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A bit of history

Generating trees were introduced in the nineties independently by

J. West, for pattern-avoiding permutations;

the Florentine combinatorics group (R. Pinzani, E. Barcucci, A. Del
Lungo, . . . ), for a variety of combinatorial objects, including
pattern-avoiding permutations.
(They use the name “ECO method”.)

Once combined with the kernel method on functional equations for
generating functions (as explained by M. Bousquet-Mélou), it is a general
method that can be used to enumerate some families of discrete objects.

In this course, I present this method, illustrated by several examples.
I also discuss how generating trees can be used to establish local and
scaling limit results for permutations (recent results of J. Borga).
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A toy example:
312-avoiding permutations



Permutations

A permutation of size n is a sequence containing exactly once each symbol
between 1 and n.

Ex: 5 3 7 2 4 1 6 8 is a permutation of size 8.

Notation: We usually write a permutation σ = σ1σ2 . . . σn.

We often represent a permutation by its diagram: the n × n grid which
contains a dot in each column i , in row σi .
(Rows are numbered from bottom to top.)

Ex: The diagram of our example is
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Patterns in permutations

For σ a permutation of size n and π a permutation of size k ≤ n,
we say that σ contains π as a pattern when
there exists i1 < i2 < · · · < ik such that σia < σib if and only if πa < πb.

This is written π 4 σ.

The subsequence σi1σi2 . . . σik is an occurrence of π.

Ex: σ = 5 3 7 2 4 1 6 8 contains the pattern π = 3 1 2 4, an occurrence
being σ1σ4σ5σ7 = 5 2 4 6.

We can see patterns
and occurrences on
the diagrams:
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Pattern-avoiding permutations

σ avoids π when π has no occurrence in σ.

For B any set of patterns, we denote by Av(B) the set of permutations (of
all sizes) avoiding all patterns in B.

Ex: 5 3 7 2 4 1 6 8 /∈ Av(3124), but 2 5 1 3 4 7 6 8 ∈ Av(321).

In this first part, we
consider the permutation
class Av(312), which we
will enumerate using a
generating tree.
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Letting permutations grow on the right

One way of building all permutations of size n + 1:

Start from all permutations σ of size n

For each such σ, append to σ a new final value a ∈ {1, 2, . . . , n + 1},
adding 1 to any σi such that σi ≥ a.

Ex: Appending 3 to 35124 gives 461253

On diagrams:
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Restriction to Av(312)

To build all permutations of size n + 1 in Av(312), we can

Start from all permutations of size n avoiding 312

For each such σ, append a new final value as before, in all possible
“places” which do not create an occurrence of 312.

Such places are called active sites (◦), the others are inactive sites (×).

Ex:

Remark: For every family Av(B) defined by the avoidance of (classical)
patterns, it is possible to build permutations appending a new final value.
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The generating tree for Av(312) growing on the right

It is the infinite tree

whose root is
(the permutation of size 1),

and where the children of
any permutation σ are the
permutations obtained
appending a new final
value to σ,
in all possible ways which do
not create a pattern 312.

Remark: The nodes at level n are the 312-avoiding permutations of size n.
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Generating tree for a class C of discrete objects

In general, a generating tree for a combinatorial class C is

an infinite tree,

whose nodes are the elements of C, each occurring exactly once,

whose root is the element of size 1 in C (assumed to exist and be unique),

and where the children of any node c are obtained from c by
performing local expansions according to some prescribed rules.

These rules must be carefully chosen to ensure that every element of C
appears, and does not appear multiple times.

Remarks:

Objects of size n are at level n in the tree. Hence enumerating C
amounts to counting the number of nodes at each level.

There may be several generating trees for C, depending on the “local
expansion rule” which is chosen.
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Labels in the generating tree of Av(312)

To each 312-avoiding
permutation, assign a label:
its number of active sites.

Conjecture:
If a permutation has label k,
then its k children have labels 2, 3 . . . , k + 1.
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Proving the conjecture (active sites of Av(312))

Observe that the bottommost and topmost sites are always active.

Observe that a site cannot become active it if was previously inactive.

Number the active sites 1 to k from bottom to top.

When inserting in the j-th
active site for j 6= k , all
active sites above it
become inactive, except
the topmost one.

So insertion in active site j produces a permutation with label j + 1.

Insertion in the topmost site produces a permutation with label k + 1.

Prop.: If σ has label k , then its children have labels 2, 3 . . . , k + 1.
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Detour: other characterization of the active sites/labels

The top site is always active.

A site immediately below a RtoL-minimum is always active.

A site immediately below an element which is not a RtoL-minimum is
always inactive.

σj is a RtoL-minimum of σ if
σj < σi for all i > j , i.e., if,
when reading σ from right to
left, σj is minimal among the
elements already read.

Hence, active sites = top site + sites immediately below RtoL-minima,
and therefore labels = 1 + number of RtoL-minima.
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The simplified generating tree, and the rewriting rule

Keeping only the labels, the generating tree for Av(312) is

cn = |Avn(312)| is the number of nodes at level n.

This tree is completely described by the rewriting rule (or succession rule)

ΩCat =

{
(2)
(k)  (2), . . . , (k), (k + 1).
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Labels and rewriting rules in general

For a generating tree to be useful in some way, we need to identify

labels for the objects

a rewriting rule describing the labels of the children of an object from
just the label of that object.

Labels can be integers, pairs of integers, or even tuples of integers of
varying size!

Ex: For Av(1342, 31 42), from Dulucq, Gire and Guibert, we can use

(2, 1, (1))

(x , k , (p1, . . . , pk))  (2 + pj , j , (p1, . . . , pj−1, i))

for 1 ≤ j ≤ k and pj−1 < i ≤ pj

(x + 1, k + 1, (p1, . . . , pk , i))

for pk < i ≤ x
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Enumerating Av(312)

from its generating tree:
bijective version



Dyck paths

A Dyck path of size n is a sequence of up steps (1, 1) and down steps
(1,−1) starting at (0, 0), ending at (2n, 0), and staying (weakly) above
the horizontal axis.

Prop.: Dyck paths are counted by the Catalan numbers:
there are cn = 1

n+1

(2n
n

)
Dyck paths of size n.
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A generating tree for Dyck paths

To build all Dyck paths of size n + 1, we can

Start from all Dyck paths of size n

For each of them, insert a new peak (
∧

) at each point (•) in the last
descent (=longest suffix of down steps).

Labels in this generating tree are number of children, or equivalently
number of steps in the last descent +1.
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Associated rewriting rule

Therefore, the propagation of labels in the generating tree for Dyck paths
is given by:

ΩCat =

{
(2)
(k)  (2), . . . , (k), (k + 1).

This is the same rule as the one obtained for Av(312).
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Isomorphic generating trees for Dyck paths and Av(312)

Keeping only the labels, the generating trees for Dyck paths and
312-avoiding permutations are the same.

Prop.: Av(312) is counted by the Catalan numbers.

A node in the tree can be identified by the sequence of labels reaching it
from the root. This induces an (implicit) size-preserving bijection between
Dyck paths and 312-avoiding permutations.

This bijection records some statistics: it sends the number of RtoL-minima
to the number of steps in the last descent (both being the label−1).
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Isomorphic generating trees in general

Assume the following:

A combinatorial class C1 admits a generating tree, with labels
recording the value of the statistics stat1.

Same with C2 and stat2.

Both generating trees are described by the same rewriting rule.

Then, it holds that

The generating trees are isomorphic.

The isomorphism entails a size-preserving bijection between C1 and C2

which preserves statistics: it sends stat1 to stat2.

Remark: In general, the bijection is implicit.
I’m only aware of one example where it is turned into an explicit bijection:
see the work of Bonichon, Bousquet-Mélou and Fusy on plane bipolar
orientations and Baxter permutations.
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Enumerating Av(312)

from its generating tree:
generating function version



From the rewriting rule to a functional equation

Recall the rewriting rule for 312-avoiding permutations:

ΩCat =

{
(2)
(k)  (2), . . . , (k), (k + 1).

Let cn,k be the number of 312-avoiding permutations having size n and
label k . Consider the bivariate generating function C (x ; y) =

∑
n,k

cn,kx
nyk .

Remark: C (x ; 1) is the generating function of 312-avoiding permutations.

The rewriting rule gives

C (x ; y) = xy2 +
∑
n,k

cn,kx
n+1(y2 + . . . yk + yk+1)

= xy2 +
∑
n,k

cn,kx
n+1y2 1− yk

1− y
.
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Putting the equation in kernel form

C (x ; y) = xy2 +
∑
n,k

cn,kx
n+1y2 1− yk

1− y

= xy2 +
xy2

1− y

∑
n,k

cn,kx
n −

∑
n,k

cn,kx
nyk


= xy2 +

xy2

1− y

(
C (x ; 1)− C (x ; y)

)

It follows that (1− y + xy2)C (x ; y) = xy2(1− y + C (x ; 1)).

The coefficient of C (x ; y) is the kernel of this equation.

Remark: Putting y = 1 in the equation gives no information on C (x ; 1).
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Solving the equation: the kernel method

Method:

Find a formal power series Y (x) which cancels the kernel.

Substituting y by Y (x) gives an equation for C (x ; 1).

Our example:

The equation is (1− y + xy2)C (x ; y) = xy2(1− y + C (x ; 1)).

The formal power series canceling the kernel is Y (x) = 1−
√

1−4x
2x .

Substitution gives C (x ; 1) = Y (x)− 1.

It follows that there are cn = 1
n+1

(2n
n

)
312-avoiding permutations of

any size n ≥ 1.

Remark: For “similar” generating trees with integer labels, the generating
functions are always algebraic.
See the “Generating functions for generating trees” paper.
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Generating trees
where labels are pairs of integers:

the case of Av(2 41 3)



The pattern 2 41 3

A permutation σ = σ1σ2 . . . σn contains the pattern 2413 if
there exists indices i < j < j + 1 < k such that σj+1 < σi < σk < σj
i.e. such that the subsequence σiσjσj+1σk is an occurrence of 2413.

Otherwise σ avoids 2 41 3.

Av(2 41 3) denotes the set of all permutations avoiding 2 41 3.
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Letting permutations avoiding 2 41 3 grow on the right

Remark: If σ1 . . . σnσn+1 avoids 2 41 3, then so does σ1 . . . σn.
(Be careful! Not true for any element removed, e.g. 25314!)

Thus, to build all 2 41 3-avoiding permutations of size n + 1, we can

Start from all 2 41 3-avoiding permutations of size n

For each such σ, append a new final
value in all active sites (= the sites
which do not create an occurrence
of 2 41 3).

This induces a generating tree for Av(2 41 3).
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Non-empty descents are the reason for sites to be inactive

We say that a non-empty descent of σ is an occurrence of the pattern 2 31
in σ, i.e. a subsequence σiσjσj+1 (with i < j) such that σj > σi > σj+1.

A site is inactive if and only if it is above the 2 of a non-empty descent.
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Labels for 2 41 3-avoiding permutations

The non-empty descents determine the active sites.

Appending a new final value affects the set of non-empty descents of
σ = σ1σ2 . . . σn differently if we insert below or above σn.

Thus, we record separately the active sites below and above σn.

We take the label of σ of size n
avoiding 2 41 3 to be (h, k)

with h = number of active
sites below σn

and k = number of active
sites above σn.
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Labels of the children (1/3)

Remark: The site immediately below σn is always active.

For σ of label (h, k), insertion in the site immediately below σn produces
an empty descent. Hence, all active sites stay active.

The label of the corresponding child of σ is (h, k+1).
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Labels of the children (2/3)

Insertion in an active site above σn produces an ascent.
Hence, all active sites stay active.

For insertion in the i-th such active site from the top, the label of the
corresponding child of σ is (h + k − i+1, i).
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Labels of the children (3/3)

Insertion in an active site below σn (and not immediately below) produces
a non-empty descent. Hence, all active sites between σn and the new final
element σn+1 become inactive (except the site immediately above σn+1).

For insertion in the i-th such active site from the bottom, the label of the
corresponding child of σ is (i , k+1).
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Rewriting rule

The generating tree for permutations avoiding 2 41 3 growing on the right
is described by the following rewriting rule:

Ωsemi =


(1, 1)
(h, k) (1, k + 1), . . . ,(h, k + 1)

(h + k , 1), . . . , (h + 1, k).

Next steps:

Consider the trivariate generating function

S(y , z) = S(x ; y , z) =
∑
n,h,k

sn,h,kx
nyhzk ,

where sn,h,k is the number of 2 41 3-avoiding permutations
having size n and label (h, k).

Translate Ωsemi into a functional equation for S(y , z).

Apply the (obstinate) kernel method to solve this equation.
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The functional equation

Recall the rewriting rule Ωsemi =


(1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k , 1), . . . , (h + 1, k).
Therefore,

S(y , z) = xyz +
∑

n,h,k≥1

sn,h,kx
n+1
(

(y + y2 + · · ·+ yh)zk+1

+ (yh+kz + yh+k−1z2 + · · ·+ yh+1zk)
)

= xyz +
∑

n,h,k≥1

sn,h,kx
n+1

(
1− yh

1− y
y zk+1 +

1−
( y
z

)k
1− y

z

yh+1zk

)
= xyz +

xyz

1− y
(S(1, z)− S(y , z)) +

xyz

z − y
(S(y , z)− S(y , y)) .
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Kernel form of the equation

We obtained

S(y , z) = xyz +
xyz

1− y
(S(1, z)− S(y , z)) +

xyz

z − y
(S(y , z)− S(y , y)) .

In kernel form, and substituting y with 1 + a, this is

K (a, z)S(1 + a, z) = xz(1 + a)− xz(1 + a)

a
S(1, z)

− xz(1 + a)

z − 1− a
S(1 + a, 1 + a),

where the kernel is K (a, z) = 1− xz(1 + a)

a
− xz(1 + a)

z − 1− a
.

Notation: We denote with R(x , a, z , S(1, z),S(1 + a, 1 + a)) the
right-hand side of the equation in kernel form.
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Canceling the kernel

Recall that the kernel is K (a, z) = 1− xz(1 + a)

a
− xz(1 + a)

z − 1− a
.

Solving for z the (quadratic) equation K (a, z) = 0 gives two solutions:

Z+(a) =
1

2

a + x + ax − Q

x(1 + a)
= (1 + a) + (1 + a)2x + O(x2),

Z (a) =
1

2

a + x + ax + Q

x(1 + a)
=

a

(1 + a)x
− a− (1 + a)2x + O(x2),

where Q =
√
a2 − 2ax − 6a2x + x2 + 2ax2 + a2x2 − 4a3x .

Substituting z for Z+, we obtain an equation relating the formal power
series Z+,S(1,Z+) and S(1 + a, 1 + a), namely:

R(x , a,Z+,S(1,Z+), S(1 + a, 1 + a)) = 0.

We would like to eliminate S(1,Z+) in order to find S(1 + a, 1 + a).
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Being obstinate in canceling the kernel

Look for the transformations leaving the kernel unchanged.

◦ Here observe that
K (a, z) = K ( z−1−a

1+a , z) and K (a, z) = K (a, z+za−1−a
z−1−a ).

◦ Therefore, define the involutions

Φ : (a, z)→
(
z−1−a

1+a , z
)

and Ψ : (a, z)→
(
a, z+za−1−a

z−1−a

)
.

Examine the group generated by Φ and Ψ.

◦ Here, they generate a group of order 10.
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Being obstinate in canceling the kernel, continued

Substituting z for Z+, each element (f1(a, z), f2(a, z)) in this group
cancels the kernel.

Find the pairs (f1(a, z), f2(a, z)) such that f1(a,Z+) and f2(a,Z+) are
formal power series in x .

◦ Here, we obtain the following pairs:

[a, z ]
Φ↔
[
z−1−a

1+a , z
]

Ψ↔
[
z−1−a

1+a , z−1
a

]
Φ↔
[
z−1−a

az , z−1
a

] Ψ↔
[
z−1−a

az , 1+a
a

]
.

Each such pair (f1(a,Z+), f2(a,Z+)) can be substituted in the kernel
equation K (a, z)S(1 + a, z) = R(x , a, z , S(1, z),S(1 + a, 1 + a)).

It results in an equation

involving only formal power series,
and where the kernel is 0.

Therefore, each pair satisfies
R(x , f1(a,Z+), f2(a,Z+),S(1, f2(a,Z+)),S(1 + f1(a,Z+), 1 + f1(a,Z+))) = 0.
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Combining kernel equations

We obtain the following system, with 5 equations and 6 unknowns:

0 = R(x , a,Z+,S(1,Z+), S(1 + a, 1 + a))

0 = R
(
x , Z+−1−a

1+a ,Z+,S(1,Z+), S(1 + Z+−1−a
1+a , 1 + Z+−1−a

1+a )
)

0 = R
(
x , Z+−1−a

1+a , Z+−1
a , S(1, Z+−1

a ), S(1 + Z+−1−a
1+a , 1 + Z+−1−a

1+a )
)

0 = R
(
x , Z+−1−a

aZ+
, Z+−1

a , S(1, Z+−1
a ), S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)

0 = R
(
x , Z+−1−a

aZ+
, 1+a

a ,S(1, 1+a
a ),S(1 + Z+−1−a

aZ+
, 1 + Z+−1−a

aZ+
)
)
.

We eliminate all unknowns except S(1 + a, 1 + a) and S(1, 1+a
a ).
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A single resulting equation

We usually write ā = a−1. Observe that 1+a
a = 1 + ā.

Elimination from the previous system yields

S(1 + a, 1 + a) +
(1 + a)2x

a4
S (1, 1 + ā) = P(a,Z+),

where P(a, z) = (z − 1− a)(−za4 + z2a4 − za3 + z2a3 − z3a2 − 2a2 +
z2a2 + za2 − 4a + 5az − 3az2 + z3a + 3z − z2 − 2)/(za4(z − 1)).

In this equation, we can separate powers of a:

S(1 + a, 1 + a) involves only powers of a that are ≥ 0.
(1+a)2x

a4 S (1, 1 + ā) involves only powers of a that are ≤ −2.

Therefore, S(1 + a, 1 + a) = Ω≥[P(a,Z+)], where for

G (x ; a) =
∑
n≥0

∑
i∈Z

gn,ix
nai , we define Ω≥[G (x ; a)] =

∑
n≥0

∑
i≥0

gn,ix
nai .
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Who is P(a,Z+)?

Recall that Z+ is the unique formal power series canceling the kernel

K (a, z) = 1− xz(1+a)
a − xz(1+a)

z−1−a .

Therefore W = Z+ − (1 + a) is the unique formal power series solution of

W = xā(1 + a)(W + 1 + a)(W + a).

Then, P(a,Z+) can be expressed from W as P(a,Z+) = F (a,W ) for

F (a,W ) = (1 + a)2 x +

(
1

a5
+

1

a4
+ 2 + 2a

)
x W

+

(
− 1

a5
− 1

a4
+

1

a3
− 1

a2
− 1

a
+ 1

)
x W 2 +

(
1

a4
− 1

a2

)
x W 3.

This gives a more direct definition of Ω≥[P(a,Z+)] = S(1 + a, 1 + a).
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What about the number of 2 41 3-avoiding permutations?

There are an = [xn]S(1, 1) 2 41 3-avoiding permutations of size n.

It holds that [xn]S(1, 1) = [xna0]S(1 + a, 1 + a).

Since S(1 + a, 1 + a) = Ω≥[F (a,W )], it follows that

[xn]S(1, 1) = [xna0]S(1 + a, 1 + a) = [xna0]F (a,W ).

From the equation for W and the expression of F (a,W ), Lagrange
inversion gives an (ugly) summation formula for [xn]S(1, 1).

The method of creative telescoping of Zeilberger produces a nice
recursive formula for an:

an =
11n2 + 11n − 6

(n + 4)(n + 3)
an−1 +

(n − 3)(n − 2)

(n + 4)(n + 3)
an−2.

Nicer (previously conjectured) summation formulas for an then follow.
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Here are the nicer formulas

The number an of 2 41 3-avoiding permutations of size n ≥ 2 is

an =
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n

j + 2

)(
n + 2

j

)(
n + j + 2

j + 1

)

=
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n + 1

j + 3

)(
n + 2

j + 1

)(
n + j + 3

j

)

=
24

(n − 1)n2(n + 1)(n + 2)

n∑
j=0

(
n

j + 2

)(
n + 1

j

)(
n + j + 2

j + 3

)

=
24

(n − 1)n(n + 1)2(n + 2)

n∑
j=0

(
n + 1

j

)(
n + 1

j + 3

)(
n + j + 2

j + 2

)
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What we saw and what comes next

What is a generating tree, and its encoding by a rewriting rule.

How to use them to prove existence of (implicit) bijections.

How to turn a rewriting rule into a functional equation for the
multivariate generating function.

How to solve it with the (obstinate) kernel method.

How to use generating trees to encode uniform random permutations
in some pattern-avoiding families as conditioned random walks.

How to use this encoding to derive local and scaling limit results for
permutations (and objects used by this encoding).

Applications mostly on pattern-avoiding permutations (but also a bit
on lattice paths).
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Using generating trees with integer labels
to establish CLT for consecutive patterns:

the case of Av(1423, 4123)

Following J. Borga, Asymptotic normality of consecutive patterns

in permutations encoded by generating trees with one-dimensional labels



Growing permutations that avoid {1423, 4123} on the right

As in previous examples, we obtain a generating tree for Av(1423, 4123)
by appending new final values in all possible ways which do not create
occurrences of 1423 nor of 4123.

(2)

(3B) (3T )

(4B) (3) (4T )(4B) (3) (4T )

(3) (4T )

(4)

(4B)

Figure 1: The generating tree for {1423, 4123}-avoiding permutations. We completely draw
only the first three levels of the tree; for the fourth level, we only draw the children of the
permutation 132, and for the fifth level only one of the children of the permutation 1324. For
each permutation, we highlight the position of the active sites with some circles on the right-
hand side of the diagram. Moreover, on the left-hand side of each diagram we report the
corresponding label given by the statistic |AS(·)|. The superscripts T and B and the colors that
appear in some labels will be clarified in Example 1.13.

1.5.2 A bijection between permutations encoded by a generating tree and colored

walks

We start by pointing out that we are not assuming that the children labels e1(k), . . . , eh(k)(k)
appearing in the succession rule in Eq. (1) are distinct (notice for instance that the label (k+1)
is produced twice from the label (k) in Eq. (2)). For each pair of labels (k, k′) ∈ L2, we denote
by multk(k

′) the number of indices i such that ei(k) = k′.

There is a natural bijection between permutations in a family encoded by a generating tree
and the set of paths in the tree starting at the root. We simply associate to the endpoint of
each path the permutation appearing in that vertex. We may further identify each path in the
tree with the list of labels appearing on this path, but this requires to distinguish the potential
repeated labels in the succession rule. More precisely, for each label k ∈ L and for each element
k′ ∈ CL(k) such that multk(k

′) > 1, we distinguish the repeated labels by painting them with
different colors (say colors {1, . . . ,multk(k

′)}). Then the colored succession rule is represented
as

{

Root label : (λ)

(k) → (ec1(k)), . . . , (e
c
h(k)(k)),

(3)

where the exponents c recall that the labels might be colored. We highlight that the colors and
the values of the children labels depend only on the value of the parent label (and not on the
color).

In this way, every permutation of size n is bijectively encoded by a sequence of n (colored)
labels (k1 = λ, kc22 , . . . , kcnn ), where ki records the value of the label and ci the color, such that
every pair of two consecutive labels, (kcii , k

ci+1

i+1 ), 1 ≤ i ≤ n − 1, is consistent with the colored

succession rule, i.e. for all 1 ≤ i ≤ n−1, there exist j = j(i) ∈ [1, h(ki)] such that k
ci+1

i+1 = ecj(ki).
We denote by G this bijection between sequences of colored labels and permutations in the
generating tree.

7
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Active sites in σ ∈ Av(1423, 4123)

The topmost site is always active.

The two bottommost sites are always active.

Insertion in every site different from the top- and bottommost
deactivates all sites above it (except the topmost one).

No site becomes inactive when inserting in the top- or bottommost
site.

Mathilde Bouvel Generating trees 48 / 75



Labels and rewriting rule

We take labels to be the numbers of active sites.

The subsequent rewriting rule is

ΩSch =

{
(2)
(k)  (k + 1), (3), . . . , (k), (k + 1).

where the labels of the children from left to right correspond to insertions
in the active sites from bottom to top.

We want to identify a permutation σ with the sequence of labels from the
root to σ in this generating tree.

Problem: What is the permutation corresponding to (2, 3)?
σ = 12 and σ = 21 work. . .
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Distinguishing labels by colors

In the production (k) (k + 1), (3), . . . , (k), (k + 1), the first (k + 1)
corresponds to insertion in the bottommost site, and the second one to
insertion in the topmost site. We use colors to distinguish these two cases:

ΩC
Sch =

{
(2)
(k)  (k + 1)B , (3), . . . , (k), (k + 1)T .

Now, σ = 12 corresponds to (2, 3T ) and σ = 21 corresponds to (2, 3B).

More generally, we now have a one-to-one correspondence between
Av(1423, 4123) and sequences of colored labels compatible with ΩC

Sch.

Ex: σ = 354126 corresponds to (2, 3T , 3, 4B , 3, 4T ) as seen from
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From labels to jumps

Rather than recording the sequence of labels, we can record the
jumps between labels along a sequence.

To have a bijective correspondence, we need colored jumps.

The jumps corresponding to the production
(k) (k + 1)B , (3), . . . , (k − 1), (k), (k + 1)T are

(+1)B , (−k + 3), . . . , (−1), (0)(+1)T

Ex (continued): The labels encoding σ = 354126 are (2, 3T , 3, 4B , 3, 4T ),
corresponding to the sequence of jumps ((+1)T , 0, (+1)B ,−1, (+1)T ).

Remarks: The set of possible jumps is J = Z≤0 ∪ {(+1)B , (+1)T}.
Not every sequence of such jumps corresponds to a permutation.

Next: We look for a distribution on the jumps that allows to see a uniform
permutation in Av(1423, 4123) as a conditioned random walk for this
distribution on the jumps.
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Finding the distribution on the jumps

Let φ(t) =
∑
y∈J

with multiplicity

t−y = 1+1
t + (1 + t + t2 + . . . ) = 2

t + 1
1−t .

Lemma [Janson]: For t such that 0 < φ(t) <∞ and φ′(t) = 0 (here
t = 2−

√
2), setting p = 1

φ(t) (= 3− 2
√

2) and q = 1
t (= 1

2−
√

2
), we have

p ·
∑
y∈J
w. m.

qy = 1, p ·
∑
y∈J
w. m.

y · qy = 0, and p ·
∑
y∈J
w. m.

y2 · qy <∞.

Consequence: Setting ξy = p · qy , (ξy )y∈J is a centered probability
distribution with finite variance.
(Here, ξy = (3− 2

√
2)(2−

√
2)−y for y ≤ 0, and ξ+1 = ξ+1 = 2−

√
2

2 .)

Proposition: Take a uniform permutation of size n in Av(1423, 4123) and
encode it as a sequence of labels according to the generating tree.
It is distributed like the random walk with jump distribution (ξy )y∈J
conditioned to having length n and staying larger than the minimal label.
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Two properties of conditioned random walks

Let (ξy )y∈J be a centered probability distribution with finite variance (the
distribution of the jumps).

Let (Xi )i≥1 be the (colored) random walk with jump distribution (ξy ).

(The Xi correspond to the labels in the generating tree.)

Proposition 1: Labels stay large.

Once conditioned to staying larger than the minimal label until step n,
(Xi )i≥1 satisfies that, for all c > 0, the probability that Xi > c for all i ≤ n
except at the beginning or end tends to 1 as n tends to infinity.

Proposition 2: Any factor of jumps is asymptotically normal.

Again, this holds for the conditioned version of (Xi )i≥1.
For each fixed h, and for each fixed set A of h consecutive jumps, we
count the number of positions j ∈ [1..n] such that the sequence of jumps
corresponding to (Xi )i∈[j ..j+h] is an element of A.
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From factors of jumps to consecutive patterns

Consider a permutation π of size h.
We say that π is a consecutive pattern occurring at position m in σ
if σmσm+1 . . . σm+h−1 is an occurrence of π.

Proposition: A factor of jumps determines a consecutive pattern, provided
labels are large enough.

Let σ ∈ Av(1423, 4123).

Let (ki )i∈[1..n] be the sequence of colored labels encoding σ in the
generating tree.

Assume that ki > h + 1 for all i ∈ [m,m + h − 1].

Then the consecutive pattern occurring at position m in σ is determined
from the jumps describing (ki )[m,m+h−1].

Proof by example and pictures: along the next few slides
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Encoding the final consecutive pattern of size h in σExample 3.4. We consider a permutation σ such that the position of the last h = 5 values
induce the pattern π = 35214 (π−1 = 43152) with k = 8 active sites distributed as follows:

σ =

q5 = 0 active site

q2 = 4 active sites corresponding to the jumps [−4,−1]

q1 = 1 active site corresponding to the jump {−5}

Top active site corresponding to the jump +1T

Bottom active site corresponding to the jump +1B

Diagram of the permutation
σ(1) . . . σ(n− h)

1 2 3 4

d2

d3

d4

d5

d1
q0 = 0 active site

q4 = 1 active site corresponding to the jump {0}

q3 = 0 active site

5

Then reading from bottom to top the positions of the active sites and the column index of the
point di, we have

S5(σ) =
[

∅, 4 , {−5}, 3 , [−4,−1], 1 , ∅, 5 , {0}, 2 , ∅
]

=
[

4 , {−5}, 3 , [−4,−1], 1 , 5 , {0}, 2
]

.

We finally introduce a small modification of the list Sh(σ). The benefit of this modification
will be clearer in Example 3.8 (see in particular the discussion after Eq. (19)). Given an integer
ℓ ≥ 1 we denote by Sℓ

h(σ) the list obtained from Sh(σ) forgetting all the ℓ−1 left-most positions
(corresponding to the ℓ− 1 most negative jumps) and replacing the interval involving the ℓ-th
left-most position, say [−p,−q], with the interval (−∞,−q].

Example 3.5. Using the list S5(σ) =
[

4 , {−5}, 3 , [−4,−1], 1 , 5 , {0}, 2
]

from Example 3.4
we have that

S1
5(σ) =

[

4 , (−∞,−5], 3 , [−4,−1], 1 , 5 , {0}, 2
]

,

S2
5(σ) =S3

5(σ) = S4
5(σ) = S5

5(σ) =
[

4 , 3 , (−∞,−1], 1 , 5 , {0}, 2
]

,

S6
5(σ) =

[

4 , 3 , 1 , 5 , (−∞, 0], 2
]

.

Observation 3.6. For every ℓ, h ≥ 1, σ ∈ Avn(1423, 4123), the list Sℓ
h(σ) determines the final

consecutive pattern pat[n−(h−1),n](σ). Indeed, it is equal to the inverse of the permutation ob-

tained reading the indices in Sℓ
h(σ) from left to right. We denote this pattern with Pat

(

Sℓ
h(σ)

)

.

Example 3.7. Using for instance the list S2
5(σ) =

[

4 , 3 , [−∞,−1], 1 , 5 , {0}, 2
]

from Ex-
ample 3.5 then

pat[|σ|−4,|σ|](σ) = (43152)−1 = 35214.

We now investigate in a specific example the result stated in Proposition 3.2. Specifically,
we show how the function Pat acts on our running example of Av(1423, 4123). The example is
rather long but it covers most of the cases of the proof of the consecutive Lemma 3.9 that is
quite technical.

21

Reading the right part from bottom to top give

S = [ 4 , {−5}, 3 , [−4,−1], 1 , 5 , {0}, 2 ].

In particular, the final consecutive pattern of σ can be deduced from S .
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 1.

Example 3.8. Let n ≥ 6 and (kci )i∈[n] be a sequence of colored labels with (yci )i∈[n−1] the
corresponding sequence of colored jumps. Let h = 6 and 1 ≤ m ≤ n − 5. Assume that
ki > h+ 1 = 7 for all i ∈ [m,m+ 5] and that

(yci )i∈[m−1,m+4] = (−2,+1B,+1B,+1T ,+1T ,−7).

We denote by (pi)i∈[6] the six dots from left to right in the diagram of G((kci )i∈[n]) corresponding
to the indices [m,m + 5] (note that the dots di in Example 3.4 were ordered from bottom to
top and so we use a different notation in this example).

We now reconstruct the consecutive pattern pat[m,m+5]

(

G((kci )i∈[n])
)

reading the jumps in
(yci )i∈[m−1,m+4] from left to right as follows:

• The first jump is ycm−1 = −2, therefore G((kci )i∈[m]) has one active site above p1 and all
the other active sites below p1 (see Example 1.12 for a reminder on the behavior of the
active sites when a new dot is appended). We note that p2 will be below p1 if and only
the next jump yc satisfies y ≤ 0 or yc = +1B, otherwise (if yc = +1T ) p2 will be above
p1. Therefore

G((kci )i∈[m]) =

Active site corresponding to yc = +1T

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

G((kc
i
)i∈[m−1])

p1

1

The situation is recorded by the list

S1
1

(

G((kci )i∈[m])
)

=
[

(−∞, 0], 1
]

.

• The second jump is ycm = +1B and so we append to G((kci )i∈[m]) the minimal value.

Consequently, G((kci )i∈[m+1]) has an active site at the top (corresponding to yc = +1T ),

an active site at the bottom (corresponding to yc = +1B) and all the other active sites
between p2 and p1 (corresponding to y ≤ 0). Therefore

G((kci )i∈[m+1]) =

Active site corresponding to yc = +1T

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

p1

p2
1 2

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S2
2

(

G((kci )i∈[m+1])
)

=
[

2 , (−∞, 0], 1
]

.

22

This situation is recorded by a truncated S : S = [[?, 0], 1 ].
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 2.

Example 3.8. Let n ≥ 6 and (kci )i∈[n] be a sequence of colored labels with (yci )i∈[n−1] the
corresponding sequence of colored jumps. Let h = 6 and 1 ≤ m ≤ n − 5. Assume that
ki > h+ 1 = 7 for all i ∈ [m,m+ 5] and that

(yci )i∈[m−1,m+4] = (−2,+1B,+1B,+1T ,+1T ,−7).

We denote by (pi)i∈[6] the six dots from left to right in the diagram of G((kci )i∈[n]) corresponding
to the indices [m,m + 5] (note that the dots di in Example 3.4 were ordered from bottom to
top and so we use a different notation in this example).

We now reconstruct the consecutive pattern pat[m,m+5]

(

G((kci )i∈[n])
)

reading the jumps in
(yci )i∈[m−1,m+4] from left to right as follows:

• The first jump is ycm−1 = −2, therefore G((kci )i∈[m]) has one active site above p1 and all
the other active sites below p1 (see Example 1.12 for a reminder on the behavior of the
active sites when a new dot is appended). We note that p2 will be below p1 if and only
the next jump yc satisfies y ≤ 0 or yc = +1B, otherwise (if yc = +1T ) p2 will be above
p1. Therefore

G((kci )i∈[m]) =

Active site corresponding to yc = +1T

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

G((kc
i
)i∈[m−1])

p1

1

The situation is recorded by the list

S1
1

(

G((kci )i∈[m])
)

=
[

(−∞, 0], 1
]

.

• The second jump is ycm = +1B and so we append to G((kci )i∈[m]) the minimal value.

Consequently, G((kci )i∈[m+1]) has an active site at the top (corresponding to yc = +1T ),

an active site at the bottom (corresponding to yc = +1B) and all the other active sites
between p2 and p1 (corresponding to y ≤ 0). Therefore

G((kci )i∈[m+1]) =

Active site corresponding to yc = +1T

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

p1

p2
1 2

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S2
2

(

G((kci )i∈[m+1])
)

=
[

2 , (−∞, 0], 1
]

.

22

S = [ 2 , [?, 0], 1 ]
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 3.

• The third jump is ycm+1 = +1B and so we append to G((kci )i∈[m+1]) the minimal value.
As a consequence, G((kci )i∈[m+2]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

– an active site between p3 and p2. Note that this active site will be not activated
by the next 3 jumps. Indeed, this active site (corresponding to the label 3) could
be activated by the next 3 jumps only if at least one of the next 3 labels has value
smaller than 3 + 2 = 5. This cannot happen since, by assumption, ki > 7 for all
i ∈ [m,m+ 5];

– all the other active sites between p2 and p1 (corresponding to y ≤ 0).

Therefore

G((kci )i∈[m+2]) =

Active site corresponding to yc = +1T

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

p1

p2

p3

Active site corresponding to the label k = 3

1 2 3

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S3
3

(

G((kci )i∈[m+2])
)

=
[

3 , 2 , (−∞, 0], 1
]

. (19)

We highlight that in this situation we would not be able to determine the complete list
S3

(

G((kci )i∈[m+2])
)

only knowing the sequence of jumps (yci )i∈[m−1,m+4]. Indeed, in order
to know which jump would activate the active site between p3 and p2 we would need to
know the actual value of the label km+2. However, the truncation S3

3

(

G((kci )i∈[m+2])
)

is
determined only by the jumps as explained above.

• The fourth jump is ycm+2 = +1T and so we append to G((kci )i∈[m+2]) the value m+3. As
a consequence, G((kci )i∈[m+3]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

– an active site between p3 and p2 (that we can forget thanks to the previous explana-
tion);

– an active site between p1 and p4 (corresponding to y = 0);

– all the other active sites between p2 and p1 (corresponding to y ≤ −1).

23

S = [ 3 , {s}, 2 , [?, 0], 1 ] where the jump s yields a small label
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 4.

Therefore

G((kci )i∈[m+3]) =

Active site corresponding to y = 0

Active sites corresponding to y ≤ −1

Active site corresponding to yc = +1B

p1

p2

p3

p4

Active site corresponding to yc = +1T

1 2 3 4

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S4
4

(

G((kci )i∈[m+3])
)

=
[

3 , 2 , (−∞,−1], 1 , {0}, 4
]

.

• The fifth jump is yc
m+3 = +1T and so we append to G((kc

i
)i∈[m+3]) the value m+ 4. As a

consequence, G((kc
i
)i∈[m+4]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

– an active site between p3 and p2 (that we can forget thanks to the previous explana-
tion);

– an active site between p4 and p5 (corresponding to y = 0);

– an active site between p1 and p4 (corresponding to y = −1);

– all the other active sites between p2 and p1 (corresponding to y ≤ −2).

Therefore

G((kci )i∈[m+4]) =

Active site corresponding to y = −1

Active sites corresponding to y ≤ −2

Active site corresponding to yc = +1B

p1

p2

p3

p4

Active site corresponding to y = 0
p5

Active site corresponding to yc = +1T

1 2 3 4 5

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S5
5

(

G((kci )i∈[m+4])
)

=
[

3 , 2 , (−∞,−2], 1 , {−1}, 4 , {0}, 5
]

.

• The sixth jump is yc
m+4 = −7 and so we append to G((kc

i
)i∈[m+3]) a new final value

between p1 and p2. As a consequence, G((kc
i
)i∈[m+5]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

24

S = [ 3 , {s}, 2 , [?,−1], 1 , {0}, 4 ]
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 5.

Therefore

G((kci )i∈[m+3]) =

Active site corresponding to y = 0

Active sites corresponding to y ≤ −1

Active site corresponding to yc = +1B

p1

p2

p3

p4

Active site corresponding to yc = +1T

1 2 3 4

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S4
4

(

G((kci )i∈[m+3])
)

=
[

3 , 2 , (−∞,−1], 1 , {0}, 4
]

.

• The fifth jump is yc
m+3 = +1T and so we append to G((kc

i
)i∈[m+3]) the value m+ 4. As a

consequence, G((kc
i
)i∈[m+4]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

– an active site between p3 and p2 (that we can forget thanks to the previous explana-
tion);

– an active site between p4 and p5 (corresponding to y = 0);

– an active site between p1 and p4 (corresponding to y = −1);

– all the other active sites between p2 and p1 (corresponding to y ≤ −2).

Therefore

G((kci )i∈[m+4]) =

Active site corresponding to y = −1

Active sites corresponding to y ≤ −2

Active site corresponding to yc = +1B

p1

p2

p3

p4

Active site corresponding to y = 0
p5

Active site corresponding to yc = +1T

1 2 3 4 5

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S5
5

(

G((kci )i∈[m+4])
)

=
[

3 , 2 , (−∞,−2], 1 , {−1}, 4 , {0}, 5
]

.

• The sixth jump is yc
m+4 = −7 and so we append to G((kc

i
)i∈[m+3]) a new final value

between p1 and p2. As a consequence, G((kc
i
)i∈[m+5]) has

– an active site at the top (corresponding to yc = +1T );

– an active site at the bottom (corresponding to yc = +1B);

24

S = [ 3 , {s}, 2 , [?,−2], 1 , {−1}, 4 , {0}, 5 ]
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (−2,+1B ,+1B ,+1T ,+1T ,−7):
step 6.

– an active site between p3 and p2 (that we can forget thanks to the previous explana-
tion);

– all the other active sites between p2 and p6 (corresponding to y ≤ 0).

Therefore

G((kci )i∈[m+5]) =

Active sites corresponding to y ≤ 0

Active site corresponding to yc = +1B

p1

p2

p3

p4

p5

Active site corresponding to yc = +1T

p6

1 2 3 4 5 6

G((kc
i
)i∈[m−1])

The situation is recorded by the list

S6
6

(

G((kci )i∈[m+5])
)

=
[

3 , 2 , (−∞, 0], 6 , ∅, 1 , ∅, 4 , ∅, 5
]

.

We can conclude that the consecutive pattern pat[m,m+5]

(

G((kci )i∈[n])
)

is determined by the
sequence of jumps

(yci )i∈[m−1,m+4] = (−2,+1B,+1B,+1T ,+1T ,−7).

Specifically, Pat(−2,+1B,+1B,+1T ,+1T ,−7) = (326145)−1 = 421563.

Keeping this example in mind, we now prove the following lemma that easily implies Propo-
sition 3.2.

Lemma 3.9. Fix h ≥ 1. For every sequence of labels (kci )i∈[n] that satisfies for some m ∈

[n+ 1− h] the condition

ki > h+ 1, for all i ∈ [m,m+ h− 1],

it is possible to reconstruct the list Sh
h

(

G((kci )i∈[m+h−1])
)

only from the sequence of jumps

(yci )i∈[m−1,m+h−2].

Remark 3.10. We highlight that the following proof also establishes an explicit way (that can
be easily implemented) to reconstruct the list Sh

h

(

G((kci )i∈[m+h−1])
)

from the sequence of jumps
(yci )i∈[m−1,m+h−2].

Proof. Let (kci )i∈[n] be a sequence such that for some m ∈ [n+ 1− h],

kci > h+ 1, for all i ∈ [m,m+ h− 1].

We prove the statement by induction. We first show that S1
1

(

G((kci )i∈[m])
)

is determined by

the jump label ycm−1 and then we show how to reconstruct the list Sj+1
j+1

(

G((kci )i∈[m+j])
)

from

the list Sj
j

(

G((kci )i∈[m+j−1])
)

according to the value of the jump label ycm+j−1.

We explain how to determine S1
1

(

G((kci )i∈[m])
)

from the jump label ycm−1. The diagram of
the permutation G((kci )i∈[m]) is obtained from the diagram of the permutation G((kci )i∈[m−1])
appending a new final dot, denoted by p1. We have to distinguish three different cases:

25

If labels are large, this gives S = [ 3 , {s}, 2 , [?,−0], 6 , 1 , 4 , 5 ]
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Putting everything together

From their generating tree and associated rewriting rule, uniform
permutations σ in Av(1423, 4123) are encoded as conditioned
random walks (Xi ) for a certain distribution on the jumps.

In these conditioned random walks (Xi ), labels stay large.

In these conditioned random walks (Xi ), factors of jumps satisfy a
CLT.

Provided labels are large, a factor of jumps in (Xi ) determines a
consecutive pattern in σ.

⇒ Consecutive patterns in uniform permutations of Av(1423, 4123)
satisfy a CLT.
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From CLT for consecutive patterns to local limit result

Local limits of permutations:

Take a random permutation σ of size tending to ∞.

Take a random point in it.

Look, for each h, at the consecutive pattern πh of size 2h + 1
around this point.

The distribution of πh for all h characterizes the local limit of σ.

Theorem: The limiting distribution of the densities of occurrences of
all consecutive patterns in σ characterizes the local limit of σ.

Consequence: Uniform random permutations in Av(1423, 4123) have a
local limit.

Remark: The local limit of uniform random permutations in
Av(1423, 4123) can be explicitly described (as a random total order on Z,
from the interpretation of factors of jumps as patterns).
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Local and permuton limits
for families of permutations
encoded by a generating tree

where labels are pairs of integers



Local limits versus permuton limits

Local limits describe the limiting behavior around a random point.

Permuton limits describe the global limiting behavior of a
permutation. This is a scaling limit.

Permuton limits of permutations:

Once properly rescaled, the diagram of a permutation gives a
probability distribution on the unit square.
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Local limits versus permuton limits

Local limits describe the limiting behavior around a random point.

Permuton limits describe the global limiting behavior of a
permutation. This is a scaling limit.

Permuton limits of permutations:

Once properly rescaled, the diagram of a permutation gives a
probability distribution on the unit square.

A permuton µ is a probability distribution on the unit square
with uniform projections.

A sequence of random permutations (σn) converges to µ if the
diagrams of the σn converge to µ for the weak topology.

Theorem: The limiting distribution of the densities of occurrences of
all patterns in σ characterizes the permuton limit of σ.
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Back to Av(2 41 3), following J. Borga, arxiv:2112.00159

Letting these permutations grow on the right, we obtain a generating tree
encoded by the following rewriting rule:

Ωsemi =


(1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k , 1), . . . , (h + 1, k).

Shifting all labels by (−1,−1), this is equivalent to

Ω′semi =


(0, 0)
(h, k) (0, k + 1), . . . , (h, k + 1)

(h + k + 1, 0), . . . , (h + 1, k).

As before, we can identify a permutation σ ∈ Av(2 41 3) with the sequence
of labels from the root to σ in the generating tree.

Remark: All productions being distinct, we do not need to introduce colors.
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Increments and encoding as conditioned random walks

Recall the rewriting rule:

Ω′semi =


(0, 0)
(h, k) (0, k + 1), . . . , (h, k + 1)

(h + k + 1, 0), . . . , (h + 1, k).

The possible labels are (i , j) s.t. i , j ≥ 0.

The increments are J = {(−i ,+1) : i ≥ 0} ] {(+i ,−i + 1) : i ≥ 1}.

Can we see a uniform permutation in Av(2 41 3) as a 2-dimensional
random walk starting at (0, 0) and conditioned to stay in the non-negative
quadrant?

Yes, choosing the following distribution on the increments:

P(−i ,+1) = αγi = P(+i ,−i + 1) for α =
√

5− 2 and γ =

√
5− 1

2
.
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An alternative to reading patterns in this encoding

Random walks in cones are well-understood (e.g. [Denisov, Wachtel]).

Can we transfer results about “patterns in random walks” to patterns
in permutations? And how?

We rather work with continuous objects, which are the limits of our
discrete objects, and which “encode all pattern densities”:

Permutation Permuton

Walk 2-dimensional Brownian excursion

discrete continuous
coalescent-walk process coalescent-walk process

The coalescent-walk processes are built from the walks and we can read on
them the permutation and its (non-consecutive) patterns.
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From a permutation to a sequence of increments

The path from the root of the generating tree to
σ = 2 4 7 8 9 5 6 3 10 1 11 ∈ Av(2 41 3) is

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (2, 1) (3, 1)

(1, 2) (4, 0) (0, 1) (2, 0)

(1, 0) (1, 0) (1, 0) (1, 0) (−2, 1) (1, 0) (−2, 1)

(3,−2) (−4, 1) (2,−1)

Figure 9: We consider the walk W ∈ W11
sb

given by the eleven black Z
2
≥0-labels in the picture. The

increments Wm+1 −Wm of the walk W are written in red between two consecutive diagrams. For each
black label Wm we draw the diagram of the corresponding permutation PW−1((Wi)i∈[m]). On the right-
hand side of each diagram we draw with small circles the active sites of the permutation and we highlight
in red the site that will be activated by the corresponding red increment Wm+1 −Wm.

5.1.2 A coalescent-walk process for semi-Baxter permutations

We define a family of coalescent-walk processes driven by a set of two-dimensional walks that contains
Wsb. We fix a (finite or infinite) interval I of Z. Let Wsb(I) denote the set of two-dimensional walks
indexed by I, with increments in Isb, and considered up to an additive constant.

Definition 5.1. Let W ∈ Wsb(I). The coalescent-walk process associated with W is the family of walks

WCsb(W ) = {Z(t)}t∈I , defined for t ∈ I by Z
(t)
t = 0, and for all ℓ ≥ t such that ℓ+ 1 ∈ I,

• Case 1: Wℓ+1 −Wℓ = (i,−i+ 1) for some i ≥ 1.

Z
(t)
ℓ+1 =

{

Z
(t)
ℓ

− i+ 1, if Z
(t)
ℓ

≥ 0 and Z
(t)
ℓ

− i+ 1 > 0,

Z
(t)
ℓ

− i, otherwise.

• Case 2: Wℓ+1 −Wℓ = (−i, 1) for some i ≥ 0.

Z
(t)
ℓ+1 =











Z
(t)
ℓ

+ i, if Z
(t)
ℓ

< 0 and Z
(t)
ℓ

+ i < 0,

1, if Z
(t)
ℓ

< 0 and Z
(t)
ℓ

+ i ≥ 0,

Z
(t)
ℓ

+ 1, otherwise.

WCsb is a mapping form Wsb(I) to C(I) .We set Csb = WCsb(Wsb). Two examples, one for a walk
in Wsb(I) and one for a walk in Wsb, can be found in Fig. 10 and Fig. 11. We also give the following
equivalent definition for later convenience.

Definition 5.2. Let W ∈ Wsb(I) and denote by Wt = (Xt, Yt) for t ∈ I. The coalescent-walk process

associated with W is the family of walks WCsb(W ) = {Z(t)}t∈I , defined for t ∈ I by Z
(t)
t = 0, and for

all ℓ ≥ t such that ℓ+ 1 ∈ I,

Z
(t)
ℓ+1 =























Z
(t)
ℓ

+ (Yℓ+1 − Yℓ), if Z
(t)
ℓ

≥ 0 and Z
(t)
ℓ

+ (Yℓ+1 − Yℓ) > 0,

Z
(t)
ℓ

− (Xℓ+1 −Xℓ), if

{

Z
(t)
ℓ

≥ 0 and Z
(t)
ℓ

+ (Yℓ+1 − Yℓ) ≤ 0,

Z
(t)
ℓ

< 0 and Z
(t)
ℓ

− (Xℓ+1 −Xℓ) < 0,

1, if Z
(t)
ℓ

< 0 and Z
(t)
ℓ

− (Xℓ+1 −Xℓ) ≥ 0.

(39)

29

The walk encoding σ is shown in black.
The sequence of increments encoding σ is shown in red.
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Building a coalescent-walk process from a walk

Consider the (same) permutation σ = 2 4 7 8 9 5 6 3 10 1 11 ∈ Av(2 41 3)
and the corresponding sequence of increments

(1, 0), (1, 0), (1, 0), (1, 0), (−2, 1), (1, 0), (−2, 1), (3,−2), (−4, 1), (2,−1).

The associated discrete
coalescent-walk process is shown in
green on the right.

It is a set of n = 11 walks Z
(i)
n

starting at (t, 0) for i = 1 to n.

Yt + 1

−Xt − 1

2 4 8 5 6 10 19 3 117

1 2 3 4 6 7 9 105 8 11

Figure 11: The coalescent walk process WCsb(W ) for the walk W considered in Fig. 9. In purple we
plot the corresponding semi-Baxter permutation CP((WCSb(W ))). Note that the latter permutation is
equal to the permutation PW−1(W ) obtained in the last diagram in Fig. 9.

where s′ℓ = sℓ+i for ℓ ∈ [−x− i, 0] and s′ℓ = sℓ+i−1 + 1 for ℓ ∈ [1, y − i+ 2].

On the other hand, looking at Case 1 in Definition 5.1, we immediately have that

FV(Z ′) = {f ′

−x−i < · · · < f ′

−1 < f ′

0 = 0 < f ′

1 < · · · < f ′

y−i+1} = [−x− i, y − i+ 1],

and mult(f ′

0) = 1, mult(f ′

ℓ) = mult(fℓ+i) for all ℓ ∈ [−x− i,−1], and mult(f ′

ℓ) = mult(fℓ+i−1) for
all ℓ ∈ [1, y − i+ 1].

• Case 2: Wm+1 −Wm = (−i, 1) for some i ∈ {0} ∪ [x] (see the left-hand side of Fig. 12).

As explained in Section 5.1.1, in this case π′ = π∗s
−i and its active sites are

{s′
−x+i < · · · < s′0} ∪ {s′1 < · · · < s′y+2},

with s′ℓ = sℓ−i for all ℓ ∈ [−x+ i, 0], s′1 = s−i + 1, and s′ℓ = sℓ−1 + 1 for all ℓ ∈ [2, y + 2].

On the other hand, looking at Case 2 in Definition 5.1, we immediately have that

FV(Z ′) = {f ′

−x+i < · · · < f ′

−1 < f ′

0 = 0 < f ′

1 < · · · < f ′

y+1} = [−x+ i, y + 1],

and mult(f ′

0) = 1, mult(f ′

1) =
∑0

ℓ=−i mult(fℓ), mult(f ′

ℓ) = mult(fℓ−i) for all ℓ ∈ [−x+ i,−1], and
mult(f ′

ℓ) = mult(fℓ−1) for all ℓ ∈ [2, y + 1].

With a straightforward computation, based on the expressions of the s′ℓ and mult(f ′

ℓ) in terms of sℓ and
mult(fℓ), it can be checked that Eq. (40) holds.

Theorem 5.7. The diagram in Eq. (37) commutes.

The proof is identical to the one of Theorem 3.10, replacing Lemma 3.9 with Lemma 5.6.

5.2 Probabilistic results for semi-Baxter permutations

Here we follow the same steps as in Section 4 specializing to the case of semi-Baxter permutations. We
will only explain the key-differences between the case of strong-Baxter permutations and semi-Baxter
permutations.

31

Remarks:

A permutation can be read on the coalescent-walk process.

It coincides with the permutation we started from.

A pattern in the permutation can be read from a finite number of
green paths.
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Scaling limit result for walks and coalescent-walk process

Let Wn be a conditioned random walk as before.

Let Wn(t) for t ∈ [0, 1] be the rescaled version (interpolated for t).

Let Eρ = (Xρ,Yρ) be a two-dimensional Brownian excursion of

correlation ρ in the non-negative quadrant, for ρ = −1+
√

5
4 .

Let (Z
(i)
n )1≤i≤n be the coalescent-walk process associated with Wn.

Let Z(u)
n (t) be the rescaled version (interpolated for t and u).

Let (Z(u)
ρ )u∈[0,1] be the solution of the SDEs

dZ(u)
ρ (t) =

{
1{Z(u)

ρ (t)>0}dYρ(t)− 1{Z(u)
ρ (t)<0}dXρ(t) t ∈ (u, 1)

0 t ∈ [0, u].

Theorem:

(

Wn

,Z(ui )
n )

(d)→

(

Eρ

,Z(ui )
ρ )

for a sequence (ui )i≥0 of i.i.d. uniform random variables in [0, 1].
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Scaling limit result for walks and coalescent-walk process

Let Wn be a conditioned random walk as before.

Let Wn(t) for t ∈ [0, 1] be the rescaled version (interpolated for t).

Let Eρ = (Xρ,Yρ) be a two-dimensional Brownian excursion of

correlation ρ in the non-negative quadrant, for ρ = −1+
√

5
4 .

Let (Z
(i)
n )1≤i≤n be the coalescent-walk process associated with Wn.

Let Z(u)
n (t) be the rescaled version (interpolated for t and u).

Let (Z(u)
ρ )u∈[0,1] be the solution of the SDEs

dZ(u)
ρ (t) =

{
1{Z(u)

ρ (t)>0}dYρ(t)− 1{Z(u)
ρ (t)<0}dXρ(t) t ∈ (u, 1)

0 t ∈ [0, u].

Theorem: (Wn,Z(ui )
n )

(d)→ (Eρ,Z(ui )
ρ )

for a sequence (ui )i≥0 of i.i.d. uniform random variables in [0, 1].
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Scaling limit result for permutations

σ ∈ Av(2 41 3) encoded by a discrete coalescent-walk process (Z
(i)
n )1≤i≤n

is described by σ(i) < σ(j)⇔ i 6Z j for the total order 6Z defined by

i 6Z i ; i 6Z j if i < j and Z (i)(j) ≤ 0; j 6Z i if i < j and Z (i)(j) > 0.

Mathilde Bouvel Generating trees 72 / 75



Scaling limit result for permutations

σ ∈ Av(2 41 3) encoded by a discrete coalescent-walk process (Z
(i)
n )1≤i≤n

is described by σ(i) < σ(j)⇔ i 6Z j for the total order 6Z defined by

i 6Z i ; i 6Z j if i < j and Z (i)(j) ≤ 0; j 6Z i if i < j and Z (i)(j) > 0.

Similarly, we can define the permuton associated with a continuous

coalescent-walk process (Z(u)
ρ )u∈[0,1].

The total order is replaced by the function

ϕZρ(t) = Leb({x ∈ [0, t) : Z(x)
ρ (t) ≤ 0} ∪ {x ∈ [t, 1] : Z(t)

ρ (x) > 0}).

The corresponding permuton µρ is given by

µρ(·) = (Id , ϕZρ) ∗ Leb(·) = Leb({t ∈ [0, 1] : (t, ϕZρ(t)) ∈ ·}).
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Scaling limit result for permutations

σ ∈ Av(2 41 3) encoded by a discrete coalescent-walk process (Z
(i)
n )1≤i≤n

is described by σ(i) < σ(j)⇔ i 6Z j for the total order 6Z defined by

i 6Z i ; i 6Z j if i < j and Z (i)(j) ≤ 0; j 6Z i if i < j and Z (i)(j) > 0.

Similarly, we can define the permuton associated with a continuous

coalescent-walk process (Z(u)
ρ )u∈[0,1].

The total order is replaced by the function

ϕZρ(t) = Leb({x ∈ [0, t) : Z(x)
ρ (t) ≤ 0} ∪ {x ∈ [t, 1] : Z(t)

ρ (x) > 0}).

The corresponding permuton µρ is given by

µρ(·) = (Id , ϕZρ) ∗ Leb(·) = Leb({t ∈ [0, 1] : (t, ϕZρ(t)) ∈ ·}).

Theorem: Uniform random permutations avoiding 2 41 3 converge in the
permuton sense to µρ.
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The case of Av(2 41 3, 3 14 2, 3 41 2)

Also in J. Borga, arxiv:2112.00159.

These admit a generating tree where labels are pairs of integers.

Uniform permutations σ can be encoded by conditioned random walks
for some (explicit) distribution on the increments.

From the increments, we can build a (similar but not identical)
discrete coalescent-walk process, encoding σ and all its patterns.

The scaling limit of the coalescent-walk process is the solution of the
SDEs (with ρ ≈ −0.2151 and q ≈ 0.3008)

dZ(u)
ρ,q (t) =

{
1
{Z(u)
ρ,q (t)>0}

dYρ(t)− 1
{Z(u)
ρ,q (t)<0}

dXρ(t) +(2q − 1)dLZ(u)
ρ,q (t) t ∈ (u, 1)

0 t ∈ [0, u].

where LZ
(u)
ρ,q(t) = lim

ε→0

1
2ε

∫ t
0 1Z(u)

ρ,q(s)∈[−ε,ε]
ds

is the symmetric local-time process at zero of Z(u)
ρ,q .

The permuton limit of uniform permutations avoiding 2 41 3, 3 14 2
and 3 41 2 is also obtained as the pushforward of the function ϕZρ,q .
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The case of Av(2 41 3, 3 14 2) (Baxter permutations)

A family of maps makes the picture richer. See J. Borga, M. Maazoun.

Results proved are

local limit result, jointly for all four objects;

scaling limit result, jointly for walks (associated with a map and with
its dual, hence somehow for the maps), coalescent-walk processes,
and permutations.
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What we (hopefully) learned

What is a generating tree, and its encoding by a rewriting rule.

How to use them to prove existence of (implicit) bijections.

How to turn a rewriting rule into a functional equation for the
multivariate generating function.

How to solve it with the (obstinate) kernel method.

How to use generating trees to encode uniform random permutations
in some pattern-avoiding families as conditioned random walks.

How to use this encoding to derive local and scaling limit results for
permutations (and objects used by this encoding).

Applications mostly on pattern-avoiding permutations (but also a bit
on lattice paths).

Merci beaucoup !!!
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