,Σ2t)} ≤ nε
)

≤ enγεQP exp
{
− γ

n∑

t=1

1{M(η, 2t − 1,Σ2t−2,Σ2t)}
}

≤ e−nC2/2 ,

and then

Q
(
P (

n∑

t=1

1{M(η, 2t−1,Σ2t−2 ,Σ2t)} ≤ nε) ≥ e−nC2/4
)
≤ e−nC2/4 .



52 fc

By Borel-Cantelli lemma, the set Ω3 of all environments such that

P
( n∑

t=1

1{M(η, 2t−1,Σ2t−2 ,Σ2t)} ≤ nε
)
≤ e−nC2/4 eventually,

is of full measure. We define n0 as the first integer (if exists) from which the previous bound is
fulfilled, and U5 = (−C2/4, C2/4). From (2.4.32) we easily check that Lemma 2.4.4 holds true
with κ = min(Cε,C2/2).

Proof of Theorem 2.4.1: The theorem is a corollary of Theorem 2.4.3, where Ω2 and U3 are
introduced. In particular we know that α = −η∗ in U3. Note that β(ρ) is the maximizer in
the definition of λ∗(ρ) as a Legendre transform. Since kn/n → ρ, we have that βn(kn) → β(ρ).
By (2.4.28), D̂n ∼ nλ′′(β(ρ)), and by Legendre duality,

(λ∗)′ ◦ λ′ = Id ,

and so λ′′(β(ρ)) = 1/(λ∗)′′(ρ). The only quantity left to be studied is In(kn). Combining
(2.4.25, 2.4.22) and performing the change of variable β = β(kn/n) + v, we have

In(kn) = sup{βkn − nλ̂(β) − lnWn(β);β ∈ R}
= sup

{
(β(kn/n) + v)kn − nλ̂(β(kn/n) + v)

− lnWn(β(kn/n) + v); v ∈ R

}

= sup
{
n
[
λ̂(β(kn/n)) − λ̂(β(kn/n) + v) + λ̂′(β(kn/n))v

]

− lnWn(β(kn/n) + v); v ∈ R

}
+ nλ̂∗(kn/n)

= nλ̂∗(kn/n) − lnWn(β(kn/n))

+ sup
{
n
[
λ̂(β(kn/n)) − λ̂(β(kn/n) + v) + λ̂′(β(kn/n))v

]

− lnWn(β(kn/n) + v) + lnWn(β(kn/n)); v ∈ R

}

= nλ̂∗(kn/n) − lnWn(β(kn/n)) + o(1)

= nλ̂∗(kn/n) − lnWn(β(ρ)) + o(1)

by strict convexity of λ̂ and the fact that | ln[Wn(β + v)/Wn(β)]| ≤ |v|.
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Appendix

3.1 Crash course on Gibbs measures

Let P(Ω) denote the set of probability measures on (Ω,A).

Definition 3.1.1 Let µ, ν ∈ P(Ω). The (relative) entropy 1 H(ν|µ) of ν with respect to µ is

H(ν|µ) =

{
ν(ln dν

dµ) if ν ≪ µ and ln dν
dµ ∈ L1(ν)

+∞ otherwise
(3.1.1)

In the first case above, we have dν
dµ ln dν

dµ ∈ L1(µ) and

H(ν|µ) = µ

(
Φ(
dν

dµ
)

)
, Φ(t) = t ln t, Φ(0) = 0.

The function Φ : [0,+∞) → R is strictly convex, with Φ′(t) = 1+ln t,Φ′′(t) = 1/t, t ∈ (0,+∞),
it is shown in figure 3.1.

We state some elementary properties.

Proposition 3.1.2 (i) H(ν|µ) ∈ [0,+∞] , and H(ν|µ) = 0 ⇐⇒ ν = µ
(ii) H(ν|µ) is a convex function of µ and a convex function of ν.

✷ (i) Without loss of generality, we can assume ν ≪ µ. By Jensen’s inequality,

H(ν|µ) = µ

(
Φ(
dν

dµ
)

)
≥ Φ

(
µ(
dν

dµ
)

)
= Φ (ν(Ω)) = Φ(1) = 0

By strict convexity, the equality holds if and only if dν
dµ is µ-a.s. constant, i.e., if and only if

µ = ν.
(ii) Let λ ∈ (0, 1), µ, µ′, ν, ν ′. Without loss of generality, we can assume ν ≪ µ, ν ≪ µ′ with
ν-integrability of logarithms of derivatives, and the same assumptions for ν ′. By convexity of
Φ,

H(λν + (1 − λ)ν ′|µ) = µ

(
Φ(λ

dν

dµ
+ (1 − λ)

dν ′

dµ
)

)

≤ µ

(
λΦ(

dν

dµ
) + (1 − λ)Φ(

dν ′

dµ
)

)

= λH(ν|µ) + (1 − λ)H(ν ′|µ)

1The relative entropy is also called Kullback or Kullback-Leibler information in statistics, and information
gain in information theory.
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Figure 3.1: The function Φ : x 7→ x lnx on [0,+∞). The minimum is achieved at x = e−1 and
is equal to −e−1. The tangent at x = 0 is vertical.

By concavity of the logarithm,

ln
dν

λdµ + (1 − λ)dµ′
= − ln

λdµ+ (1 − λ)dµ′

dν
≤ −λ ln

dµ

dν
− (1 − λ) ln

dµ′

dν

with dµ
dν = ( dν

dµ)−1.

Remark 3.1.3 The relative entropy H(µ|ν) is a popular method of measuring the similarity
between two probability distributions µ, ν. In spite of its properties 3.1.2, it is not a distance
because it is not symmetric and it does not satisfy the triangle inequality. To settle the first
issue, one may consider the symmetrized version

DKL(µ|ν) =
1

2

(
H(µ|ν) +H(ν|µ)

)
,

which is called the Kullback-Leibler divergence.

Relative entropy compares to distances between probability measures: Recall the total
variation norm of a finite, signed measure m on (Ω,A),

‖m‖TV = sup{m(f); f : A→ R measurable, ‖f‖∞ ≤ 1}.

Proposition 3.1.4 (Gibbs variational formula) For f : Ω → R measurable with µ(ef ) <
∞ and µ(|f |ef ) <∞,

lnµ(ef ) = sup{ν(f) −H(ν|µ); ν ∈ P(Ω), ν(|f |) <∞}
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This formula is an energy/entropy balance: it shows the competition between the energy gain
ν(f) and the entropy cost H(ν|µ).

✷ Let ν ≪ µ, and A be the event A = { dν
dµ > 0}. It holds

µ(ef ) ≥ µ(ef ; A)

= ν(ef × 1
dν
dµ

; A)

= ν(ef × 1
dν
dµ

)

= ν(exp{f − ln
dν

dµ
})

≥ exp{ν(f) − ν(ln
dν

dµ
)} (3.1.2)

by using Jensen’s inequality in (3.1.2). Hence, the left-hand side is not smaller than the right-
hand side. To show the equality, note that the equality is achieved with the probability measure
ν given by dν = ef/µ(ef )dµ:

ν(f) −H(ν|µ) =
µ(fef )

µ(ef )
− µ(ef [f − lnµ(ef )])

µ(ef )
= lnµ(ef ) (3.1.3)

Corollary 3.1.5 (Gibbs variational principle) The supremum in the Gibbs variational for-
mula 3.1.4 is unique and achieved for ν with dν = ef/µ(ef )dµ.

✷ What remains to prove is the uniqueness of the minimizer that we have found is (3.1.3).
To reach equality in Jensen’s inequality in (3.1.2), it is needed that f − ln dν

dµ is ν-a.s. constant.

Hence, any maximizer is of the form dν = Z−1efdµ, with Z = µ(ef ) since ν has mass 1.

Exercise 3.1.6 Prove Property 3.1.2 using the above variational formula.

Let f : Ω → R, some function, not µ-a.s. constant. Define, for β ∈ R,

θ(β) = lnµ(eβf ) ∈ (−∞,+∞] (3.1.4)

Then, θ : R → (−∞,+∞] is convex. Indeed, for λ ∈ (0, 1) and β, β′ ∈ R, we have, from Hölder
inequality with p = λ−1, q = (1 − λ)−1

exp θ[λβ + (1 − λ)β′] = µ(exp{λβf + (1 − λ)β′f})
≤ µ(exp βf)λ × µ(exp β′f)1−λ (Hölder)

= exp{θ[λβ] + θ[(1 − λ)β′]}

Hence, the domain Dom(θ) := {β ∈ R : θ(β) < +∞} is an interval containing 0. The function
θ is the logarithmic Laplace transform of the random variable f . In statistical mechanics, Ω is
the the set of all configurations ω of the system under consideration; the measure µ describe
the ideal state of the system, i.e., when no interaction is present; the function −f has the
meaning of an energy (interaction energy or internal energy); and θ is called the free energy at
temperature inverse β.2

We will assume
2In physics, β = 1/(kT ) with T the temperature and k = 1.3810−23 joules per absolute degrees.
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Assumption 3.1.7 Dom(θ) has positive length.

Definition 3.1.8 (Gibbs Measures) For β ∈ Dom(θ), the (finite volume) Gibbs measure at
temperature inverse β is the probability measure γβ ∈ P(Ω) given by

dγβ = Z−1eβfdµ , Z = Z(β) = µ(eβf )

On the interior of Dom(θ), the function θ is infinitely differentiable, with

θ′(β) = γβ(f) ,

θ′′(β) = Varγβ
(f) = γβ(f2) − γβ(f)2 .

In particular, θ is strictly convex on its domain. Moreover, the set

I := θ′(Dom(θ)) = {θ′(β);β ∈ Dom(θ), θ′(β) exists}

is an interval, and is non empty under assumption 3.1.7. By definition,

a ∈ I ⇐⇒ ∃β : γβ(f) = a .

The Gibbs variational formula writes

lnµ(eβf ) = sup
a∈R

{βa− inf
ν∈P(Ω),ν(f)=a

H(ν|µ)} .

From the Gibbs variational principle, it follows that for all a ∈ I, the infimum

I(a) = inf{H(ν|µ); ν ∈ P(Ω), ν(f) = a}, (3.1.5)

is achieved at the unique point ν = γβ , where β is the solution of θ′(β) = a. This is the
minimum entropy principle. It indicates that Gibbs measures are natural objects, since
it states that Gibbs measures are the less informative probability measures satisfying linear
constraints.

Note that the function I defined in (3.1.5) is convex.

We now give an identity for the entropy – more precisely, the Kullback-Leibler divergence
– of two Gibbs measures. Let β1, β2 ∈ Dom(θ), β1 6= β2. By strict convexity of θ, we have
(β1 − β2)

(
θ′(β1) − θ′(β2)

)
> 0. In fact we have

(β1 − β2)
(
θ′(β1) − θ′(β2)

)
= H(γβ1 |γβ2) +H(γβ2 |γβ1). (3.1.6)

Indeed,

H(γβ1 |γβ2) = γβ1

[
ln
dγβ1

dγβ2

]

= γβ1

[
(β1 − β2)f −

(
θ(β1) − θ(β2)

)]

= (β1 − β2)γβ1 [f ] −
(
θ(β1) − θ(β2)

)
.

Therefore,

H(γβ1|γβ2) +H(γβ2 |γβ1) = (β1 − β2) (γβ1[f ] − γβ2 [f ])

= (β1 − β2)
(
θ′(β1) − θ′(β2)

)
.
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3.2 Superadditive lemma

A real sequence (un;n ≥ 1) is called superadditive if

un+m ≥ un + um , n,m ≥ 1 .

The following result is standard, e.g., [22, lemma 3.1.3].

Lemma 3.2.1 (Superadditive lemma) If (un;n ≥ 1) is a superadditive sequence, then

lim
n→∞

un

n
= sup

m≥1

um

m
∈ R ∪ {+∞} .

✷ Fix m ≥ 1, and let M = min{uℓ; ℓ = 1, . . . ,m− 1}∧ 0. Then, decomposing any integer n
as n = km+ ℓ with k = ⌊ n

m⌋ and ℓ ∈ {0, . . . ,m− 1}, we have by superadditivivity, and setting
u0 = 0,

un

n
≥ k

um

m
+
uℓ

n
≥ k

um

m
+
M

n

Hence,

lim inf
n→∞

un

n
≥ um

m
, m ≥ 1 .

This shows one inequality. Since lim supn→∞ n
−1un ≤ supm≥1m

−1um is trivial, the lemma is
proved.

3.3 Concentration inequalities

Loosely, concentration inequalities state that a function of many independent random variables,
which does not depend much on any of them, strongly concentrated around its typical value.
This theory has been recently renewed by technical works, of Talagrand in particular. We will
take the straightforward approach by martingales, which yields weaker results but of the same
nature.

We start with the famous Azuma’s lemma, see e.g. [1]. Maurey (1979) popularized its use
by deriving an isoperimetric inequality for the symmetric group, showing its potential to study
normed spaces (see Milman-Scechtman (1986). This was the first step in opening a wide field
of applications. This lemma is quite useful.

Lemma 3.3.1 (Azuma’s lemma) Let Mk, 0 ≤ k ≤ n be martingale starting from M0 = 0
such that

|Mk −Mk−1| ≤ 1,

for k = 1, . . . , n. Then, for θ ∈ R, we have

E(eθMn) ≤ expnθ2/2 ,

and, for all r ≥ 0,

P(Mn ≥ nr) ≤ e−nr2/2 .

✷ By assumption ∆Mk−1
def
= Mk −Mk−1 has absolute value smaller than 1. From the barycen-

tric relation

∆Mk =
1 + ∆Mk

2
· 1 +

1 − ∆Mk

2
· (−1) ,
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it follows by convexity of the function u 7→ exp θu for θ ∈ R, that

eθ∆Mk ≤ 1 + ∆Mk

2
eθ +

1 − ∆Mk

2
e−θ ,

and by the martingale property,

EHkeθ∆Mk ≤ cosh θ ≤ eθ
2/2 .

The last inequality comes from the identities cosh θ := (eθ + e−θ)/2, (cosh θ)′ = tanh θ, and the
elementary fact | tanh θ| ≤ |θ|, θ ∈ R. Hence, for θ ∈ R,

E(eθMn) = EEHn−1

n−1∏

k=0

eθ∆Mk

= E
( n−2∏

k=0

eθ∆Mk
)
EHn−1eθ∆Mn−1

≤ E

n−2∏

k=0

eθ∆Mkeθ
2/2

≤ expnθ2/2

by induction. This is the first claim. From this and Markov inequality we obtain for θ ≥ 0,

enθrP(Mn ≥ nr) ≤ E
(
eθMn ; {Mn ≥ nr}

)
(θ ≥ 0)

≤ E(eθMn)

≤ expnθ2/2.

Hence,
P(Mn ≥ nr) ≤ exp−n sup

θ≥0
(rθ − θ2/2),

which yields the result by taking the optimal θ (θ = r is non negative when r ≥ 0).

Corollary 3.3.2 Let (Xk)k≤n a sequence of independent random variables in E, and Yn =
fn(X1, . . . ,Xn) with fn : En → R a measurable function. Assume that for k = 1, . . . n, all
x1, . . . , xn, yk in E,

|fn(x1, . . . , xk−1, xk, xk+1, . . . , xn) − fn(x1, . . . , xk−1, yk, xk+1, . . . , xn)| ≤ 1

Then, we have the subgaussian estimates: E(exp θ[Yn − EYn]) ≤ expnθ2/2 for all real θ, and,
for all r ≥ 0,

P(|Yn − EYn| ≥ nr) ≤ 2e−nr2/2 .

✷ Let Hk = σ(X1, . . . Xk), and Mk = EHk(Yn) − E(Yn). Then, (Mk, k ≤ n) is a (Hk, k ≤ n)-
martingale, with Mn = Yn − EYn. Moreover, by independence,

∆Mk−1
def
= Mk −Mk−1

= EHk(Yn) − EHk−1(Yn)

= EHk [fn(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn)

−fn(X1, . . . ,Xk−1, Zk,Xk+1, . . . ,Xn)]
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with Zk an independent copy of Xk. By assumption, we have

|∆Mk| ≤ 1, k = 0, . . . n− 1.

Then, the corollary directly follows from Azuma’s lemma 3.3.1.

Exercise 3.3.3 Assume that the random variables η’s are bounded, |η(t, x)| ≤ K a.s. for some
finite K > 0. Using Azuma’s lemma, show that

Q
(

exp{θ[pη
n,β −Qpη

n,β]}
)
≤ exp{C1θ

2/n} ,

and deduce that

VarQ(pη
n,β) ≤ C2/n; ,

Q
(
|pη

n,β −Qpη
n,β|
)

≤ C/
√
n .

What is the smallest constant C = C(β,K) that you can get this way? [Answer: C1 = 2β2K2.]

Asking bounded oscillation in all variables is quite strong an assumption. In the following
concentration inequality we relax it into a control for the exponential moment of the oscillation.

Lemma 3.3.4 [Concentration] Suppose that X ∈ L1(Q) is Gn-measurable for some n and
that there exist δ ∈ (0,∞), A ∈ (0,∞), X1, ...,Xn ∈ L1(Q) such that

QGj−1[Xj ] = QGj [Xj ], and QGj−1 [exp(δ|X −Xj |)] ≤ A (3.3.7)

for all j = 1, ..., n. Then, with B = 2
√

6A2/δ2,

Q(|X −Q[X]| ≥ εn) ≤ 2 exp(−ε2n/(4B)) for all ε ∈ [0, Bδ]. (3.3.8)

✷ We consider a sequence Dj = QGj [X] −QGj−1 [X]. We first observe that

QGj−1 [eδ|Dj |] ≤ A2 , j = 1, . . . n. (3.3.9)

Indeed, since QGj−1 [Xj ] = QGj [Xj ], we have

|Dj | ≤ |QGj [X −Xj ]| + |QGj−1 [X −Xj]|
≤ QGj [Yj ] +QGj−1 [Yj], with Yj = |X −Xj |.

It follows from Jensen inequality that

eδQ
Gj−1 [Yj ] ≤ QGj−1 [eδYj ] ≤ A.

Similarly,

QGj−1 [eδQ
Gj [Yj ]] ≤ QGj−1 [QGj [eδYj ]] = QGj−1 [eδYj ] ≤ A.

These imply (3.3.9) by writing

QGj−1 [eδ|Dj |] ≤ eδQ
Gj−1 [Yj ]QGj−1 [eδQ

Gj [Yj ]] ≤ A2.

We now infer from (3.3.9) that

QGj−1 [eθDj ] ≤ eBθ2
, θ ∈ [−δ/2, δ/2], j = 1, . . . , n. (3.3.10)
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First observe that

1
4!Q
Gj−1 [|Dj |4] = 1

4!Q
Gj−1[δ4|Dj |4]/δ4 ≤ QGj−1 [eδ|Dj |]/δ4 ≤ A2/δ4

and hence that

QGj−1 [|Dj |2eδ|Dj |/2] ≤ QGj−1[|Dj |4]1/2QGj−1 [eδ|Dj |]1/2 ≤ 2
√

6A2/δ2 = B.

Since ex ≤ 1 + x+ |x|2e|x|/2 for all x ∈ R, we obtain (3.3.10) by estimating

QGj−1 [eθDj ] ≤ 1 + θ2B/2 ≤ exp(Bθ2)

Finally, since X −Q[X] = Dn + ...+D1, it follows from the last estimate that

Q[exp(θ(X −Q[X]))] ≤ exp(Bθ2n) , θ ∈ [−δ/2, δ/2] (3.3.11)

via a simple iterative procedure. To see (3.3.8), we take θ = ε
2B ≤ δ

2 . Then, by Chebychev’s
inequality and (3.3.11),

Q(|X −Q[X]| ≥ εn) = Q(θ|X −Q[X]| ≥ θεn)

≤ 2 exp((Bθ2 − θε)n) = 2 exp(−ε2n/(4B)).

3.4 Harris correlation inequality

Recall that a function f : R
k → R is increasing if f(x) ≤ f(y) whenever it xi ≤ yi ∀i ≤ k. This

is equivalent to f being coordinatewise increasing, i.e., f(x) ≤ f(y) for all y such that yi = xi

for all i 6= j and xj < yj.

Definition 3.4.1 A family X = (Xi; 1 ≤ i ≤ k) of real random variables defined on the same
probability space are called positively associated if for any f, g : R

k → R bounded increasing
functions,

E[f(X)g(X)] ≥ [Ef(X)][Eg(X)] . (3.4.12)

The inequality (3.4.12) is called the Fortuyn-Kasteleyn-Ginibre (FKG) inequality. The inequal-
ity simply means that increasing functions are positively correlated. The following example is
crucial in the applications, it is due to Harris.

Proposition 3.4.2 (FKG-Harris inequality) A family of independent, real random vari-
ables is positively associated.

✷ We prove Proposition 3.4.2 by induction on k. For k = 1, consider an independent copy
Y1 of X1, and write

Cov(f(X1), g(X1)) = E[f(X1)g(X1)] − [Ef(X1)][Eg(X1)]

=
1

2
E [[f(X1) − f(Y1)][g(X1) − g(Y1)]] ,

where the integrand is a.s. non-negative by monotonicity of f, g. Let now k > 1, and write the
standard decomposition

Cov(f(X), g(X)) = Cov(E[f(X)|X1],E[g(X)|X1]) + ECov(f(X), g(X)|X1) ,
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with Cov(U, V |X1) the covariance of U, V given X1. We show that both terms are non-negative.
For f non-decreasing, E[f(X)|X1] is itself a non-decreasing function of X1, and the first term
will be non-negative according to the case k = 1. Indeed, by independence, E[f(X)|X1] =
ψ(X1) is given by ψ(x1) = Ef(x1,X2, . . . ,Xk), and then,

ψ(x1) − ψ(x′1) = E[f(x1,X2, . . . ,Xk) − (x′1,X2, . . . ,Xk)] ≥ 0 if x1 ≥ x′1 .

Again by independence, the second term is equal to EΦ(X1), where

Φ(x1) = Cov(Fx1(X2, . . . ,Xk), Gx1(X2, . . . ,Xk)) ,

with Fx1 , Gx1 the partial functions f, g at x1, e.g., Fx1(x2, . . . , xk) = f((x1, . . . , xk). Clearly
Fx1 , Gx1 are non-decreasing for all x1, and the the conditional covariance Cov(f(X), g(X)|X1)
is a.s. non-negative by the induction assumption.
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[52] Mandelbrot, B.: Multiplications aléatoires et distributions invariantes par moyenne
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