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A bit of history

Generating trees were introduced in the nineties independently by
o J. West, for pattern-avoiding permutations;

@ the Florentine combinatorics group (R. Pinzani, E. Barcucci, A. Del
Lungo, ...), for a variety of combinatorial objects, including
pattern-avoiding permutations.

(They use the name “ECO method".)

Once combined with the kernel method on functional equations for
generating functions (as explained by M. Bousquet-Mélou), it is a general
method that can be used to enumerate some families of discrete objects.

In this course, | present this method, illustrated by several examples.
| also discuss how generating trees can be used to establish local and
scaling limit results for permutations (recent results of J. Borga).
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A toy example:
312-avoiding permutations



A permutation of size n is a sequence containing exactly once each symbol
between 1 and n.

Ex: 53724168 is a permutation of size 8.
Notation: We usually write a permutation o = g102...0,.

We often represent a permutation by its diagram: the n x n grid which
contains a dot in each column i/, in row o;.
(Rows are numbered from bottom to top.) J [ Te

"
Ex: The diagram of our example is i
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Patterns in permutations

For o a permutation of size n and 7 a permutation of size k < n,
we say that o contains 7 as a pattern when
there exists iy < ip < -+ < ik such that o;, < 0y, if and only if 7, < 7p.

This is written 7™ < 0.

The subsequence o0, ...0j, is an occurrence of .

Ex: 0 =53724168 contains the pattern m = 3124, an occurrence
being 01040507 = 5246.

We can see patterns
and occurrences on
the diagrams:
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Pattern-avoiding permutations

o avoids ™ when 7 has no occurrence in o.

For B any set of patterns, we denote by Av(B) the set of permutations (of
all sizes) avoiding all patterns in B.

Ex: 53724168 ¢ Av(3124), but 25134768 € Av(321).

o

5 (2)
In this first part, we X(Z)
consider the permutation / \\ \
class Av(312), which we
will enumerate using a °“‘ %
generating tree. /u\ /L\ \>
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Letting permutations grow on the right

One way of building all permutations of size n + 1:

@ Start from all permutations o of size n
@ For each such o, append to o a new final value a € {1,2,...,n+ 1},
adding 1 to any o; such that o; > a.

Ex: Appending 3 to 35124 gives 461253

On diagrams:

®
9]

| ®
u

e
[ J
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Restriction to Av(312)

To build all permutations of size n+ 1 in Av(312), we can
o Start from all permutations of size n avoiding 312

@ For each such o, append a new final value as before, in all possible
“places” which do not create an occurrence of 312.

Such places are called active sites (o), the others are inactive sites (x).

FEE T

ENCR

Ex: A _F
]
[

5

D
O
LT 1

O XX OX0* %
1

Remark: For every family Av(B) defined by the avoidance of (classical)
patterns, it is possible to build permutations appending a new final value.
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The generating tree for Av(312) growing on the right

It is the infinite tree
@ whose root is |e] o / \

(the permutation of size 1), o EE}O

@ and where the children of / \\ L\
any permutation o are the © S 2 £ ]
permutations obtained @o x @j ol | el

o o O

appending a new final JLLN /N 4V oINS

value to o, - - /l \\OJ 5©
in all possible ways which do o §E§=’ 5
not create a pattern 312. /1 s i y \?

Remark: The nodes at level n are the 312-avoiding permutations of size n.
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Generating tree for a class C of discrete objects

In general, a generating tree for a combinatorial class C is
@ an infinite tree,
@ whose nodes are the elements of C, each occurring exactly once,
@ whose root is the element of size 1 in C (assumed to exist and be unique),
o

and where the children of any node ¢ are obtained from ¢ by
performing local expansions according to some prescribed rules.

These rules must be carefully chosen to ensure that every element of C
appears, and does not appear multiple times.
Remarks:

@ Objects of size n are at level n in the tree. Hence enumerating C
amounts to counting the number of nodes at each level.

@ There may be several generating trees for C, depending on the “local
expansion rule” which is chosen.
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Labels in the generating tree of Av(312)

To each 312-avoiding
permutation, assign a label: . / \

its number of active sites.
@32(9 < (2)

Conjecture:

o T s [¢] o ],
o(a)%; )2 EMO)
® X X x
IR B
If a permutation has label k,

then its k children have labels 2,3..., k + 1.
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Proving the conjecture (active sites of Av(312))

@ Observe that the bottommost and topmost sites are always active.

@ Observe that a site cannot become active it if was previously inactive.

@ Number the active sites 1 to k from bottom to top.

@ When inserting in the j-th e ; a&o
active site for j # k, all B Camet ° ome X
active si’Fes at.)ove it Oé\J&uo
become inactive, except Sta o
the topmost one. i | ey ©

So insertion in active site j produces a permutation with label j + 1.

@ Insertion in the topmost site produces a permutation with label k + 1.

Prop.: If o has label k, then its children have labels 2,3..., k + 1. ]
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Detour: other characterization of the active sites/labels

@ The top site is always active.
@ A site immediately below a RtoL-minimum is always active.

@ A site immediately below an element which is not a RtoL-minimum is
always inactive.

i oj is a RtoL-minimum of o if
5 o;j <ojforalli>j ie, if,
when reading ¢ from right to
/\ left, o} is minimal among the
Rbol. elements already read.

&%im’mm

Hence, active sites = top site + sites immediately below RtolL-minima,
and therefore labels = 1 + number of RtoL-minima.
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The simplified generating tree, and the rewriting rule

Keeping only the labels, the generating tree for Av(312) is
9 6=
(3) NI Cy- 2
N
(2’) (Z) (3)) (2) c, = 5

W () @) ¢, M

¢n = |Av,n(312)] is the number of nodes at level n.

This tree is completely described by the rewriting rule (or succession rule)

_J 2
QCat{ (k) ~(2),...,(k),(k+1).
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Labels and rewriting rules in general

For a generating tree to be useful in some way, we need to identify
@ labels for the objects

@ a rewriting rule describing the labels of the children of an object from
just the label of that object.

Labels can be integers, pairs of integers, or even tuples of integers of
varying size!

Ex: For Av(1342,3142), from Dulucq, Gire and Guibert, we can use

(2,1,(1))
(x, ks (p1s---spk))  ~ (24 pjds(pry-- - pj-1,1))
for1<j<kandp_1<i<p;
(x+1,k+1,(p1,..-,px,i))
L for px < i < x
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Enumerating Av(312)
from its generating tree:
bijective version



A Dyck path of size n is a sequence of up steps (1,1) and down steps

(1,—1) starting at (0,0), ending at (2n,0), and staying (weakly) above
the horizontal axis.

A A A
\/\\/ \
[5,0) (e,0)

Prop.: Dyck paths are counted by the Catalan numbers:

there are ¢, = n}rl (2n") Dyck paths of size n.

Pl — g oI o,

C(® = A + 2c@)?
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A generating tree for Dyck paths

To build all Dyck paths of size n+ 1, we can
@ Start from all Dyck paths of size n
@ For each of them, insert a new peak (/\) at each point (e) in the last
descent (=longest suffix of down steps).

/\ (2)

/
//\'(s) \/\/\(2)
AR L

INA
/N A /\/A'\/\M
(l‘) (» (2) (3) (3_)

Labels in this generating tree are number of children, or equivalently
number of steps in the last descent +1.
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Associated rewriting rule

|nwhm

Hm»a%?

%4ameﬁdMM

Therefore, the propagation of labels in the generating tree for Dyck paths
is given by:

_[(®
Q@r—{(ﬂ (2, (k). (K +1).

This is the same rule as the one obtained for Av(312).
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Isomorphic generating trees for Dyck paths and Av(312)

Keeping only the labels, the generating trees for Dyck paths and
312-avoiding permutations are the same.

Prop.: Av(312) is counted by the Catalan numbers.

A node in the tree can be identified by the sequence of labels reaching it
from the root. This induces an (implicit) size-preserving bijection between
Dyck paths and 312-avoiding permutations.

/N\
/N
— lrans 2)2)3)L| LD /\/ \

2T 34

This bijection records some statistics: it sends the number of RtoL-minima
to the number of steps in the last descent (both being the label—1).
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Isomorphic generating trees in general

Assume the following:

@ A combinatorial class C1 admits a generating tree, with labels
recording the value of the statistics stat.

@ Same with C> and stat,.

@ Both generating trees are described by the same rewriting rule.

Then, it holds that
@ The generating trees are isomorphic.

@ The isomorphism entails a size-preserving bijection between C; and C»
which preserves statistics: it sends stat; to stato.

Remark: In general, the bijection is implicit.

I'm only aware of one example where it is turned into an explicit bijection:
see the work of Bonichon, Bousquet-Mélou and Fusy on plane bipolar
orientations and Baxter permutations.
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Enumerating Av(312)
from its generating tree:
generating function version



From the rewriting rule to a functional equation

Recall the rewriting rule for 312-avoiding permutations:

_J]®
QCat—{ (k) ~(2),...,(k),(k+1).

Let c, x be the number of 312-avoiding permutations having size n and
label k. Consider the bivariate generating function C(x;y) = Z cn ik X"yk.

Remark: C(x;1) is the generating function of 312-avoiding permutatlons.

The rewriting rule gives

Clay)=x>+ ) cux™H (2 + ...y  +y*H)
n,k

n+1 21—yk
=Xy —I—ZC,, 11—y
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Putting the equation in kernel form

1— k
Clxiy) =07+ Y cnpx™ 12—

n,k 1 ed
2
X
= Xy2 + % Z Cn,an - Z Cn,an.yk
n,k n,k
2
Xy
=xy® + T (Ca1) = Clxy))

It follows that (1 —y + xy?)C(x;y) = xy?(1 — y + C(x; 1)).
The coefficient of C(x;y) is the kernel of this equation.

Remark: Putting y = 1 in the equation gives no information on C(x;1).
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Solving the equation: the kernel method

Method:
e Find a formal power series Y(x) which cancels the kernel.

@ Substituting y by Y(x) gives an equation for C(x;1).

Our example:
@ The equation is (1 — y + xy?)C(x;y) = xy?(1 — y + C(x;1)).

@ The formal power series canceling the kernel is Y(x) = 1-yi-dx 5}:4)(.
@ Substitution gives C(x;1) = Y(x) — 1.
o It follows that there are ¢, = ﬁ(%’”) 312-avoiding permutations of

any size n > 1.

Remark: For “similar” generating trees with integer labels, the generating
functions are always algebraic.
See the "Generating functions for generating trees” paper.
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Generating trees
where labels are pairs of integers:
the case of Av(2413)



The pattern 2413

A permutation ¢ = 0105 ...0, contains the pattern 2413 if

there exists indices | < j < j + 1 < k such that 01 < 0; < 0k < 7
i.e. such that the subsequence 00010y is an occurrence of 2413.
Otherwise o avoids 241 3.

Av(241 3) denotes the set of all permutations avoiding 241 3.

®
| |e

€A (213 € Av (W3
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Letting permutations avoiding 241 3 grow on the right

Remark: If 1 ...0,0,41 avoids 2413, then so does o7 ... 0.

(Be careful! Not true for any element removed, e.g. 25314!)

Thus, to build all 241 3-avoiding permutations of size n 4 1, we can
e Start from all 241 3-avoiding permutations of size n

@ For each such o, append a new final

: i . ) o
value in all active sites (= the sites W T B
[C | 1

which do not create an occurrence 5 \\.
of 2413). » —H<
a4 F‘ -
\ ] g
1 Io
12 lo

This induces a generating tree for Av(2413).
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Non-empty descents are the reason for sites to be inactive

We say that a non-empty descent of ¢ is an occurrence of the pattern 231
in 0, i.e. a subsequence ojojoj1 (with i < j) such that o; > o; > 0j41.

A site is inactive if and only if it is above the 2 of a non-empty descent.

T e

\
G'--- -‘l‘ -

<~

_
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Labels for 241 3-avoiding permutations

@ The non-empty descents determine the active sites.

@ Appending a new final value affects the set of non-empty descents of
0 = 0107 ...0, differently if we insert below or above o,.

Thus, we record separately the active sites below and above o,.

We take the label of o of size n ; T 1 Z
avoiding 2413 to be (h, k) - \s i gz 3

@ with h = number of active i : 11T o

sites below o, <

\ [ J u

@ and k = number of active ® !

sites above o,,.

4

1)

L L

O 0
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Labels of the children (1/3)

Remark: The site immediately below o, is always active.

For o of label (h, k), insertion in the site immediately below ¢, produces
an empty descent. Hence, all active sites stay active.

ke 1

0 0-%0-%O O -%x0-%00
D=

The label of the corresponding child of o is (h, k+1).
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Labels of the children (2

Insertion in an active site above o, produces an ascent.
Hence, all active sites stay active.

5 %0~ ¥ 020~ %00

For insertion in the i-th such active site from the top, the label of the
corresponding child of o is (h+ k — i+1,1).
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Labels of the children (3/3)

Insertion in an active site below o, (and not immediately below) produces
a non-empty descent. Hence, all active sites between o, and the new final
element 0,1 become inactive (except the site immediately above opy1).

=
“%0--%00
=

®
00 -%0:-¥x0Ox0--x00

|

For insertion in the i-th such active site from the bottom, the label of the
corresponding child of ¢ is (i, k-+1).

00 %
e
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Rewriting rule

The generating tree for permutations avoiding 241 3 growing on the right
is described by the following rewriting rule:

Next steps:

o Consider the trivariate generating function

S(y,z) =S(x;y,2z) = Z SmnaX"y" 2K,
n,h,k
where s, p, « is the number of 241 3-avoiding permutations
having size n and label (h, k).
@ Translate Qgem; into a functional equation for S(y, z).
@ Apply the (obstinate) kernel method to solve this equation.
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The functional equation

(1,1)
(h k)~ (L, k+1),...,(hk+1)
(h+k,1),...,(h+1,k).

Recall the rewriting rule Qgem;i =

Therefore,

S(y,z):xyz+ Z Sn,h7an+1<(y+y2+'“+yh)2k+1

nhk>1
+(yh+kz+yh+k—122+_.__i_yh—i-lzk))
k
1— h Y
— xyz + Z s Xt ( Y y kg (zy) h+1zk>
oIl 1 _ y Y
n,hk>1 z

=z 72 (S(12) = S(y.2) + 17, (S:2) = S(1.)) -
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Kernel form of the equation

We obtained

Xyz

XvzZ
S(y,z) = xyz + ] Y

" (S(y,2) = Sy, y)) -

(5(1,2) = 5(y,2)) +

In kernel form, and substituting y with 1 + a, this is

K(a,z)S(1+a,z) =xz(1+ a) —

xz(1+ a)
z—1-a

xz(1+a)5(1 2)
a 9
S(1+a,1+ a),

xz(1+a) xz(1+ a)
a z—1-—a

where the kernel is K(a,z) =1 —

Notation: We denote with R(x, a, z,S(1,2),S(1 + a,1 + a)) the
right-hand side of the equation in kernel form.
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Canceling the kernel

xz(l1+a) xz(1+a)

Recall that the kernel is K(a,z) =1 — :
a z—1-a

Solving for z the (quadratic) equation K(a,z) = 0 gives two solutions:

lat+tx+ax—Q

Z@) =3 A a)*x + O(x%),
latx+ax+Q a
Z’(a):§ X1+ 2) = (1+a)x—a—(1+a)2x+0(x2)’

where Q = Va2 — 2ax — 6a2x + x2 + 2ax? + a°x2 — 4a3x.

Substituting z for Z,, we obtain an equation relating the formal power
series Zy,5(1,Z;) and S(1+ a,1 + a), namely:

R(X7 a, Z+7 5(17 Z+)7 5(1 + a, 1 + a)) =0.

We would like to eliminate S(1, Zy) in order to find S(1+ a,1 + a).
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Being obstinate in canceling the kernel

@ Look for the transformations leaving the kernel unchanged.

o Here observe that

K(a,z) = K(3552,2) and K(a, z) = K(a, #27122),

Therefore, define the involutions

©:(a.2) = (55%.2) and W (a.2) = (o 2E252).

o

@ Examine the group generated by ¢ and V.
o Here, they generate a group of order 10.
(2;1-; 2) P SRS SO P A
y \

(22)
Npmegs v s /o
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Being obstinate in canceling the kernel, continued

@ Substituting z for Z, each element (fi(a, z), f2(a, z)) in this group
cancels the kernel.

e Find the pairs (fi(a, z), f2(a, z)) such that fi(a, Z;) and f(a, Z;) are
formal power series in x.

o Here, we obtain the following pairs:

2] & =522 & |32 22 & [ 2] &8 == ).

e Each such pair (fi(a, Z+), f2(a, Z+)) can be substituted in the kernel
equation K(a,z)S(1+ a,z) = R(x,a,z,5(1,2),5(1 + a,1 + a)).
It results in an equation

e involving only formal power series,
o and where the kernel is 0.

@ Therefore, each pair satisfies
R(Xa fl(aa Z+)a f2(a7 Z+)7 5(17 f2(av Z+))a 5(1 + fl(a7 Z+)7 1 + fl(aa Z+))) =0.
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Combining kernel equations

We obtain the following system, with 5 equations and 6 unknowns:

0= R(X7 a, Z+7 5(17 Z+)7 5(1 + a, 1 + a))

0=R(xZ552,2,,5(1,2,),5(1+ Z552 1+ £512))

Z,—1 Zi—1 Zy Z 1 Z.—1
0:R<X’ e P S(L ), S(L+ A L 1+aa))

0

R<X7 Z+a—Zl a, Z+—1 5(1 Z 71) 5(1+Z\71 a 1+ 71 ?))

a

0:R<X7 Z+—1—a’m 5(1* 1+a) S(1+ Z+ 1 a 1+ 2771 a)>

aZy a a
We eliminate all unknowns except S(1+ a,1+ a) and S(1, 1)
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A single resulting equation

We usually write 3 = a—!. Observe that 1—33 =1+ a.
Elimination from the previous system yields

(14 a)%x

where P(a,z) = (z—1— a)( za* —I— 22a* — za® + 2233 — 3% - 252 +
723 + za® — 4a+baz — 3az%> + z3a+ 3z — z2° — 2)/(za*(z — 1)).
In this equation, we can separate powers of a:

@ S(1+ a,1+ a) involves only powers of a that are > 0.

2
° (“3#5 (1,1 + 3) involves only powers of a that are < —2.

Therefore, S(1+ a,1 + a) = Q>[P(a, Z4)], where for

G(x;a) = ZZg,,,x a', we define Q>[G(x; a]—ZZgn,x a'.

n>0 i€Z n>0i>0
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Who is P(a, Z.)?

Recall that Z; is the unique formal power series canceling the kernel

K(a,z) =1 - =G - 20

Therefore W = Z, — (1 + a) is the unique formal power series solution of
W =xa(l+a)(W+1+a)(W+ a).

Then, P(a, Z;) can be expressed from W as P(a, Z) = F(a, W) for
F(a,W) = (1+a)* L o) aw
(aW)=(1+a)" x+ BT tetiaax

1 1 1 1 1 , (1 1 5
+<_a5_a4+a3_az_a+l>xw+(a4_a2)XW'

This gives a more direct definition of Q>[P(a,Zy)] = S(1+ a,1 + a).
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What about the number of 241 3-avoiding permutations?

There are a, = [x"]5(1, 1) 241 3-avoiding permutations of size n.
It holds that [x"]S(1,1) = [x"a°]S(1 + a,1 + a).
Since S(1+ a,1+ a) = Q>[F(a, W)], it follows that

[x"1S(1,1) = [x"a%]S(1 + a,1 + a) = [x"a°]F(a, W).

From the equation for W and the expression of F(a, W), Lagrange
inversion gives an (ugly) summation formula for [x"]S(1, 1).

The method of creative telescoping of Zeilberger produces a nice
recursive formula for a,:

11 +11n—6 (n—3)(n—2)
i1 3) " T i )3

Nicer (previously conjectured) summation formulas for a, then follow.
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Here are the nicer formulas

The number a, of 241 3-avoiding permutations of size n > 2 is

»= o ) ()

(- 1)n2(§j— 1)(n+2) Z <7i3 (jif) <n+J +3>

j=0
:(n—l)n2(24+1)(n+2)1_ <J+2><j_1><j—i§2>
:<n1)n(n2+41>2<n+2)j0 (jl (J )(nﬁﬂ
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What we saw and what comes next

What is a generating tree, and its encoding by a rewriting rule.

@ How to use them to prove existence of (implicit) bijections.

@ How to turn a rewriting rule into a functional equation for the
multivariate generating function.

@ How to solve it with the (obstinate) kernel method.

@ How to use generating trees to encode uniform random permutations
in some pattern-avoiding families as conditioned random walks.

@ How to use this encoding to derive local and scaling limit results for
permutations (and objects used by this encoding).

@ Applications mostly on pattern-avoiding permutations (but also a bit
on lattice paths).
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Using generating trees with integer labels
to establish CLT for consecutive patterns:
the case of Av(1423,4123)

Following J. Borga, Asymptotic normality of consecutive patterns

in permutations encoded by generating trees with one-dimensional labels



Growing permutations that avoid {1423,4123} on the right

As in previous examples, we obtain a generating tree for Av(1423,4123)
by appending new final values in all possible ways which do not create
occurrences of 1423 nor of 4123.

o
@[]
o o
S L
[e] o
. o/.‘o\ " o .o/‘.o\ . o
(1P| e ° 3) . . ° r)e ° . . °
o o o o o o
hd o hd o L o ~. o hd o hd o
| T
L] L] L]
L] L] L] °
(4") . o (3) . .
o o o
L] L] L]
o o ' - o
° o
° o
@ e
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Active sites in o0 € Av(1423,4123)

@ The topmost site is always active.

@ The two bottommost sites are always active.

@ Insertion in every site different from the top- and bottommost
deactivates all sites above it (except the topmost one).

@ No site becomes inactive when inserting in the top- or bottommost
site.
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Labels and rewriting rule

We take labels to be the numbers of active sites.

The subsequent rewriting rule is

Qseh = (2)
i (k) ~ (k+1),(3),...,(k), (k+1).
where the labels of the children from left to right correspond to insertions
in the active sites from bottom to top.

We want to identify a permutation o with the sequence of labels from the
root to o in this generating tree.

Problem: What is the permutation corresponding to (2,3)?
o =12 and o = 21 work. ..
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Distinguishing labels by colors

In the production (k) ~» (k +1),(3),...,(k), (k + 1), the first (k + 1)
corresponds to insertion in the bottommost site, and the second one to
insertion in the topmost site. We use colors to distinguish these two cases:

QC — (2)
Sch (k) ~ (k+1)5,(3),....(k),(k +1)"
Now, o = 12 corresponds to (2,3 ) and o = 21 corresponds to (2, 35).

More generally, we now have a one-to-one correspondence between
Av(1423,4123) and sequences of colored labels compatible with Qgch.

Ex: o = 354126 corresponds to (2,3 ,3,45,3,47) as seen from

H]
o[ ], oL L fx
iy e — [l e EFE
o °

laan

O oxr%
1
QOx xxX0o
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From labels to jumps

@ Rather than recording the sequence of labels, we can record the
jumps between labels along a sequence.

@ To have a bijective correspondence, we need colored jumps.

The jumps corresponding to the production
(k) ~ (k+1)2,(3),...,(k =1),(k), (k + 1) are
(+1)5,(=k +3),..., (=1),(0)(+1) "

Ex (continued): The labels encoding o = 354126 are (2,3,3,45,3,47),
corresponding to the sequence of jumps ((+1)",0,(+1)8,—1,(+1)7).

Remarks: The set of possible jumps is J = Z<o U {(+1)8,(+1)"}.
Not every sequence of such jumps corresponds to a permutation.

Next: We look for a distribution on the jumps that allows to see a uniform
permutation in Av(1423,4123) as a conditioned random walk for this
distribution on the jumps.
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Finding the distribution on the jumps

Let ¢(t) = Zj tY = L (1+t+2+...)=24+ 1.
Y€
with multiplicity

Lemma [Janson]: For t such that 0 < ¢(t) < oo and ¢'(t) =
t=2-+2), settlngp_¢(t( —2v/2) and q—f(f

p.zqy:;l, p.zy.qy: ’ andp-Zyz-qy<oc.

yeJ yeJ yed
w. m. w. m. w. m

Consequence: Setting &, = p-¢”, (§,)yecs is a centered probability
distribution with finite variance.

(Here, & = (3 —2v2)(2— V2) ™ for y <0, and &1 = &41 = 255/2))

Proposition: Take a uniform permutation of size n in Av(1423,4123) and
encode it as a sequence of labels according to the generating tree.

It is distributed like the random walk with jump distribution (&,),es
conditioned to having length n and staying larger than the minimal label.
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Two properties of conditioned random walks

Let (£,)yecs be a centered probability distribution with finite variance (the
distribution of the jumps).

Let (Xj)i>1 be the (colored) random walk with jump distribution (&,).
(The X; correspond to the labels in the generating tree.)

Proposition 1: Labels stay large.

Once conditioned to staying larger than the minimal label until step n,
(Xi)i>1 satisfies that, for all ¢ > 0, the probability that X; > c for all i < n
except at the beginning or end tends to 1 as n tends to infinity.

Proposition 2: Any factor of jumps is asymptotically normal.

Again, this holds for the conditioned version of (X;)i>1.

For each fixed h, and for each fixed set A of h consecutive jumps, we
count the number of positions j € [1..n] such that the sequence of jumps
corresponding to (X;)ic[j..j+n) is an element of A.

Mathilde Bouvel Generating trees 53 /75



From factors of jumps to consecutive patterns

Consider a permutation 7 of size h.
We say that 7 is a consecutive pattern occurring at position m in o
if OmOm+1...0m+h_1 iS an occurrence of .

Proposition: A factor of jumps determines a consecutive pattern, provided
labels are large enough.

o Let o € Av(1423,4123).

@ Let (ki)ic[1..n be the sequence of colored labels encoding o in the
generating tree.

@ Assume that k; > h+ 1 forall i € [m,m+ h—1].

Then the consecutive pattern occurring at position m in o is determined
from the jumps describing (ki){m,m+h—1]-

Proof by example and pictures: along the next few slides

Mathilde Bouvel Generating trees 54 /75



Encoding the final consecutive pattern of size hin o

O <«—— Top active site corresponding to the jump -+ 1*
T <-— g5 =0 active site
I <— ¢4 = 1 active site corresponding to the jump {0}
a®
T «-— g3 = 0 active site
g = } <—— g, = 4 active sites corresponding to the jumps [—4, —1]

I <«— ¢; = 1 active site corresponding to the jump {—5}
T <« qo =0 active site

D ® ® @ ® © -=+— Bottom active site corresponding to the jump +17

\
Diagram of the permutation
o(1)...0(n—h)

Reading the right part from bottom to top give

S =1(4),{-5}.(3).[-4,-11.(1).(5),{0}.(2)].

In particular, the final consecutive pattern of o can be deduced from S.
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):
step 1.

O <——  Active site corresponding to y© = +1’

<«+——  Active sites corresponding to y < 0

) O <«——  Active site corresponding to 3¢ = +15

This situation is recorded by a truncated S: S = [[?,0],@].
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):
step 2.

O <——  Active site corresponding to y¢ = +1’

<«——  Active sites corresponding to y < 0

2 o0 <«——  Active site corresponding to y¢ = +18

S= [@v [?7 0]?@]
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):
step 3.

| e - . |
7

O <=——  Active site corresponding to y© = +1
.pl
<——  Active sites corresponding to y <0
o,
2. <«+——  Active site corresponding to the label k =3
B3 o <«——  Active site correspondi ¢ =+18
ponding to y¢ = +1
ONCNe)

S= [@, {s},@, [?,0],@] where the jump s yields a small label
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):

step 4.

.Pz

()
(ORI

S= [@7 {5}7@7 [?7 _1]7®7 {0}7@]

Mathilde Bouvel Generating trees

Active site corresponding to y¢ = + 1’

Active site corresponding to y = 0

Active sites corresponding to y < —1

Active site corresponding to y¢ = +17
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):
step b.

O <«——  Active site corresponding to y© = +1’

o,
° b o <«——  Activesite corresponding to y = 0
4 O <——  Active site corresponding to y = —1
.I 1
<——  Active sites corresponding to y < —2
.I 2
.[ 3 A d c 1B
- 0O - ctive site corresponding to y¢ = +
200 ®6 pondme fo Y

S= [@a {5},@, [?, _2]7®7 {_1}7@’ {0}’@]
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Reading S (hence patterns) from the jumps

The pattern corresponding to the jumps (=2, +18, +18 17 117 —7):
step 6.

O <——  Active site corresponding to y¢ = +1’

6
I <«+——  Active sites corresponding to y <0

.P 2

.P:z
OO ®6 G

If labels are large, this gives S = [@, {s},@, [?, —0],@,@,@, @]
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Putting everything together

@ From their generating tree and associated rewriting rule, uniform
permutations o in Av(1423,4123) are encoded as conditioned
random walks (X;) for a certain distribution on the jumps.

@ In these conditioned random walks (X;), labels stay large.

@ In these conditioned random walks (X;), factors of jumps satisfy a
CLT.

@ Provided labels are large, a factor of jumps in (X;) determines a
consecutive pattern in o.

= Consecutive patterns in uniform permutations of Av(1423,4123)
satisfy a CLT.
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From CLT for consecutive patterns to local limit result

KLocal limits of permutations:
@ Take a random permutation ¢ of size tending to co.
@ Take a random point in it.

o Look, for each h, at the consecutive pattern mp, of size 2h + 1
around this point.

The distribution of 7, for all h characterizes the local limit of o.

Theorem: The limiting distribution of the densities of occurrences of
KaII consecutive patterns in o characterizes the local limit of o. D

Consequence: Uniform random permutations in Av(1423,4123) have a
local limit.

Remark: The local limit of uniform random permutations in
Av(1423,4123) can be explicitly described (as a random total order on Z,
from the interpretation of factors of jumps as patterns).
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Local and permuton limits
for families of permutations
encoded by a generating tree
where labels are pairs of integers



Local limits versus permuton limits

@ Local limits describe the limiting behavior around a random point.

@ Permuton limits describe the global limiting behavior of a
permutation. This is a scaling limit.

KPermuton limits of permutations: h
@ Once properly rescaled, the diagram of a permutation gives a
probability distribution on the unit square.
[ ]
[ ]
[
[ ]
[ ]
[ ]
[ ]
N /
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Local limits versus permuton limits

@ Local limits describe the limiting behavior around a random point.

@ Permuton limits describe the global limiting behavior of a
permutation. This is a scaling limit.

KPermuton limits of permutations:

@ Once properly rescaled, the diagram of a permutation gives a
probability distribution on the unit square.

@ A permuton p is a probability distribution on the unit square
with uniform projections.

@ A sequence of random permutations (o) converges to u if the
diagrams of the o, converge to u for the weak topology.

Theorem: The limiting distribution of the densities of occurrences of
KaII patterns in o characterizes the permuton limit of o. D
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Back to Av(241 3), following

Letting these permutations grow on the right, we obtain a generating tree
encoded by the following rewriting rule:

(1,1)
Qsemi = (h,k)“"-) (l,k—i-l),...,(h,k—i—l)
(h+ k,1),...,(h+1,k).

Shifting all labels by (—1, —1), this is equivalent to

(0,0)
leemi: (h,k)v-) (0,k+1),...,(h,k—|—1)
(h+k+1,0),....(h+1,k).

As before, we can identify a permutation o € Av(241 3) with the sequence
of labels from the root to ¢ in the generating tree.

Remark: All productions being distinct, we do not need to introduce colors.
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Increments and encoding as conditioned random walks

Recall the rewriting rule:

(0,0)
Qeemi = § (N k)~ (0,k+1),...,(h k+1)
(h+ k+1,0),...,(h+1,k).

@ The possible labels are (i,j) s.t. i,j > 0.

e The increments are J = {(—i,+1) : i > 0} W {(+i,—i+1):i > 1}.
Can we see a uniform permutation in Av(2413) as a 2-dimensional
random walk starting at (0,0) and conditioned to stay in the non-negative
quadrant?

Yes, choosing the following distribution on the increments:

. -1
P(—i,+1) = ay' = P(+i,—i+1) fora =+v5—2and v = \@2 )
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An alternative to reading patterns in this encoding

e Random walks in cones are well-understood (e.g. [Denisov, Wachtell).

@ Can we transfer results about “patterns in random walks" to patterns
in permutations? And how?

We rather work with continuous objects, which are the limits of our
discrete objects, and which “encode all pattern densities” :

Permutation Permuton

Walk 2-dimensional Brownian excursion
discrete continuous

coalescent-walk process | coalescent-walk process

The coalescent-walk processes are built from the walks and we can read on
them the permutation and its (non-consecutive) patterns.
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From a permutation to a sequence of increments

The path from the root of the generating tree to
0c=2478956310111 € Av(2413) is

(1,0)

(1,0)

(1,0)

0,0 3,0 4,0 2,1 3,1
(0.0 ° [CIUNES (4,0) ° (2.1 ° (3.1 °
[e] . . .
o o o o
. [ . .
° . ° . ° . .
o o [ o )
. . ) )
[ o ) o
.
o o o
e o ° o
.
o
(3 (—4,1) (2,-1)
(1,2) (4,0) (0,1) (2,0)
o o o
0 . 0
o
. . .
. . . .
o
. ) .
o
. . )
. o . . .
o <] ° ®
. ° ° .
.
[ o
. .
o
.

The walk encoding o is shown in black.
The sequence of increments encoding ¢ is shown in red.
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Building a coalescent-walk process from a walk

Consider the (same) permutation 0 =2478956310111 € Av(2413)
and the corresponding sequence of increments

(1,0),(1,0),(1,0),(1,0),(-2,1),(1,0),(—2,1),(3,—2),(—4,1),(2, —1).

The associated discrete
coalescent-walk process is shown in

) ' \07 i\
green on the right. ' VAN/ANW/ INY
It is a set of n = 11 walks Z,(,') § ////
starting at (t,0) for i =1 to n. /3

Remarks:
@ A permutation can be read on the coalescent-walk process.
@ It coincides with the permutation we started from.

@ A pattern in the permutation can be read from a finite number of
green paths.
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Scaling limit result for walks and coalescent-walk process

@ Let W, be a conditioned random walk as before.
o Let Wy (t) for t € [0,1] be the rescaled version (interpolated for t).
o Let & = (X,,)),) be a two-dimensional Brownian excursion of

correlation p in the non-negative quadrant, for p = —1%‘/5.

Theorem: W, (i) Ep
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Scaling limit result for walks and coalescent-walk process

@ Let W, be a conditioned random walk as before.
o Let Wy (t) for t € [0,1] be the rescaled version (interpolated for t).
o Let & = (X,,)),) be a two-dimensional Brownian excursion of

correlation p in the non-negative quadrant, for p = —1%‘/5.

o Let (Z,(,i))lgig,, be the coalescent-walk process associated with W,,.
o Let Z,(,u)(t) be the rescaled version (interpolated for t and u).
o Let (Z/()U))UG[O,I] be the solution of the SDEs

dZ2W(t) = ]l{z () >0}dyp( )~ { g”)(t)<o}pr(t) te(u1)
’ 0 t €[0,u].

Theorem: (W, Z,(,u’)) @ = (&ps Z(u’))
for a sequence (uj)i>o of i.i.d. uniform random variables in [0, 1].
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Scaling limit result for permutations

o € Av(2413) encoded by a discrete coalescent-walk process (Z,Si))lg,én
is described by o (i) < o(j) < i <z j for the total order <7 defined by

i<zii i<zjifi<jand ZO()<0; j<ziifi<jandZ0(j)> 0.
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Scaling limit result for permutations

o € Av(2413) encoded by a discrete coalescent-walk process (Z,Si))lg,én
is described by o (i) < o(j) < i <z j for the total order <7 defined by

i<zii i<zjifi<jand ZO()<0; j<ziifi<jandZ0(j)> 0.

Similarly, we can define the permuton associated with a continuous
_ (u)
coalescent-walk process (Z57),c(0,1]-

@ The total order is replaced by the function
pz,(t) = Leb({x € [0,t) : Z{9(t) <0} U {x € [t,1] : Z{I(x) > O}).
@ The corresponding permuton 1, is given by

po(-) = (ld, pz,) * Leb(-) = Leb({t € [0,1] : (t,¢2,(t)) € -}).
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Scaling limit result for permutations

o € Av(2413) encoded by a discrete coalescent-walk process (Z,Si))lg,én
is described by o (i) < o(j) < i <z j for the total order <7 defined by

i<zii i<zjifi<jand ZO()<0; j<ziifi<jandZ0(j)> 0.

Similarly, we can define the permuton associated with a continuous
coalescent-walk process (Zf(;"))ue[o’l].

@ The total order is replaced by the function
pz,(t) = Leb({x € [0,t) : Z{9(t) <0} U {x € [t,1] : Z{I(x) > O}).
@ The corresponding permuton 1, is given by
po(-) = (ld,pz,) x Leb(-) = Leb({t € [0,1] : (£, 0z,(t)) € -})-

Theorem: Uniform random permutations avoiding 2413 converge in the
permuton sense to fi,.
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The case of Av(2413,3142,3412)

Also in J. Borga, arxiv:2112.00159.
@ These admit a generating tree where labels are pairs of integers.

@ Uniform permutations o can be encoded by conditioned random walks
for some (explicit) distribution on the increments.

e From the increments, we can build a (similar but not identical)
discrete coalescent-walk process, encoding ¢ and all its patterns.

@ The scaling limit of the coalescent-walk process is the solution of the
SDEs (with p &~ —0.2151 and g ~ 0.3008)

~(v)
dZ/()qu)(t) _ {1{22%(t)>0}dy,,(t) - ]1{25;_:)‘7“)<0}pr(1') +(2q — 1)dLZra(r)  te (u,1)
0 t € [0, u].

(u) . t
where £Z0a(t) = lim £ [71_ ds
(5= 1 22 Jo Latopereq
is the symmetric local-time process at zero of Z,gfl).

@ The permuton limit of uniform permutations avoiding 2413, 3142
and 3412 is also obtained as the pushforward of the function ¢z, .
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The case of Av(2413,3142) (Baxter permutations)

A family of maps makes the picture richer. See J. Borga, M. Maazoun.

Av (3415 3442) é_—————>-5/vwhm\,

huu o

- Hen Mu ﬁhe dld - Wibsen, 2;,43
-ne’éeu, W 4
;u.Aa’ DYV

Results proved are
@ local limit result, jointly for all four objects;

@ scaling limit result, jointly for walks (associated with a map and with
its dual, hence somehow for the maps), coalescent-walk processes,
and permutations.
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What we (hopefully) learned

@ What is a generating tree, and its encoding by a rewriting rule.

How to use them to prove existence of (implicit) bijections.

How to turn a rewriting rule into a functional equation for the
multivariate generating function.

How to solve it with the (obstinate) kernel method.

How to use generating trees to encode uniform random permutations
in some pattern-avoiding families as conditioned random walks.

How to use this encoding to derive local and scaling limit results for
permutations (and objects used by this encoding).

Applications mostly on pattern-avoiding permutations (but also a bit
on lattice paths).

Merci beaucoup !!!
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