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INTRODUCTION

1. Examples



From the SIAM 100-Digit Challenge
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Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct
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Algebraic balanced urns

I Computer algebra conjectures and proves larger classes of algebraic balanced urns.

I More in Basile Morcrette’s talk!



Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}

• g(i, j, n) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Nature of the generating function

G(x, y, t) =
∞∑

i,j,n=0

g(i, j, n)xiyjtn ∈ Q[[x, y, t]]

I Computer algebra conjectures and proves:

Theorem [B. & Kauers 2010] G(x, y, t) is an algebraic function† and

G(1, 1, t) =
1

2t
· 2F1
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I A simpler variant as an exercise tomorrow.

†Minimal polynomial P (x, y, t, G(x, y, t)) = 0 has > 1011 monomials; ≈30Gb (!)



Inverse moment problem for walk sequences [B., Flajolet & Penson 2011]

Question: Given (fn), find I ⊆ R and w : I → R s.t. fn =
∫
I
w(t) tn dt (n ≥ 0).



A SIAM Review combinatorial identity

I Computer algebra conjectures and proves p = 28
15π

.



Monthly (AMM) problems with a combinatorial flavor
that can be solved using computer algebra







I Last one as an exercise tomorrow.



A money changing problem

Question†: The number of ways one can change any amount of banknotes of

10e, 20e, . . . using coins of 50 cents, 1e and 2e is always a perfect square.

†Free adaptation of Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegö’s Problems Book (1925)



This is equivalent to finding the number M20k of solutions (a, b, c) ∈ N3 of

a+ 2b+ 4c = 20k.

Euler-Comtet’s denumerants:
∑
n≥0

Mnx
n =

1

(1− x)(1− x2)(1− x4)
.

> f:=1/(1-x)/(1-x^2)/(1-x^4):

> S:=series(f,x,201):

> [seq(coeff(S,x,20*k),k=1..10)];

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]

> subs(n=20*k,gfun[ratpolytocoeff](f,x,n)):

17

32
+

(20k + 1)(20k + 2)

16
+5k+

(−1)−20k(20k + 1)

16
+

5(−1)−20k

32
+

∑
α2+1=0

(
−

( 1
16 −

1
16α)α

−20k

α

)

> value(subs(_alpha^(-20*k)=1,%)):

> simplify(%) assuming k::posint:

> factor(%);
2

(5 k + 1)



INTRODUCTION

2. Computer Algebra



General framework

Computeralgebra = effectivemathematicsandalgebraiccomplexity

• Effective mathematics: what can we compute?

• their complexity: how fast?



Computer algebra books



Mathematical Objects

• Main objects

– integers Z

– polynomials K[x]

– rational functions K(x)

– power series K[[x]]

– matrices Mr(K)

– linear recurrences with constant, or polynomial, coefficients K[n]〈Sn〉
– linear differential equations with polynomial coefficients K[x]〈∂x〉

where K is a field (generally supposed of characteristic 0 or large)

• Secondary/auxiliary objects

– polynomial matrices Mr(K[x])

– power series matrices Mr(K[[x]])



Overview

Today

1. Introduction

2. High Precision Approximations

– Fast multiplication, binary splitting, Newton iteration

3. Tools for Conjectures

– Hermite-Padé approximants, p-curvature

Tomorrow morning

4. Tools for Proofs

– Symbolic method, resultants, D-finiteness, creative telescoping

Tomorrow night

– Exercises with Maple



HIGH PRECISION

1. Fast Multiplication



Complexity yardsticks

Important features:

• addition is easy: naive algorithm already optimal

• multiplication is the most basic (non-trivial) problem

• almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:

• integer/polynomial/power series multiplication? Yes!

• matrix multiplication? Big open problem!



Complexity yardsticks

M(n) = complexity of multiplication in K[x]<n, and of n-bit integers

= O(n2) by the naive algorithm

= O
(
n1.58

)
by Karatsuba’s algorithm

= O
(
nlogα (2α−1)) by the Toom-Cook algorithm (α ≥ 3)

= O
(
n log n loglog n

)
by the Schönhage-Strassen algorithm

MM(r) = complexity of matrix product in Mr(K)

= O(r3) by the naive algorithm

= O(r2.81) by Strassen’s algorithm

= O(r2.38) by the Coppersmith-Winograd algorithm

MM(r, n) = complexity of polynomial matrix product in Mr(K[x]<n)

= O(r3 M(n)) by the naive algorithm

= O(MM(r)n log(n) + r2n log n loglog n) by the Cantor-Kaltofen algo

= O(MM(r)n+ r2 M(n)) by the B-Schost algorithm



Fast polynomial multiplication in practice

Practical complexity of Magma’s multiplication in Fp[x], for p = 29× 257 + 1.



What can be computed in 1 minute with a CA system∗

polynomial product† in degree 14,000,000 (>1 year with schoolbook)

product of two integers with 500,000,000 binary digits

factorial of N = 20, 000, 000 (output of 140,000,000 digits)

gcd of two polynomials of degree 600,000

resultant of two polynomials of degree 40,000

factorization of a univariate polynomial of degree 4,000

factorization of a bivariate polynomial of total degree 500

resultant of two bivariate polynomials of total degree 100 (output 10,000)

product/sum of two algebraic numbers of degree 450 (output 200,000)

determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

determinant of an integer matrix with 32-bit entries and 700 rows

∗on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7
†in K[x], for K = F67108879



Discrete Fourier Transform
[Gauss 1866, Cooley-Tukey 1965]

DFT Problem: Given n = 2k, f ∈ K[x]<n, and ω ∈ K a primitive n-th root of

unity, compute (f(1), f(ω), . . . , f(ωn−1))

Idea: Write f = feven(x2) + xfodd(x2), with deg(feven),deg(fodd) < n/2.

Then f(ωj) = feven(ω2j) + ωjfodd(ω2j), and (ω2j)0≤j<n = n
2 -roots of 1.

Complexity: F(n) = 2 · F(n/2) +O(n) =⇒ F(n) = O(n log n)



Inverse DFT

IDFT Problem: Given n = 2k, v0, . . . , vn−1 ∈ K and ω ∈ K a primitive n-th

root of unity, compute f ∈ K[x]<n such that f(1) = v0, . . . , f(ωn−1) = vn−1

• Vω · Vω−1 = n · In → performing the inverse DFT in size n amounts to:

– performing a DFT at

1

1
,

1

ω
, · · · , 1

ωn−1

– dividing the results by n.

• this new DFT is the same as before:

1

ωi
= ωn−i,

so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is O(n log(n))



FFT polynomial multiplication

Suppose the basefield K contains enough roots of unity

To multiply two polynomials f, g in K[x], of degrees < n:

• find N = 2k such that h = fg has degree less than N N ≤ 4n

• compute DFT(f,N) and DFT(g,N) O(N log(N))

• multiply pointwise these values to get DFT(h,N) O(N)

• recover h by inverse DFT O(N log(N))

Complexity: O(N log(N)) = O(n log(n))

General case: Create artificial roots of unity O(n log(n) log log n)



HIGH PRECISION

2. Binary Splitting



Example: fast factorial

Problem: Compute N ! = 1× · · · ×N

Naive iterative way: unbalanced multiplicands Õ(N2)

• Binary Splitting: balance computation sequence so as to take advantage of

fast multiplication (operands of same sizes):

N ! = (1× · · · × bN/2c)︸ ︷︷ ︸
size 1

2N logN

× ((bN/2c+ 1)× · · · ×N)︸ ︷︷ ︸
size 1

2N logN

and recurse. Complexity Õ(N).

• Extends to matrix factorials A(N)A(N − 1) · · ·A(1) Õ(N)

−→ recurrences of arbitrary order.



Application to recurrences

Problem: Compute the N -th term uN of a P -recursive sequence

pr(n)un+r + · · ·+ p0(n)un = 0, (n ∈ N)

Naive algorithm: unroll the recurrence Õ(N2) bit ops.

Binary splitting: Un = (un, . . . , un+r−1)T satisfies the 1st order recurrence

Un+1 =
1

pr(n)
A(n)Un with A(n) =


pr(n)

. . .

pr(n)

−p0(n) −p1(n) . . . −pr−1(n)

 .

=⇒ uN reads off the matrix factorial A(N − 1) · · ·A(0)

[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy Õ(N) bit ops.



Application: fast computation of e = exp(1)
[Brent 1976]

en =
n∑
k=0

1

k!
−→ exp(1) = 2.7182818284590452 . . .

Recurrence en − en−1 = 1/n! ⇐⇒ n(en − en−1) = en−1 − en−2 rewriteseN−1
eN

 =
1

N

 0 N

−1 N + 1


︸ ︷︷ ︸

C(N)

eN−2
eN−1

 =
1

N !
C(N)C(N − 1) · · ·C(1)

0

1

 .

I eN in Õ(N) bit operations [Brent 1976]

I generalizes to the evaluation of any D-finite series at an algebraic number

[Chudnovsky-Chudnovsky 1987] Õ(N) bit ops.



Implementation in gfun
[Mezzarobba, S. 2010]

> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};

> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)

local i1, loc0, loc1, loc2, tmp2, tmp1, i2;

if n <= 22 then

loc0 := 1;

loc1 := 2;

if n = 0 then return loc0

else for i1 to n - 1 do

loc2 := (-loc0 + loc1 + loc1*(i1 + 1))/(i1 + 1); loc0 := loc1; loc1 := loc2

end do

end if; loc1

else

tmp1 := ‘gfun/rectoproc/binsplit‘([

’ndmatrix’(Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, 0, n,

matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...]],

datatype = anything, storage = empty, shape = [identity]), 1)),

expected_entry_size], Vector(2, [...], datatype = anything));

tmp1 := subs({e(0) = 1, e(1) = 2}, tmp1); tmp1

end if

end proc

> tt:=time(): x:=pro(50000): time()-tt, evalf(x-exp(1), 200000);

1.827, 0.



Application: record computation of π

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

1

π
=

1

53360
√

640320

∑
n≥0

(−1)n(6n)!(13591409 + 545140134n)

n!3(3n)!(8 · 100100025 · 327843840)n
.

I Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits

per iteration −→ 4 billion digits [Chudnovsky-Chudnovsky 1994]

I Current record on a PC: 10000 billion digits [Kondo & Yee 2011]



HIGH PRECISION

3. Newton Iteration



Newton’s tangent method: real case
[Newton, 1671]

xκ+1 = N (xκ) = xκ − (x2κ − 2)/(2xκ), x0 = 1

x1 = 1.5000000000000000000000000000000

x2 = 1.4166666666666666666666666666667

x3 = 1.4142156862745098039215686274510

x4 = 1.4142135623746899106262955788901

x5 = 1.4142135623730950488016896235025



Newton’s tangent method: power series case

xκ+1 = N (xκ) = xκ − (x2κ − (1− t))/(2xκ), x0 = 1

x1 = 1− 1

2
t

x2 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 1

32
t4 − 1

64
t5 − 1

128
t6 − 1

256
t7 − 1

512
t8 − 1

1024
t9 + · · ·

x3 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4 − 7

256
t5 − 21

1024
t6 − 33

2048
t7 − 107

8192
t8 − 177

16384
t9 + · · ·



Newton’s tangent method: power series case

In order to solve ϕ(x, g) = 0 in K[[x]] (where ϕ ∈ K[[x, y]], ϕ(0, 0) = 0 and

ϕy(0, 0) 6= 0), iterate

gκ+1 = gκ −
ϕ(gκ)

ϕy(gκ)
mod x2

κ+1

g − gκ+1 = g − gκ +
ϕ(g) + (gκ − g)ϕy(g) +O((g − gκ)2)

ϕy(g) +O(g − gκ)
= O((g − gκ)2).

I The number of correct coefficients doubles after each iteration

I Total cost = 2 ×
(

the cost of the last iteration
)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]

Division, logarithm and exponential of power series in K[[x]] can be computed

at precision N using O(M(N)) operations in K



Division, logarithm and exponential of power series
[Sieveking1972, Kung1974, Brent1975]

To compute the reciprocal of f ∈ K[[x]] with f(0) 6= 0, choose ϕ(g) = 1/g − f :

g0 = 1/f0 and gκ+1 = gκ + gκ(1− fgκ) mod x2
κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: division of power series at precision N in O(M(N))



Division, logarithm and exponential of power series
[Sieveking1972, Kung1974, Brent1975]

To compute the reciprocal of f ∈ K[[x]], choose ϕ(g) = 1/g − f :

g0 = 1/f0 and gκ+1 = gκ + gκ(1− fgκ) mod x2
κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: division of power series at precision N in O(M(N))

Corollary: Logarithm log(f) = −
∑
i≥1

(1− f)i

i
of f ∈ 1 + xK[[x]] in O(M(N)):

• compute the Taylor expansion of h = f ′/f modulo xN−1 O(M(N))

• take the antiderivative of h O(N)



Division, logarithm and exponential of power series
[Sieveking1972, Kung1974, Brent1975]

To compute the reciprocal of f ∈ K[[x]], choose ϕ(g) = 1/g − f :

g0 = 1/f0 and gκ+1 = gκ + gκ(1− fgκ) mod x2
κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: division of power series at precision N in O(M(N))

Corollary: Logarithm log(f) = −
∑
i≥1

(1− f)i

i
of f ∈ 1 + xK[[x]] in O(M(N)):

• compute the Taylor expansion of h = f ′/f modulo xN−1 O(M(N))

• take the antiderivative of h O(N)

Corollary: Exponential exp(f) =
∑
i≥0

f i

i!
of f ∈ xK[[x]]. Use φ(g) = log(g)− f :

g0 = 1 and gκ+1 = gκ − gκ (log(gκ)− f) mod x2
κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))



Application: Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F ) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F )

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F )/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(N)

• Deduce R = F −QG O(M(N))



Application: conversion coefficients ↔ power sums
[Schönhage, 1982]

Any polynomial F = xn + a1x
n−1 + · · ·+ an in K[x] can be represented by its

first n power sums Si =
∑

F (α)=0

αi

Conversions coefficients ↔ power sums can be performed

• either in O(n2) using Newton identities (naive way):

iai + S1ai−1 + · · ·+ Si = 0, 1 ≤ i ≤ n

• or in O(M(n)) using generating series

rev(F )′

rev(F )
= −

∑
i≥0

Si+1x
i ⇐⇒ rev(F ) = exp

−∑
i≥1

Si
i
xi





Application: special bivariate resultants
[B-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

F ⊗G =
∏

F (α)=0,G(β)=0

(x− αβ), F ⊕G =
∏

F (α)=0,G(β)=0

(x− (α+ β))

Output size: N = deg(F ) deg(G)

Linear algebra: χxy, χx+y in K[x, y]/(F (x), G(y)) O(MM(N))

Resultants: Resy
(
F (y), ydeg(G)G(x/y)

)
, Resy (F (y), G(x− y)) O(N1.5)

Better: ⊗ and ⊕ are easy in Newton representation O(M(N))∑
αs
∑

βs =
∑

(αβ)s and∑∑
(α+ β)s

s!
xs =

(∑∑
αs

s!
xs
)(∑∑

βs

s!
xs
)

Corollary: Fast polynomial shift P (x+ a) = P (x)⊕ (x+ a) O(M(deg(P )))



Newton iteration on power series: operators and systems

In order to solve an equation φ(Y ) = 0, with φ : (K[[x]])r → (K[[x]])r,

1. Linearize: φ(Yκ − U) = φ(Yκ)−Dφ|Yκ · U +O(U2),

where Dφ|Y is the differential of φ at Y .

2. Iterate: Yκ+1 = Yκ − Uκ+1, where Uκ+1 is found by

3. Solve linear equation: Dφ|Yk · U = φ(Yκ) with valU > 0.

Then, the sequence Yκ converges quadratically to the solution Y .



Application: inversion of power series matrices
[Schulz, 1933]

To compute the inverse Z of a matrix of power series Y ∈Mr(K[[x]]):

• Choose the map φ : Z 7→ I − Y Z with differential Dφ|Y : U 7→ −Y U
• Equation for U : −Y U = I − Y Zκ mod x2

κ+1

• Solution: U = −Y −1 (I − Y Zκ) = −Zκ (I − Y Zκ) mod x2
κ+1

This yields the following Newton-type iteration for Y −1

Zκ+1 = Zκ + Zκ(Ir − Y Zκ) mod x2
κ+1

Complexity:

Cinv(N) = Cinv(N/2) +O(MM(r,N)) =⇒ Cinv(N) = O(MM(r,N))



Application: non-linear systems

In order to solve a system Y = H(Y ) = φ(Y ) + Y , with

H : (K[[x]])r → (K[[x]])r, such that Ir − ∂H/∂Y is invertible at 0.

1. Linearize: φ(Yκ − U)− φ(Yκ) = U − ∂H/∂Y (Yκ) · U +O(U2).

2. Iterate Yκ+1 = Yκ − Uκ+1, where Uκ+1 is found by

3. Solve linear equation: (Ir − ∂H/∂Y (Yκ)) ·U = H(Yκ)− Yκ with valU > 0.

This yields the following Newton-type iteration:Zκ+1 = Zκ + Zκ(Ir − (Ir − ∂H/∂Y (Yκ))Zκ) mod x2
κ+1

Yκ+1 = Yκ − Zκ+1(H(Yκ)− Yκ) mod x2
κ+1

computing simultaneously a matrix and a vector.



Example: Mappings

> mappings:={M=Set(Cycle(Tree)),Tree=Prod(Z,Set(Tree))}:
> combstruct[gfeqns](mappings,labeled,x);

[M(x) =
1

1− Tree(x)
, Tree(x) = x exp(Tree(x))]

> countmappings:=SeriesNewtonIteration(mappings,labelled,x):

> countmappings(10);

[
M = 1 + x+ 2x2 +

9

2
x3 +

32

3
x4 +

625

24
x5 +

324

5
x6

+
117649

720
x7 +

131072

315
x8 +

4782969

4480
x9 +O

(
x10
)
,

Tree = x+ x2 +
3

2
x3 +

8

3
x4 +

125

24
x5 +

54

5
x6+

16807

720
x7 +

16384

315
x8 +

531441

4480
x9 +O

(
x10
)]

Code Pivoteau-S-Soria, should end up in combstruct



Application: quasi-exponential of power series matrices
[B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007]

To compute the solution Y ∈Mr(K[[x]]) of the system Y ′ = AY

• choose the map φ : Y 7→ Y ′ −AY , with differential φ.

• the equation for U is U ′ −AU = Y ′κ −AYκ mod x2
κ+1

• the method of variation of constants yields the solution

U = YκVκ mod x2
κ+1

, Y ′κ −AYκ = YκV
′
κ mod x2

κ+1

This yields the following Newton-type iteration for Y :

Yκ+1 = Yκ − Yκ
∫
Y −1κ (Y ′κ −AYκ) mod x2

κ+1

Complexity:

Csolve(N) = Csolve(N/2) +O(MM(r,N)) =⇒ Csolve(N) = O(MM(r,N))



TOOLS FOR CONJECTURES

1. Hermite-Padé Approximants



Definition

Definition: Given a column vector F = (f1, . . . , fn)T ∈ K[[x]]n and an n-tuple

d = (d1, . . . , dn) ∈ Nn, a Hermite-Padé approximant of type d for F is a row

vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1f1 + · · ·+ Pnfn = O(xσ) with σ =
∑
i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

I Very useful concept in number theory (transcendence theory):

• [Hermite, 1873]: e is transcendent.

• [Lindemann, 1882]: π is transcendent, and so does eα for any α ∈ Q \ {0}.

• [Beukers, 1981]: reformulate Apéry’s proof that ζ(3) =
∑
n

1
n3 is irrational.

• [Rivoal, 2000]: there exist an infinite number of k such that ζ(2k + 1) /∈ Q.



Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),

where C(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 +O(x6).

This boils down to finding α0, α1, β0, β1, γ0, γ1 such that

α0+α1x+(β0+β1x)(1+x+2x2+5x3+14x4)+(γ0+γ1x)(1+2x+5x2+14x3+42x4) = O(x5).

By identifying coefficients, this is equivalent to a homogeneous linear system:



1 0 1 0 1 0

0 1 1 1 2 1

0 0 2 1 5 2

0 0 5 2 14 5

0 0 14 5 42 14


×



α0

α1

β0

β1

γ0

γ1


= 0⇐⇒



1 0 1 0 1

0 1 1 1 2

0 0 2 1 5

0 0 5 2 14

0 0 14 5 42


×



α0

α1

β0

β1

γ0


= −γ1



0

1

2

5

14


.

By homogeneity, one can choose γ1 = 1. Then, the violet minor shows that

one can take (β0, β1, γ0) = (−1, 0, 0). The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P (x,C(x)) = 0 mod x5.



Algebraic and differential approximation = guessing

• Hermite-Padé approximants of n = 2 power series are related to Padé

approximants, i.e. to approximation of series by rational functions

• algebraic approximants = Hermite-Padé approximants for f` = A`−1,

where A ∈ K[[x]] seriestoalgeq, listtoalgeq

• differential approximants = Hermite-Padé approximants for f` = A(`−1),

where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

2

[1 - y(x) + x y(x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));

/ 2 \

/d \ |d |

[{-2 y(x) + (2 - 4 x) |-- y(x)| + x |--- y(x)|, y(0) = 1, D(y)(0) = 1}, egf]

\dx / | 2 |

\dx /



Existence and naive computation

Theorem For any vector F = (f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple

d = (d1, . . . , dn) ∈ Nn, there exists a Hermite-Padé approximant of type d for F.

Proof: The undetermined coefficients of Pi =
∑di
j=0 pi,jx

j satisfy a linear

homogeneous system with σ =
∑
i(di + 1)− 1 equations and σ + 1 unknowns.

Corollary Computation in O(MM(σ)) = O(σθ), for 2 ≤ θ ≤ 3.

I There are better algorithms:

• The linear system is structured (Sylvester-like / quasi-Toeplitz)

• Derksen’s algorithm (Gaussian-like elimination) O(σ2)

• Beckermann-Labahn’s algorithm (DAC) Õ(σ) = O(σ log2 σ)



Quasi-optimal computation

Theorem [Beckermann-Labahn, 1994] One can compute a Hermite-Padé

approximant of type (d, . . . , d) for F = (f1, . . . , fn) in O(MM(n, d) log(nd)).

Ideas:

• Compute a whole matrix of approximants

• Exploit divide-and-conquer

Algorithm:

1. If σ = n(d+ 1)− 1 ≤ threshold, call the naive algorithm

2. Else:

(a) recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

(b) compute “residue” R such that P1 · F = xσ/2 ·
(
R +O(xσ/2)

)
(c) recursively compute P2 ∈ K[x]n×n s.t. P2 ·R = O(xσ/2), deg(P2) ≈ d

2

(d) return P := P2 ·P1

I The precise choices of degrees is a delicate issue

I Gcd, extended gcd, Padé approximants in O(M(n) log n)



Example: Flea from SIAM 100-Digit Challenge

1/4

1/4

1/4-ε 1/4+ε

> proba:=proc(i,j,n,c)

option remember;

if abs(i)+abs(j)>n then 0

elif n=0 then 1

else

expand(proba(i-1,j,n-1,c)*(1/4+c)+proba(i+1,j,n-1,c)*(1/4-c)

+proba(i,j+1,n-1,c)*1/4+proba(i,j-1,n-1,c)*1/4)

fi

end:

> seq(proba(0,0,k,c),k=0..6);

1, 0,
1

4
− 2c2, 0,

9

64
− 9

4
c2 + 6c4, 0,

25

256
− 75

32
c2 + 15c4 − 20c6

> gfun:-listtodiffeq([seq(proba(0,0,2*k,c),k=0..20)],y(x));



[
{ (
−1 + 8 c2 + 48xc4

)
y (x) +

(
4− 8x+ 64xc2 + 192x2c4

) d

dx
y (x)

+
(
4x+ 64x3c4 − 4x2 + 32x2c2

) d2

dx2
y (x) ,

y (0) = 1,D (y) (0) = 1/4− 2 c2
}
, ogf ]

Next steps: dsolve (+ help) and evaluation at x = 1.



TOOLS FOR CONJECTURES

2. p-Curvature of Differential Operators



Important classes of power series

algebraic

hypergeom

D-finite series

Algebraic: S(x) ∈ K[[x]] root of a polynomial P ∈ K[x, y].

D-finite: S(x) ∈ K[[x]] satisfying a linear differential equation with polynomial

(or rational function) coefficients cr(x)S(r)(x) + · · ·+ c0(x)S(x) = 0.

Hypergeometric: S(x) =
∑
n snx

n such that sn+1

sn
∈ K(n). E.g.

2F1

(
a b

c

∣∣∣∣x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, (a)n = a(a+ 1) · · · (a+ n− 1).



Linear differential operators

Definition: If K is a field, K〈x, ∂; ∂x = x∂ + 1〉, or simply K(x)〈∂〉, denotes the

associative algebra of linear differential operators with coefficients in K(x).

K[x]〈∂〉 is called the (rational) Weyl algebra. It is the algebraic formalization of

the notion of linear differential equation with rational function coefficients:

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0

⇐⇒
L(y) = 0, where L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x)

The commutation rule ∂x = x∂ + 1 formalizes Leibniz’s rule (fg)′ = f ′g + fg′.

I Implementation in the DEtools package: diffop2de, de2diffop, mult

DEtools[mult](Dx,x,[Dx,x]);

x Dx + 1



Weyl algebra is Euclidean

Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]

K(x)〈∂〉 is a non-commutative (left and right) Euclidean domain: for any

A,B ∈ K(x)〈∂〉, there exist unique operators Q,R ∈ K(x)〈∂〉 such that

A = QB +R, and deg∂(R) < deg∂(B).

This is called the Euclidean right division of A by B.

Moreover, any A,B ∈ K(x)〈∂〉 admit a greatest common right divisor (GCRD)

and a least common left multiple (LCLM). They can be computed by a

non-commutative version of the extended Euclidean algorithm.

I rightdivision, GCRD, LCLM from the DEtools package

> rightdivision(Dx^10,Dx^2-x,[Dx,x])[2];

3 2 5

(20 x + 80) Dx + 100 x + x

proves that Ai(10)(x) = (20x3 + 80)Ai
′
(x) + (100x2 + x5)Ai(x)



Application to differential guessing

0 5 10 15 20 25 30
order Dt0

20

40

60

80

100

degree t

1000 terms of a series are enough to guess candidate differential equations

below the red curve. GCRD of candidates could jump above the red curve.



The Grothendieck–Katz p-curvatures conjecture

Q: when does a differential equation possess a basis of algebraic solutions?

E.g. for the Gauss hypergeometric equation x(1− x)∂2 + (γ − (α+ β + 1)x)∂ − αβx,

Schwarz’s list (1873) classifies algebraic 2F1’s in terms of α, β, γ

Conjecture [Grothendieck, 1960’s, unpublished; Katz, 1972]

Let A ∈ Q(x)n×n. The system (S) : y′ = Ay has a full set of algebraic solutions

if and only if, for almost all prime numbers p, the system (Sp) defined by

reduction of (S) modulo p has a full set of algebraic solutions over Fp(x).

Definition: The p-curvature of (S) is the matrix Ap, where

A0 = In, and A`+1 = A′` +A`A for ` ≥ 0.

Theorem [Cartier, 1957]

The sufficient condition of the G.-K. Conjecture is equivalent to Ap = 0 mod p.

I For each p, this can be checked algorithmically.



Grothendieck’s conjecture

Q: when does a differential equation possess a basis of algebraic solutions?

For a scalar differential equation, the G.-K. Conjecture can be reformulated:

Grothendieck’s Conjecture: Suppose L ∈ K(x)〈∂〉 is irreducible. The equation

(E) : L(y) = 0 has a basis of algebraic solutions if and only if, for almost all

prime numbers p, the operator L right-divides ∂p modulo p.

I For each p, this can be checked algorithmically.

I Conjecture is proved for Picard-Fuchs equations [Katz 1972] (in particular,

for diagonals [Christol 1984]), for nFn−1 equations [Beukers & Heckman 1989].



Grothendieck’s conjecture for combinatorics

Suppose that we have guessed a linear differential equation L(f) = 0 (by

differential Hermite-Padé approximation) for some power series f ∈ Q[[x]],

and that we want to recognize whether f is algebraic or not.

Recipe 1: try algebraic guessing.

Recipe 2: For several primes p, compute p-curvatures mod p, and check

whether they are zero; equivalently, test if ∂p mod L = 0 (mod p).

I For many power series coming from counting problems (diagonals, constant

terms, integrals of algebraic functions, . . . ) Grothendieck’s conjecture is true.



Grothendieck’s conjecture at work

(excerpt from Rodriguez-Villegas’s “Integral ratios of factorials”)

I Algebraicity of u can be however guessed using any prior knowledge, by

computing p-curvatures of the (minimal) order-8 operator L s.t. L(u) = 0

I For p < 300, they are all zero, except when p ∈ {11, 13, 17, 19, 23}



G-series and global nilpotence

Definition: A power series
∑
n≥0

an
bn
xn in Q[[x]] is called a G-series if it is

(a) D-finite; (b) analytic at x = 0; (c) ∃C > 0, lcm(b0, . . . , bn) ≤ Cn.

Basic examples: (1) algebraic functions [Eisenstein 1852]

(2) − log(1− x) =
∑
n≥1 x

n/n ([Chebyshev 1852] lcm(1, 2, . . . , n) ≤ 4n)

(3) 2F1

(
α β

γ

∣∣∣∣x), α, β, γ ∈ Q

(4) OGF of any P -recursive, integer-valued, exponentially bounded, sequence

Theorem [Chudnovsky 1985] The minimal-order linear differential operator

annihilating a G-series is globally nilpotent: for almost all prime numbers p, it

right-divides ∂pµ modulo p, for some µ ≤ deg∂ L.

(this condition is equivalent to the nilpotence mod p of the p-curvature matrix)

Examples: algebraic resolvents; Gauss’s x(1− x)∂2 + (γ − (α+ β + 1)x)∂ − αβx.



Global nilpotence for combinatorics

Suppose we have guessed (by differential approximation) a linear differential

equation L(f) = 0 for a power series f ∈ Q[[x]] which is a G-series (typically,

the OGF of a P -recursive, integer-valued, exponentially bounded, sequence).

A way to empirically certify that L is very plausible:

Recipe: compute p-curvatures mod p, and check whether they are nilpotent;

equivalently, test if ∂pr mod L = 0 (mod p), where r = deg∂ L

Example:

> L:=x^2*(64*x^4+40*x^3-30*x^2-5*x+1)*Dx^3+

x*(576*x^4+200*x^3-252*x^2-33*x+5)*Dx^2+

4*(1+288*x^4+22*x^3-117*x^2-12*x)*Dx+384*x^3-12-144*x-72*x^2:

> p:=7; for j to 3 do N:=rightdivision(Dx^(3*p),L,[Dx,x])[2] mod p;

p:=nextprime(p); print(p, N); od:

11, 0

13, 0

17, 0
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This Morning
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– Symbolic method, resultants, D-finiteness, creative telescoping
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– Exercises with Maple



TOOLS FOR PROOFS

1. Symbolic Method



Language

Context-free grammars (Union, Prod, Sequence), plus Set, Cycle.

Origins: [Pólya37, Joyal81,...]

Labelled and unlabelled universes.

Examples:

Binary trees B=Union(Z,Prod(B,B))

Mappings M=Set(Cycle(Tree)),

Tree=Prod(Z,Set(Tree))

Permutations P=Set(Cycle(Z))

Children rounds R=Set(Prod(Z,Cycle(Z)))

Integer partitions P=Set(Sequence(Z))

Set partitions P=Set(Set(Z,card>0))

Irreducible polynomials mod p P=Set(Irred), P=Sequence(Coeff).

Aim: a complete library for enumeration, random generation, generating

functions of structures “defined” like this (combstruct).



Generating Function Dictionary

Definition: Exponential and Ordinary Generating Functions of a class A:

A(x) =
∑
n≥0

An
xn

n!
, Ã(x) =

∑
n≥0

Ãnx
n,

where An (resp. Ãn) is the number of labeled (resp. unlabeled) elements of

size n in A.

structure EGF OGF

Union(A,B) A(x) +B(x) Ã(x) + B̃(x)

Prod(A,B) A(x)×B(x) Ã(x)× B̃(x)

Seq(C) 1
1−C(x)

1
1−C̃(x)

Cyc(C) log 1
1−C(x)

∑
k≥1

φ(k)
k log 1

1−C̃(xk)

Set(C) exp(C(x)) exp(C̃(x) + 1
2 C̃(x2) + 1

3 C̃(x3) + · · · )



Proof. [Labeled product]∑
γ=(α,β)∈Prod(A,B)

x|γ|

|γ|!
=
∑
α∈A

∑
β∈B

(
|γ|
|α|

)
︸ ︷︷ ︸

relabeling

x|α|+|β|

|γ|!

=
∑
α

x|α|

|α|!
×
∑
β

x|β|

|β|!
.



Proof. [Unlabeled set]∑
c∈Set(C)

x|c| =
∏
c∈C

(1 + x|c| + x2|c| + · · · )

= exp log
∏
· · ·

= exp

(∑
c∈C

log
1

1− x|c|

)

= exp

(∑
c∈C

∑
k>0

xk|c|

k

)

= exp

(∑
k>0

1

k

∑
c∈C

xk|c|

)

= exp(C̃(x) +
1

2
C̃(x2) + · · · ).



Examples

Binary trees B=Union(Z,Prod(B,B)) B(x) = x+B2(x)

Mappings M=Set(Cycle(Tree)) M(x) = exp
(

log 1
1−T (x)

)
Tree=Prod(Z,Set(Tree)) T (x) = x exp(T (x))

Permutations P=Set(Cycle(Z)) P (x) = exp(log 1
1−x )

Children rounds R=Set(Prod(Z,Cycle(Z))) R(x) = (1− x)−x

Integer partitions P=Set(Sequence(Z)) P (x) = exp( x
1−x + x2/2

1−x2 + · · · )
Set partitions P=Set(Set(Z,card>0)) P (x) = exp(ex − 1)

Irreducible pols P=Set(Irred) P (x) = exp(I(x) + 1
2I(x2) + · · · )

mod p P=Sequence(Coeff) = 1
1−px



Examples

Binary trees B=Union(Z,Prod(B,B)) B(x) = x+B2(x)

Mappings M=Set(Cycle(Tree)) M(x) = exp
(

log 1
1−T (x)

)
Tree=Prod(Z,Set(Tree)) T (x) = x exp(T (x))

Permutations P=Set(Cycle(Z)) P (x) = exp(log 1
1−x )

Children rounds R=Set(Prod(Z,Cycle(Z))) R(x) = (1− x)−x

Integer partitions P=Set(Sequence(Z)) P (x) = exp( x
1−x + x2/2

1−x2 + · · · )
Set partitions P=Set(Set(Z,card>0)) P (x) = exp(ex − 1)

Irreducible pols P=Set(Irred) P (x) = exp(I(x) + 1
2I(x2) + · · · )

mod p P=Sequence(Coeff) = 1
1−px

> mappings:={M=Set(Cycle(Tree)),Tree=Prod(Z,Set(Tree))}:
> combstruct[gfeqns](mappings,labeled,x);

[M(x) =
1

1− Tree(x)
, Tree(x) = x exp(Tree(x))]



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: Y = H(Z,Y) such that Yn+1 = H(x, Yn)

with Y0 = 0 converges to a (vector of) power series (with no 0 coordinate).



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: Y = H(Z,Y) such that Yn+1 = H(x, Yn)

with Y0 = 0 converges to a (vector of) power series (with no 0 coordinate).

Definition. Constructible classes: Constructed from {1,Z,Y1,Y2, . . . } (with

|Z| = 1 and |Yi| = 0) by compositions with

• Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);

• the solution of well-founded systems Y = H(Z,Y) where the coordinates

of H are constructible.



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: Y = H(Z,Y) such that Yn+1 = H(x, Yn)

with Y0 = 0 converges to a (vector of) power series (with no 0 coordinate).

Definition. Constructible classes: Constructed from {1,Z,Y1,Y2, . . . } (with

|Z| = 1 and |Yi| = 0) by compositions with

• Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);

• the solution of well-founded systems Y = H(Z,Y) where the coordinates

of H are constructible.

Theorem [Pivoteau-S.-Soria] Enumeration of all constructible classes with

precision N in O(M(N)) coefficient operations.

Idea: Newton’s iteration (→ yesterday’s slides).

Soon to be in combstruct[count]



Example: Mappings

> mappings:={M=Set(Cycle(Tree)),Tree=Prod(Z,Set(Tree))}:
> combstruct[gfeqns](mappings,labeled,x);

[M(x) =
1

1− Tree(x)
, Tree(x) = x exp(Tree(x))]

> countmappings:=SeriesNewtonIteration(mappings,labelled,x):

> countmappings(10);[
M = 1 + x+ 2x2 +

9

2
x3 +

32

3
x4 +

625

24
x5 +

324

5
x6

+
117649

720
x7 +

131072

315
x8 +

4782969

4480
x9 +O

(
x10
)
,

Tree = x+ x2 +
3

2
x3 +

8

3
x4 +

125

24
x5 +

54

5
x6+

16807

720
x7 +

16384

315
x8 +

531441

4480
x9 +O

(
x10
)]

Code Pivoteau-S-Soria, should end up in combstruct



Multivariate Generating Functions

Same translation rules:

> maps2:={M=Set(Cycle(Prod(U,Tree))),Tree=Prod(Z,Set(Tree)),U=Epsilon}:
> combstruct[gfsolve](maps2,labeled,z,[[u,U]]);{

M(z, u) =
1

1 + uW (−z)
,Tree(z, u) = −W (−z), U(z, u) = u, Z(z, u) = z

}
This computes

M(z, u) =
∑
n,k

cn,ku
k z

n

n!
,

cn,k = number of mappings with n points, k of which are in cycles.



Multivariate Generating Functions

Same translation rules:

> maps2:={M=Set(Cycle(Prod(U,Tree))),Tree=Prod(Z,Set(Tree)),U=Epsilon}:
> combstruct[gfsolve](maps2,labeled,z,[[u,U]]);{

M(z, u) =
1

1 + uW (−z)
,Tree(z, u) = −W (−z), U(z, u) = u, Z(z, u) = z

}
> gf:=subs(%,M(z,u)):

Some automatic asymptotics (avg number of points in cycles):

> map(simplify,equivalent(eval(gf,u=1),z,n));

1/2

√
2n−1/2en√

π
+O

(
enn−3/2

)
> map(simplify,equivalent(eval(diff(gf,u),u=1),z,n));

1/2 en +O
(

enn−1/2
)

> asympt(%/%%,n);

1/2
√

2
√
πn1/2 +O (1)



Also in combstruct

• gfeqns: generating function equations;

• gfseries: generating function expansions;

• count: number of objects of a given size;

• draw: uniform random generation;

• agfeqns, agfseries, agfmomentsolve: extensions to attribute grammars

(see [Delest-Fédou92, Delest-Duchon99, Mishna2003] and examples in

help pages).



TOOLS FOR PROOFS

2. Resultants



Definition

The Sylvester matrix of A = amx
m + · · ·+ a0 ∈ K[x], (am 6= 0), and of

B = bnx
n + · · ·+ b0 ∈ K[x], (bn 6= 0), is the square matrix of size m+ n

Syl(A,B) =



am am−1 . . . a0

am am−1 . . . a0

. . .
. . .

. . .

am am−1 . . . a0

bn bn−1 . . . b0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


The resultant Res(A,B) of A and B is the determinant of Syl(A,B).

I Definition extends to polynomials with coefficients in a commutative ring R.



Basic observation

If A = amx
m + · · ·+ a0 and B = bnx

n + · · ·+ b0, then



am am−1 . . . a0

. . .
. . .

. . .

am am−1 . . . a0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


×


αm+n−1

...

α

1

 =



αn−1A(α)
...

A(α)

αm−1B(α)
...

B(α)



Corollary: If A(α) = B(α) = 0, then Res (A,B) = 0.



Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A′.

E.g. for A = ax2 + bx+ c,

Disc(A) = Res (A,A′) = det


a b c

2a b

2a b

 = −a(b2 − 4ac).

E.g. for A = ax3 + bx+ c,

Disc(A) = Res (A,A′) = det



a 0 b c

a 0 b c

3a 0 b

3a 0 b

3a 0 b


= a2(4b3 + 27ac2).

I The discriminant vanishes when A and A′ have a common root, that is

when A has a multiple root.



Main properties

• Link with gcd Res (A,B) = 0 if and only if gcd(A,B) is non-constant.

• Elimination property

There exist U, V ∈ K[x] not both zero, with deg(U) < n, deg(V ) < m and

such that the following Bézout identity holds:

Res (A,B) = UA+ V B in K ∩ (A,B).

• Poisson formula

If A = a(x− α1) · · · (x− αm) and B = b(x− β1) · · · (x− βn), then

Res (A,B) = anbm
∏
i,j

(αi − βj) = an
∏

1≤i≤m

B(αi).

• Bézout-Hadamard bound

If A,B ∈ K[x, y], then Res y(A,B) is a polynomial in K[x] of degree

≤ degx(A) degy(B) + degx(B) degy(A).



Application: computation with algebraic numbers

Let A =
∏
i(x− αi) and B =

∏
j(x− βj) be polynomials of K[x]. Then

Res x(A(x), B(t− x)) =
∏
i,j

(t− (αi + βj)),

Res x(A(x), B(t+ x)) =
∏
i,j

(t− (βj − αi)),

Res x(A(x), xdegBB(t/x)) =
∏
i,j

(t− αiβj),

Res x(A(x), t−B(x)) =
∏
i

(t−B(αi)).

In particular, the set of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one:
∏
i

B(t− αi) =
∏
i,j

(t− αi − βj).

I The same formulas apply mutatis mutandis to algebraic power series.



Two beautiful identities of Ramanujan’s

sin 2π
7

sin2 3π
7

−
sin π

7

sin2 2π
7

+
sin 3π

7

sin2 π
7

= 2
√

7.

I Using sin(kπ/7) = 1
2i (x

k − x−k), where x = exp(iπ/7), left-hand sum is a

rational function N(x)/D(x), so it is a root of ResX(X7 + 1, t ·D(X)−N(X))

> f:=sin(2*a)/sin(3*a)^2-sin(a)/sin(2*a)^2+sin(3*a)/sin(a)^2:

> expand(convert(f,exp)):

> F:=normal(subs(exp(I*a)=x,%)):

> factor(resultant(x^7+1,numer(t-F),x)):

2 3

-1274 I (t - 28)

I A slightly more complicated one:

3

√
cos

2π

7
+

3

√
cos

4π

7
+

3

√
cos

8π

7
=

3

√
5− 3 3

√
7

2
.



Rothstein-Trager resultant

Let A,B ∈ K[x] with deg(A) < deg(B) and squarefree monic denominator B.

The rational function F = A/B has simple poles only.

If F =
∑
i

γi
x− βi

, then the residue γi of F at the pole βi equals γi =
A(βi)

B′(βi)
.

Theorem. The residues γi of F are roots of the Rothstein-Trager resultant

R(t) = Res x
(
B(x), A(x)− t ·B′(x)

)
.

Proof. Poisson formula again: R(t) =
∏
i

(
A(βi)− t ·B′(βi)

)
.

I This special resultant is useful for symbolic integration of rational functions.



Application: diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or

vertically in one step. How many paths can a Rook take from the lower-left

corner square to the upper-right corner square of an N ×N chessboard?

Assume that the Rook moves right or up at each step.

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .



Application: diagonal Rook paths

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Diag(F ) = [s0]F (s, x/s) =
1

2iπ

∮
F (s, x/s)

ds

s
, where F =

1

1− s
1−s −

t
1−t

.

By the residue theorem, Diag(F ) is a sum of roots of the Rothstein-Trager

resultant

> F:=1/(1-s/(1-s)-t/(1-t)):

> G:=normal(1/s*subs(t=x/s,F)):

> factor(resultant(denom(G),numer(G)-t*diff(denom(G),s),s));

2 2 2

x (-1 + 2 t) (x - 1) (-x + 36 t x + 1 - 4 t )

Answer: Generating series of diagonal Rook paths is
1

2

(
1 +

√
1− x
1− 9x

)
.



Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.



Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P (x,A(x)) = 0, and degx(P ) ≤ d, degy(P ) ≤ n.



Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P (x,A(x)) = 0, and degx(P ) ≤ d, degy(P ) ≤ n.

• By Hadamard, R(x) = Res y(P,Q) ∈ K[x] has degree at most 2dn.

• By elimination, R(x) = UP + V Q for U, V ∈ K[x, y] with degy(V ) < n.

• Evaluation at y = A(x) yields

R(x) = U(x,A(x))P (x,A(x))︸ ︷︷ ︸
0

+V (x,A(x))Q(x,A(x))︸ ︷︷ ︸
O(x2dn+1)

= O(x2dn+1).

• Thus R = 0, that is gcd(P,Q) 6= 1, and thus P |Q, and A is a root of Q.



Systems of two equations and two unknowns

Geometrically, roots of a polynomial f ∈ Q[x] correspond to points on a line.

Roots of polynomials A ∈ Q[x, y] correspond to plane curves A = 0.

Let now A and B be in Q[x, y]. Then:

• either the curves A = 0 and B = 0 have a common component,

• or they intersect in a finite number of points.



Application: Resultants compute projections

Theorem. Let A = amy
m + · · · and B = bny

n + · · · be polynomials in Q[x][y].

The roots of Res y(A,B) ∈ Q[x] are either the abscissas of points in the

intersection A = B = 0, or common roots of am and bn.

Proof. Elimination property: Res (A,B) = UA+ V B, for U, V ∈ Q[x, y].

Thus A(α, β) = B(α, β) = 0 implies Res y(A,B)(α) = 0



Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

x = A(t), y = B(t), A,B ∈ K(t),

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x−A(t) and y −B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

x =
4t(1− t2)2

(1 + t2)3
, y =

8t2(1− t2)

(1 + t2)3
,

Res t((1+t2)3x−4t(1−t2)2, (1+t2)3y−8t2(1−t2)) = 224
(
(x2 + y2)3 − 4x2y2

)
.



TOOLS FOR PROOFS

3. D-Finiteness



D-finite Series & Sequences

Definition: A power series f(x) ∈ K[[x]] is D-finite over K when its derivatives

generate a finite-dimensional vector space over K(x).

A sequence un is D-finite (or P-recursive) over K when its shifts (un, un+1, . . . )

generate a finite-dimensional vector space over K(n).

equation + init conditions = data structure

About 25% of Sloane’s encyclopedia, 60% of Abramowitz & Stegun

Examples: exp, log, sin, cos, sinh, cosh,

arccos, arccosh, arcsin, arcsinh, arctan,

arctanh, arccot, arccoth, arccsc, arccsch,

arcsec, arcsech, pFq (includes Bessel J , Y , I

and K, Airy Ai and Bi and polylogarithms),

Struve, Weber and Anger functions, the

large class of algebraic functions,. . .



Important classes of power series

algebraic

hypergeom

D-finite series

Algebraic: S(x) ∈ K[[x]] root of a polynomial P ∈ K[x, y].

D-finite: S(x) ∈ K[[x]] satisfying a linear differential equation with polynomial

(or rational function) coefficients cr(x)S(r)(x) + · · ·+ c0(x)S(x) = 0.

Hypergeometric: S(x) =
∑
n snx

n such that sn+1

sn
∈ K(n). E.g.

2F1

(
a b

c

∣∣∣∣x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, (a)n = a(a+ 1) · · · (a+ n− 1).



Link D-finite ↔ P-recursive

Theorem: A power series f ∈ K[[x]] is D-finite if and only if the sequence fn of

its coefficients is P-recursive

Proof (idea): x∂ ↔ n and x−1 ↔ Sn give a ring isomorphism between

K[x, x−1, ∂] and K[Sn, S
−1
n , n].

Snobbish way of saying that the equality f =
∑
n≥0 fnx

n implies

[xn]xf ′(x) = nfn, and [xn]x−1f(x) = fn+1.

I Both conversions implemented in gfun: diffeqtorec and rectodiffeq

I Differential operators of order r and degree d give rise to recurrences of

order d+ r and coefficients of degree r



Closure properties

Th. D-finite series in K[[x]] form a K-algebra closed under Hadamard product.

P-recursive sequences over K form an algebra closed under Cauchy product.

Proof: Linear algebra:

If ar(x)f (r)(x) + · · ·+ a0(x)f(x) = 0, bs(x)g(s)(x) + · · ·+ b0(x)g(x) = 0, then

f (`) ∈ VectK(x)

(
f, f ′, . . . , f (r−1)

)
, g(`) ∈ VectK(x)

(
g, g′, . . . , g(s−1)

)
,

so that (f + g)(`) ∈ VectK(x)

(
f, f ′, . . . , f (r−1), g, g′, . . . , g(s−1)

)
,

and (fg)(`) ∈ VectK(x)

(
f (i)g(j), i < r, j < s

)
.

Thus f + g satisfies LDE of order ≤ (r + s) and fg satisfies LDE of order ≤ (rs).

Corollary: D-finite series can be multiplied mod xN in linear time O(N).

I Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct, rec+rec,

rec*rec, cauchyproduct



Proof of Identities

> series(sin(x)^2+cos(x)^2,x,4);

4

1 + O( x )

Why is this a proof?

(1) sin and cos satisfy a 2nd order LDE: y′′ + y = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE;

(3) the constant 1 satisfies a 1st order LDE: y′ = 0;

(4) =⇒ sin2 + cos2−1 satisfies a LDE of order at most 4;

(5) Since it is not singular at 0, Cauchy’s theorem concludes.

I Cassini’s identity (same idea): F 2
n − Fn+1Fn−1 = (−1)n+1

> for n to 5 do

> fibonacci(n)^2-fibonacci(n+1)*fibonacci(n-1)+(-1)^n

> od;



Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Any algebraic series is D-finite.

Proof: Let f(x) ∈ K[[x]] such that P (x, f(x)) = 0, with P ∈ K[x, y] irreducible.

Differentiate w.r.t. x:

Px(x, f(x)) + f ′(x)Py(x, f(x)) = 0 =⇒ f ′ = − Px
Py

(x, f).

Bézout relation: gcd(P, Py) = 1 =⇒ UP +V Py = 1, for U, V ∈ K(x)[y]

=⇒ f ′ = −
(
PxV mod P

)
(x, f) ∈ VectK(x)

(
1, f, f2, . . . , fdegy(P )−1

)
.

By induction, f (`) ∈ VectK(x)

(
1, f, f2, . . . , fdegy(P )−1

)
, for all `. �

I Implemented in gfun: algeqtodiffeq

I Generalization: g D-finite, f algebraic → g ◦ f D-finite algebraicsubs



An Olympiad Problem

Question: Let (an) be the sequence with a0 = a1 = 1 satisfying the recurrence

(n+ 3)an+1 = (2n+ 3)an + 3nan−1.

Show that all an is an integer for all n.

Computer-aided solution: Let’s compute the first 10 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:

> pro:=gfun:-rectoproc({rec,ini}, a(n), list);

> pro(10);

[1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188]

gfun’s seriestoalgeq command allows to guess that GF is algebraic:

> pol:=gfun:-listtoalgeq(%,y(x))[1];

2 2

1 + (x - 1) y(x) + x y(x)



Thus it is very likely that y =
∑
n≥0 anx

n verifies 1 + (x− 1)y + x2y2 = 0.

By coefficient extraction, (an) conjecturally verifies the non-linear recurrence

an+2 = an+1 +
n∑
k=0

ak · an−k. (1)

Clearly (1) implies an ∈ N. To prove (1), we proceed the other way around:

we start with P (x, y) = 1 + (x− 1)y + x2y2, and show that it admits a power

series solution whose coefficients satisfy the same linear recurrence as (an):

> deq:=gfun:-algeqtodiffeq(pol,y(x)):

> recb:=gfun:-diffeqtorec(deq,y(x),b(n));

recb := {(3 + 3 n) b(n) + (2 n + 5) b(n + 1) + (-4 - n) b(n + 2),

b(0) = 1, b(1) = 1}

I In fact, an is equal to

an =
n∑
k=0

(
n

2k

)(
2k

k

)
−

n∑
k=0

(
n

2k

)(
2k

k + 1

)
,

(which clearly implies an ∈ Z), but how to find algorithmically such a formula?



Gessel’s walks are algebraic

Let’s prove that the series counting Gessel walks of prescribed length

G(1, 1, x) =
1

2x
· 2F1

(−1/12 1/4

2/3

∣∣∣∣ − 64x(4x+ 1)2

(4x− 1)4

)
− 1

2x
.

is algebraic.

Proof principle: Guess a polynomial P (x, y) in Q[x, y], then prove that P

admits the power series G(1, 1, x) =
∑∞
n=0 gnx

n as a root.

1. Such a P can be guessed from the first 100 terms of G(1, 1, x).

> G:=(hypergeom([-1/12,1/4],[2/3],-64*x*(4*x+1)^2/(4*x-1)^4)-1)/x/2:

> seriestoalgeq(series(G,x,100),y(x)):

> P:=subs(y(x)=y,%[1]):

2. Implicit function theorem: ∃! root r(x) ∈ Q[[x]] of P .

> map(eval,[P,diff(P,y)], {x=0,y=1});

[0, 1]



3. D-finiteness: r(x)=
∑∞
n=0 rnx

n being algebraic, it is D-finite, and so is (rn):

> deqP:=algeqtodiffeq(P,y(x)): recP:=diffeqtorec(deqP,y(x),r(n));

2 2

recP:= {(256 + 448 n + 192 n ) r(n) - (240 + 208 n + 48 n ) r(n+1) -

2 2

(100+68n+12n ) r(n+2) + (44+23n+3n ) r(n+3), r(0)=1, r(1)=2, r(2)=7}

4. D-finiteness: G(1, 1, x) being the composition of a D-finite by an algebraic,

it is D-finite, and so is (gn):

> deqG:=holexprtodiffeq(G,y(x)): recG:=diffeqtorec(deqG,y(x),g(n));

2 2

recG:= {(256 + 448 n + 192 n ) g(n) - (240 + 208 n + 48 n ) g(n+1) -

2 2

(100+68n+12n ) g(n+2) + (44+23n+3n ) g(n+3), g(0)=1, g(1)=2, g(2)=7}

5. Conclusion: (rn) and (gn) are equal, since they satisfy the same recurrence

and the same initial values. Thus G(1, 1, x) coincides with the algebraic series

r(x), so it is algebraic. �



TOOLS FOR PROOFS

4. Creative Telescoping



Examples I: hypergeometric summation

•
∑
k∈Z

(−1)k
(
a+ b

a+ k

)(
a+ c

c+ k

)(
b+ c

b+ k

)
=

(a+ b+ c)!

a!b!c!

• An =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfies the recurrence [Apéry78]:

(n+ 1)3An+1 = (34n3 + 51n2 + 27n+ 5)An − n3An−1.

(Neither Cohen nor I had been able to prove this in the intervening two

months [Van der Poorten]).

•
n∑
k=0

(
n

k

)2(
n+ k

k

)2

=
n∑
k=0

(
n

k

)(
n+ k

k

) k∑
j=0

(
n

k

)3

[Strehl92]



Examples II: Integrals

•
∫ 1

0

cos(zu)√
1− u2

du =

∫ +∞

1

sin(zu)√
u2 − 1

du =
π

2
J0(z);

•
∫ +∞

0

xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2
[Glasser-Montaldi94];

•
1

2πi

∮ (1 + 2xy + 4y2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y2)

3
2

dy =
Hn(x)

bn/2c!
[Doetsch30].



Examples III: Diagonals

Definition If f(x1, . . . , xk) =
∑

i1,i2,...,ik≥0

ci1,...,ikx
i1
1 · · ·x

ik
k ∈ K[[x1, . . . , xk]], then

its diagonal is Diag(f) =
∑
n≥0

cn,...,nx
n ∈ K[[x]].



Examples III: Diagonals

Definition If f(x1, . . . , xk) =
∑

i1,i2,...,ik≥0

ci1,...,ikx
i1
1 · · ·x

ik
k ∈ K[[x1, . . . , xk]], then

its diagonal is Diag(f) =
∑
n≥0

cn,...,nx
n ∈ K[[x]].

• Diagonal k-D rook paths: Diag
1

1− x1

1−x1
− · · · − xk

1−xk

;

• Hadamard product: F (x)�G(x) =
∑
n fngnx

n = Diag(F (x)G(y));

• Algebraic series [Furstenberg67]: if P (x, S(x)) = 0 and Py(0, 0) 6= 0 then

S(x) = Diag

(
y2Py(xy, y)

P (xy, y)

)
.

• Apéry’s sequence [Dwork80]:∑
n≥0

Anz
n = Diag

1

(1− x1)((1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3)
.



Examples III: Diagonals

Definition If f(x1, . . . , xk) =
∑

i1,i2,...,ik≥0

ci1,...,ikx
i1
1 · · ·x

ik
k ∈ K[[x1, . . . , xk]], then

its diagonal is Diag(f) =
∑
n≥0

cn,...,nx
n ∈ K[[x]].

• Diagonal k-D rook paths: Diag
1

1− x1

1−x1
− · · · − xk

1−xk

;

• Hadamard product: F (x)�G(x) =
∑
n fngnx

n = Diag(F (x)G(y));

• Algebraic series [Furstenberg67]: if P (x, S(x)) = 0 and Py(0, 0) 6= 0 then

S(x) = Diag

(
y2Py(xy, y)

P (xy, y)

)
.

• Apéry’s sequence [Dwork80]:∑
Anz

n = Diag
1

(1− x1)((1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3)
.

Theorem [Lipshitz88] The diagonal of a rational (or algebraic, or even

D-finite) series is D-finite.



Summation by Creative Telescoping

In :=

n∑
k=0

(
n

k

)
= 2n.

IF one knows Pascal’s triangle:(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
= 2

(
n

k

)
+

(
n

k − 1

)
−
(
n

k

)
,

then summing over k gives

In+1 = 2In.

The initial condition I0 = 1 concludes the proof.



Creative Telescoping for Sums

Fn =
∑
k

un,k =?

IF one knows A(n, Sn) and B(n, k, Sn, Sk) s.t.

(A(n, Sn) + ∆kB(n, k, Sn, Sk)) · un,k = 0

(where ∆k is the difference operator, ∆k · vn,k = vn,k+1 − vn,k),

then the sum “telescopes”, leading to

A(n, Sn) · Fn = 0.



Zeilberger’s Algorithm [1990]

Input: a hypergeometric term un,k, i.e., un+1,k/un,k and un,k+1/un,k rational

functions in n and k;

Output:

• a linear recurrence (A) satisfied by Fn =
∑
k un,k

• a certificate (B), s.t. checking the result is easy from

A(n, Sn) · un,k = ∆kB · un,k.



Example: SIAM flea

1/4

1/4

1/4-ε 1/4+ε

Un,k :=

(
2n

2k

)(
2k

k

)(
2n− 2k

n− k

)(
1

4
+ c

)k (
1

4
− c
)k

1

42n−2k
.

> SumTools[Hypergeometric][Zeilberger](U,n,k,Sn);

[
(
4n2 + 16n + 16

)
Sn2 +

(
−4n2 + 32 c2n2 + 96 c2n− 12n + 72 c2 − 9

)
Sn

+ 128 c4n + 64 c4n2 + 48 c4, ...(BIG certificate)...]



Creative Telescoping for Integrals

I(x) =

∫
Ω

u(x, y) dy =?

IF one knows A(x, ∂x) and B(x, y, ∂x, ∂y) s.t.

(A(x, ∂x) + ∂yB(x, y, ∂x, ∂y)) · u(x, y) = 0,

then the integral “telescopes”, leading to

A(x, ∂x) · I(x) = 0.



Special Case: Diagonals

Analytically,

Diag(F (x, y)) =
1

2πi

∮
F

(
x

y
, y

)
dy

y
.

On power series,

(A(x, ∂x) + ∂yB) · 1

y
F

(
x

y
, y

)
︸ ︷︷ ︸

U

= 0 =⇒ A(x, ∂x) ·DiagF = 0.



Special Case: Diagonals

Analytically,

Diag(F (x, y)) =
1

2πi

∮
F

(
x

y
, y

)
dy

y
.

On power series,

(A(x, ∂x) + ∂yB) · 1

y
F

(
x

y
, y

)
︸ ︷︷ ︸

U

= 0 =⇒ A(x, ∂x) ·DiagF = 0.

Proof:

1. [y−1]U = Diag(f);

2. 0 = [y−1]A · U + [y−1]∂yB · U = A · [y−1]U .



Special Case: Diagonals

Analytically,

Diag(F (x, y)) =
1

2πi

∮
F

(
x

y
, y

)
dy

y
.

On power series,

(A(x, ∂x) + ∂yB) · 1

y
F

(
x

y
, y

)
︸ ︷︷ ︸

U

= 0 =⇒ A(x, ∂x) ·DiagF = 0.

Proof:

1. [y−1]U = Diag(f);

2. [y−1]A · U + [y−1]∂yB · U = A · [y−1]U .

Extends to more variables: DiagF (x, y, z) obtained from [y−1z−1]U ,

U = 1
yzF

(
x
y ,

y
z , z
)

, if one finds

(A(x, ∂x) + ∂yB(x, y, z, ∂x, ∂y, ∂z) + ∂zC(x, y, z, ∂x, ∂y, ∂z)) · U = 0.

Provided by Chyzak’s algorithm



Example: 3D rook paths [B-Chyzak-Hoeij-Pech 2011]

Proof of a recurrence conjectured by [Erickson et alii 2010]

> F:=subs(y=y/z,x=x/y,1/(1-x/(1-x)-y/(1-y)-z/(1-z)))/y/z:

> A,B,C:=op(op(Mgfun:-creative_telescoping(F,x::diff,[y::diff,z::diff]))):

> A;

(
2304x3 − 3204x2 − 432x+ 296

) d

dx
F (x)

+
(
4608x4 − 6372x3 + 813x2 + 514x− 4

) d2

dx2
F (x)

+
(
1152x5 − 1746x4 + 475x3 + 121x2 − 2x

) d3

dx3
F (x)



More and more general creative telescoping

• Multivariate D-finite series wrt mixed differential, shift,

q-shift,. . . [Chyzak-S 1998, Chyzak 2000]

• Symmetric functions [Chyzak-Mishna-S 2005]

• Beyond D-finiteness [Chyzak-Kauers-S 2009]

(Some) implementations available in Mgfun



THE END

(Except for the exercises!)


