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1 Introduction

These short lecture notes are devoted to the Benjamini-Schramm graph topology with a special

emphasis on its applications to counting and combinatorial optimization problems. Section 2 defines

this topology and introduces the main related concepts. Section 3 illustrates on the simple example

of the minimal spanning tree how it allows to define a minimal spanning forest of a possibly infinite

graph. In Section 4, on the example of graph matchings, we will study the convergence of partition

functions. The material of these notes is largely borrowed from Aldous and Steele [5], Aldous and

Lyons [4] and Bordenave, Lelarge and Salez [16].

2 Unimodular networks

2.1 Local weak topology

We first briefly introduce the theory of local weak convergence of graph sequences and the notion

of unimodularity for random rooted graphs. It was introduced by Benjamini and Schramm [10]

and has then become a popular topology for studying sparse graphs. Let us briefly introduce this

topology, for details we refer to Aldous and Lyons [4] and Pete [33].

A graph G = (V,E) is locally finite if for v ∈ V , the degree of v in G (number of incident edges),

degG(v), is finite. A rooted graph (G, o) is a connected graph G = (V,E) with a distinguished

vertex o ∈ V , the root. Two rooted graphs (Gi, oi) = (Vi, Ei, oi), i ∈ {1, 2}, are isomorphic if there

exists a bijection σ : V1 → V2 such that σ(o1) = o2 and σ(G1) = G2, where σ acts on E1 through

σ({u, v}) = {σ(u), σ(v)}. We will denote this equivalence relation by (G1, o1) ' (G2, o2). In graph

theory terminology, an equivalence class of rooted graph is an unlabeled rooted graph. We denote

by G∗ the set of unlabeled rooted locally finite graphs.

The local topology is the smallest topology such that for any g ∈ G∗ and integer t ≥ 1, the

G∗ → {0, 1} function f(G, o) = 1((G, o)t ' g) is continuous, where (G, o)t is the induced rooted

graph spanned by the vertices at graph distance at most t from o. This topology is metrizable with
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Figure 1: Example of a graph G and its empirical neighborhood distribution. Here U(G) =
1
5(2δα + 2δβ + δγ), where α, β, γ ∈ G∗ are the unlabeled rooted graphs depicted above (the black

vertex is the root), with g(1) = g(4) = α, g(2) = g(3) = β, g(5) = γ.

the metric

dloc(g, h) =

∞∑
t=1

2−t1(gt 6= ht). (1)

Moreover, it is not hard to check that the space (G∗, dloc) is separable and complete metric space

(or Polish space).

We now consider P(G∗) the set of probability measures on G∗. An element ρ ∈ P(G∗) is the law

of (G, o), a random rooted graph. Since G∗ is a Polish space, we may safely consider the local weak

topology on P(G∗). Recall that it is the smallest topology such that for any continuous bounded

function f : G∗ → R, the function ρ 7→ Eρf(G, o) is continuous, where under Pρ, (G, o) has law ρ.

It is well known that this weak convergence is metrizable by the Lévy-Prohorov distance which we

will denote by dwloc (the actual definition of the Lévy-Prohorov distance will not be used here).

Then (P(G∗), dwloc) is also a separable and complete metric space.

For a finite graph G = (V,E) and v ∈ V , one writes G(v) for the connected component of G

at v. One defines the probability measure U(G) ∈ P(G∗) as the law of the equivalence class of the

rooted graph (G(o), o) where the root o is sampled uniformly on V :

U(G) =
1

|V |
∑
v∈V

δg(v),

where g(v) is the equivalence class of (G(v), v). See Figure 1 for a concrete example. In the passage

from G to U(G) we have lost some information on the graph G, notably the labels of the vertices.

If (Gn)n≥1, is a sequence of finite graphs, we shall say that Gn has local weak limit (or Benjamini-

Schramm limit) ρ ∈ P(G∗) if U(Gn) → ρ weakly in P(G∗). A measure ρ ∈ P(G∗) is called sofic if

there exists a sequence of finite graphs (Gn)n≥1, whose local weak limit is ρ. In other words, the

set of sofic measures is the closure of the set {U(G) : G finite}. The set of sofic measures will be

denoted by Psof(G∗).
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2.2 Examples of local weak limits

Finite window approximation of a lattice : consider an integer d ≥ 1, the graph of Zd and

Ln = Zd ∩ [1, n]d. Then, the local weak limit of Ln is the Dirac mass of the equivalence class of

(Zd, o). Indeed, if t is an integer (Ln, v)t ' (Zd, o)t for all v ∈ V (Ln) which are distance at least t

from Zd\[1, n]d. It follows that (Ln, v)t ' (Zd, o)t for all but O(tnd−1) = o(|V (Ln)|) vertices.

The same argument will work for any amenable group along any Følner sequence (and any

graph with a good notion of amenability).

Percolation on a lattice : Consider an integer d ≥ 1 and the usual bond percolation on the graph

of Zd where each edge is kept with probability p ∈ [0, 1], we obtain a random subgraph G of Zd.
Then, a.s. the local weak limit of Gn = G ∩ [1, n]d is perc(Zd, p), the law of the equivalence class

of (G(o), o).

Unimodular Galton-Watson trees : Let P ∈ P(Z+) with positive and finite mean. The unimodular

Galton-Watson tree with degree distribution P , denoted by UGW(P ) (commonly known as size-

biased Galton-Watson tree) is the law of the random rooted tree obtained as follows. The root has

a number d of children sampled according to P , and, given d, the subtrees of the children of the

root are independent Galton-Watson trees with offspring distribution

P̂ (k) =
(k + 1)P (k + 1)∑

` `P (`)
. (2)

These random trees appear naturally as a.s. local weak limits of uniform random graphs with a

given degree distribution, see e.g. [22, 21, 12]. It is also well known that the Erdős-Rényi G(n, c/n)

has a.s. local weak limit the Galton-Watson tree with offspring distribution Poi(c). Note that if P

is Poi(c) then P̂ = P . The percolation on the hypercube {0, 1}n with parameter c/n has the same

a.s. local weak limit.

Skeleton tree : The infinite skeleton tree which consists of a semi-infinite line Z+ with i.i.d. critical

Poisson Galton-Watson trees Poi(1) attached to each of the vertices of Z+. It is the a.s. local weak

limit of the uniformly sampled spanning tree on n labeled vertices.

Exercise 2.1. What is the local weak limit of a complete binary tree Tn of height n ?

2.3 Estimable functions

The Benjamini-Schramm topology contains many compact sets (see below). There are however a

surprisingly long list of interesting continuous functions invariant by isomorphism. More precisely,

we will use the terminology of Abért, Csikvári, Frenkel and Kun [1].
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Definition 2.2 (estimable functions). Let G be the set of finite unlabeled graphs and H a subset

of G. A function f : G 7→ R is estimable over H if for any sequence (Gn), n ≥ 1, in H and any

ρ ∈ Psof(G∗) such that U(Gn) converges weakly to ρ, we have that f(Gn) converges fρ, where fρ

depends only on ρ.

Let us give a toy example. Fix g a vertex transitive unlabeled graph with p vertices (for example

a triangle). Define f(G) as the density of distinct subgraphs of f isomorphic to g. More precisely,

if G = (V,E),

f(G) =
1

|V |
∑
S

1(G ∩ S ' g), (3)

where the sum is over all subsets S ⊂ V of cardinal p. It is possible to rewrite f as a function on

rooted graphs :

f(G) =
1

p|V |
∑
v∈V

ϕ(G(v), v) = EU(G)
ϕ(G, o)

p
,

where ϕ(G, o) is the number of distinct subgraphs, rooted at o, rooted isomorphic to g∗, the rooted

version of g. If G has diameter t then ϕ(G, o) depends only on (G, o)t and it follows easily that ϕ

is continuous on G∗ rooted graph. Hence, if Gn has local weak limit ρ ∈ P(G∗) and ϕ is uniformly

integrable over the probability measures U(Gn) then f(Gn) converges to Eρϕ(G, o)/p. It implies

for example that f is estimable on the space Gd of finite graphs with degrees bounded by d.

The above example is not very surprising. More complicated functions f(G) are estimable in

the above sense. For example, the following function is estimable on Gd,

f(G) =
1

|V |
log ck(G),

where ck(G) is the number of proper k-coloring and k > 2d, Borgs, Chayes, Kahn and Lovász [17].

Similarly, if t(G) is the number of spanning trees of G, the function

f(G) =
1

|V |
log t(G)

is estimable over connected graphs of G, Lyons [29, 30]. We will see other examples in the next

sections.

Exercise 2.3. Assume in the example (3) that g is not vertex-transitive. What is the analog of

EU(G)ϕ(G, o)/p ?

2.4 Compact sets of graphs

Explicit compact subsets of G∗ are easy to find. If g ∈ G∗, we define |g| =
∑

v deg(v), i.e. twice the

total number of edges in g.
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Lemma 2.4. Let t0 ≥ 0 and ϕ : N→ R+ be a non-negative function. Then

K =
{
g ∈ G∗ : ∀t ≥ t0, |gt| ≤ ϕ(t)

}
,

is a compact subset of G∗ for the local topology.

Proof. For each t ≥ t0, there is a finite number of elements in G∗, say ft,1, · · · , ft,nt , such that

|g| ≤ ϕ(t) and for any vertex the distance to the root is at most t. Therefore, the collection

At,1, · · · , At,nt where At,k = {g ∈ G∗ : gt = ft,k} is a finite covering of K of radius 2−t.

Let Gn be a sequence of finite graphs. We now give a condition which guarantees that the

sequence U(Gn) is tight for the local weak topology. The next lemma is a sufficient condition for

tightness in P(G∗), for a proof see [13, 9].

Lemma 2.5. Let ϕ : N → R+ be a non-decreasing function such that ϕ(x)/x → ∞ as x → ∞.

There exists a compact set Π = Π(ϕ) ⊂ Psof(G∗) such that if a finite graph G = (V,E) satisfies

1

|V |
∑
v∈V

ϕ(degG(v)) ≤ 1 (4)

then U(G) ∈ Π.

Considering a sequence U(Gn), n ≥ 1, condition (4) amounts to the uniform integrability of the

degree sequences of the graphs (Gn), n ≥ 1. It may seem quite paradoxical that a sole condition

on the degrees implies the tightness of the whole graph sequence. However, the soficity of U(G)

yields enough uniformity for this result to hold. Lemma 2.5 shows that most graph sequences with

typical degrees of order 1 are converging along subsequences in the Benjamini-Schramm sense.

2.5 Unimodularity

We may define similarly locally finite connected graphs with two roots (G, o, o′) and extend the

notion of isomorphisms to such structures. We define G∗∗ as the set of equivalence classes of

graphs (G, o, o′) with two roots and associate its natural local topology. A function f on G∗∗ can

be extended to a function on connected graphs with two roots (G, o, o′) through the isomorphism

classes. Then, a measure ρ ∈ P(G∗) is called unimodular if for any measurable function f : G∗∗ →
R+, we have

Eρ
∑
v∈V

f(G, o, v) = Eρ
∑
v∈V

f(G, v, o), (5)

where under Pρ, (G, o) has law ρ. Unimodularity appears as a mass transport principle if f(G, u, v)

is thought as a quantity of mass sent from u to v in G : the average mass sent by the root is equal

to the average mass it receives.
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It is immediate to check that if G is finite then U(G) is unimodular: indeed, if u and v are in

the same connected component then by definition, G(u) = G(v). It follows that

EU(G)

∑
v∈V

f(G, o, v) =
1

|V |
∑
u∈V

∑
v∈V (G(u))

f(G(u), u, v)

=
1

|V |
∑
v∈V

∑
u∈V (G(v))

f(G(v), u, v)

= EU(G)

∑
v∈V

f(G, v, o).

We will denote by Puni(G∗) the set of unimodular measures. With a standard abuse of notation,

we shall say that a random rooted graph (G, o) is unimodular if its law is unimodular.

Lemma 2.6. The set Puni(G∗) is closed for the local weak topology.

Proof. We follow [10]. Let ρn → ρ and f : G∗∗ → R+. Let t > 0 and g ∈ G∗ with radius

from the root at most t, observe that by dominated convergence (5) holds for ft,g(G, u, v) =

t ∧ f(G, u, v)1(dG(u, v) ≤ t)1((G, u)t ' g). Then, summing over all countably many g, it holds for

ft(G, u, v) = t ∧ f(G, u, v)1(dG(u, v) ≤ t). By monotone convergence, it also holds for f .

In particular, the above lemma implies that all sofic measures are unimodular, the converse

is open, for a discussion see [4]. It is however known that all unimodular probability measures

supported on rooted trees are sofic, see Elek [23], Bowen [18], and for alternative proofs [9, 13].

In this last reference, the asymptotic number of graphs G with n vertices and m edges such that

U(G) is close to a given ρ ∈ Puni(G∗) is computed when ρ is supported on rooted trees.

The next lemma is a useful tool to check that a given measure is unimodular. For a proof see

[4, Proposition 2.2].

Lemma 2.7 (involution invariance). Let ρ ∈ P(G∗) such that (5) holds for all functions f : G∗∗ →
R+ such that f(G, u, v) = 0 unless {u, v} ∈ E(G). Then ρ is unimodular.

Exercise 2.8. Using Lemma 2.7, show directly from their definitions that the unimodular Galton-

Watson tree with degree distribution P and the skeleton tree are unimodular.

The next lemma illustrates that for unimodular measures, the graph seen from root contains

global information on the whole graph.

Lemma 2.9 (everything shows at the root). Let ρ ∈ Puni(G∗) and f : G∗ → {0, 1} be a measurable

function such that ρ-a.s. f(G, o) = 1, then ρ-a.s. for all v ∈ V , f(G, v) = 1.

Proof. Define h(G, u, v) = 1(f(G, u) 6= 1) and apply (5). We obtain 0 = Eρ
∑

v∈V 1(f(G, v) 6=
1).

Exercise 2.10. Is the infinite 2-ary tree a unimodular graph ?
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2.6 Cayley graphs

Let Γ be a countable transitive group and S ⊂ Γ a generating set such that S−1 ⊂ S and the unit

of Γ, say o, is not in S. The Cayley graph G = Cay(Γ, S) associated to S has vertex set Γ and

edge set E = {{u, v}, vu−1 ∈ S}. It is not hard to check that the graph G is vertex transitive.

Also, the counting measure on Γ, ν =
∑

v∈Γ δv is unimodular in the group theoretic sense (invariant

by left and right multiplication). In particular, any function f : Γ × Γ → R+ invariant by right

multiplication (i.e. such that f(u, v) = f(uγ, vγ) for all γ ∈ Γ) will satisfy∑
v∈Γ

f(o, v) =
∑
v∈Γ

f(o, v−1) =
∑
v∈Γ

f(v, o).

It implies that if we define the measure ρ ∈ P(G∗) which puts a Dirac mass at the equivalence class

of (G, o), then ρ is unimodular.

2.7 Extension to weighted graphs

Let Ω be a Polish space whose distance is denoted by δ. A weighted graph (G,ω) is a graph

Ḡ = (V,E) equipped with a weight function ω : V 2 → Ω such that ω(u, v) = 0 if u 6= v and

{u, v} /∈ E. The weight function is edge-symmetric if ω(u, v) = ω(v, u) and ω(u, u) = 0. A

weighted graph is locally finite for any v ∈ V ,∑
u∈V
|ω(u, v)| ∨ |ω(v, u)| ∨ 1({u, v} ∈ E) <∞1.

We define G∗Ω has the set of unlabeled locally finite weighted rooted graphs with weights in Ω. It is

straightforward to extend the local topology to G∗Ω, it suffices to replace in the definition of dloc in

(1) the indicator 1(gt 6= ht) by

1
(
ḡt 6= h̄t or for any isomorphism of ḡt and h̄t, ∃(u, v) ∈ V (ḡt)

2, δ(ωg(u, v), ωh(u, v)) ≤ 2−t
)
,

where the unlabeled rooted weighted graph g is written as g = (ḡ, ωg). Then we may define similarly

the local weak topology for random weighted graphs. The definition of unimodularity carries over

naturally with the natural definition of G∗∗Ω (see the definition of unimodular network in [4]).

2.8 Stability of unimodularity

In the sequel, we will use a few times that unimodularity is stable by weights mappings, global

conditioning and invariant percolation. More precisely, let (G, o) be a unimodular random weighted

rooted graph with distribution ρ. The weights on G are denoted by ω : V 2 → Ω. For ease of

notation, we set G∗Ω = G∗ and G∗∗Ω = G∗∗. The following trivially holds :

1It is also possible to remove the term ∨1({u, v} ∈ E) in the definition of locally finite weighted graphs, see [5]
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Weight mapping : let ψ : G∗ → Ω and φ : G∗∗ → Ω be two measurable functions. We define

Ḡ as the weighted graph with weights ω̄, obtained from G by setting for u ∈ V , ω(u, u) = ψ(G, u)

and for u, v ∈ V 2 with {u, v} ∈ E(G), ω(u, v) = φ(G, u, v). The random rooted weighted graph

(Ḡ, o) is unimodular. Indeed, the G∗ → G∗ map G 7→ Ḡ is measurable and we can apply (5) to

f(G, u, v) = h(Ḡ, u, v) for any measurable h : G∗∗ → R+.

Global conditioning : let A be a measurable event on G∗ which is invariant by re-rooting: i.e. for

any (G, o) and (G′, o) in G∗ such that G and G′ are isomorphic, we have (G, o) ∈ A iif (G′, o) ∈ A.

Then, if ρ(A) > 0, the random rooted weighted graph (G, o) conditioned on (G, o) ∈ A is also

unimodular (apply (5) to f(G, u, v) = 1((G, u) ∈ A))h(G, u, v) for any measurable h : G∗∗ → R+).

Invariant percolation : let B ⊂ Ω. We may define a random weighted graph Ĝ with edge set

E(Ĝ) ⊂ E(G) by putting the edge {u, v} ∈ E(G) in E(Ĝ) if both ω(u, v) and ω(v, u) are in B. We

leave the remaining weights unchanged. Then the random weighted rooted graph (Ĝ(o), o) is also

unimodular (apply (5) to f(G, u, v) = h(Ĝ(u), u, v) for any measurable h : G∗∗ → R+).

3 Minimal Spanning Trees

In some instances of continuous length combinatorial optimization problems, the local weak graph

topology may help to define relevant infinite versions of these problems. In this section, we will

illustrate this one of the simpler example, the minimal spanning tree. Notably, more advanced

constructions have successfully been used for minimal weight matching and traveling salesperson

tour on the weighted complete graph, see [3, 6, 35, 36]. We will adapt the presentation in [5].

3.1 Definition and basic properties

Let Ḡ = (V,E) be a finite connected graph, ω : V 2 → R+ an edge-symmetric weight function and

G = (Ḡ, w) the associated weighted graph. We assume that for any subsets A 6= B of E,∑
e∈A

ω(e) 6=
∑
e∈B

ω(e). (6)

The minimal spanning tree MST(G) is the unique minimizer of

τ(G) = min
T∈ST(G)

∑
e∈E(T )

ω(e), (7)

where ST(G) is the set of spanning trees of Ḡ (uniqueness is a consequence of (6)). For t > 0, let

G(t) = (V,E(t)), where E(t) = {e ∈ E : ω(e) < t} and for v ∈ V , let G(t, v) be the connected

component of v in G(t). The following standard lemma gives a criterion to build to the minimal

spanning tree.
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Lemma 3.1. An edge e = {u, v} ∈ E belongs to MST(G) if and only if G(ω(e), u)∩G(ω(e), v) = ∅.

Lemma 3.1 can be used as a criterion to define the minimal spanning forest of an infinite graph.

Definition 3.2 (Minimal spanning forest). Let G = (Ḡ, ω) be a locally finite weighted graph with

ω : V 2 → R+ edge-symmetric such that (6) holds for all finite subsets A 6= B of edges in E. The

minimal spanning forest of G, MSF(G) is the graph with vertex set V and edges, the set of e ∈ E
such that (i) G(ω(e), u) ∩G(ω(e), v) = ∅ and (ii) G(ω(e), u) and G(ω(e), v) are not both infinite.

It is easy to check that MSF(G) is indeed a forest (no cycles). Also, by Lemma 3.1, if G is

finite, our definition is consistent and MSF(G) = MST(G). Finally, if G is an infinite graph, then

each connected component of MSF(G) is infinite.

3.2 Aldous-Steele continuity theorem

The following theorem illustrates that the Benjamini-Schramm topology has interesting continuous

functions.

Theorem 3.3 (Aldous and Steele). Let Gn = (Ḡn, ωn) be a sequence of finite weighted connected

graphs with edge-symmetric weights in R+ such that U(Gn) converges weakly to ρ ∈ Puni(G∗R+
). Let

(Ḡ, ω, o) be a random weighted rooted graph with law ρ. We assume that condition (6) holds for

Gn and ρ-a.s. for G = (Ḡ, ω). Let G′n = (Ḡn, ω
′
n) and G′ = (Ḡ, ω′) be the weighted graphs with

edge-symmetric weights in Ω = R+ × {0, 1},

ω′n(e) = (ωn(e),1(e ∈ MST(Gn))) and ω′(e) = (ω(e),1(e ∈ MSF(G))).

Then U(G′n) converges weakly to ρ′ ∈ Puni(G∗Ω), the law of (G′, o).

Under uniform integrability of the weights, Theorem 3.3 readily implies the convergence of the

length of the minimal spanning tree defined in (7).

Corollary 3.4. With the notation of Theorem 3.3, assume further that `n(o) =
∑

v∈Vn ωn(o, v)

is uniformly integrable under U(Gn), that is for some non-increasing function ϕ : R+ → R+ with

ϕ(x)/x→∞ as x→∞,
1

|Vn|
∑
v∈V

ϕ(`n(v)) ≤ 1.

Then,

lim
n→∞

τ(Gn)

|Vn|
=

1

2
Eρ
∑
v∈V

ω(o, v)1({o, v} ∈ MSF(G)).

In particular, τ(G)/|V | is estimable on the set of weighted graphs with bounded degrees and bounded

weights.
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Proof. Define the function on G∗R+
,

L(G, o) =
1

2

∑
v∈V

ω(o, v)1({o, v} ∈ MSF(G)).

By the hand-shaking lemma, we have

EU(Gn)L =
τ(Gn)

|Vn|
.

Theorem 3.3 implies that for any t > 0, EU(Gn)L∧ t converges to EρL∧ t. The uniform integrability

assumption allows to take safely the limit t→∞.

The key lemma in the proof of Theorem 3.3 is the following consequence of unimodularity. It

relates infinite graphs and mean degree of the root.

Lemma 3.5. Let ρ ∈ Puni(G∗) be supported on infinite rooted graphs. Then EρdegG(o) ≥ 2.

Proof. If e = {u, v} ∈ E is an edge of G = (V,E), we define the (non-symmetric) weight `(u, v) to

be equal to (f, f), (∞, f), (f,∞) or (∞,∞) depending on whether the connected components of

u and v in G\{e} are finite or infinite. For a, b ∈ {f,∞}, we denote by Dab the number of edges

(o, v) such that `(o, v) = (a, b). If G is infinite then Dff = 0. Moreover, we have

2Df∞ +D∞∞ ≥ 2. (8)

Indeed, either there is an edge {o, v} such that `(o, v) = (f,∞) or there are at least two edges such

that `(o, v) = (∞,∞) (there cannot be just one in this case).

Applying unimodularity (5) to f(G, u, v) = 1(`(u, v) = (f,∞)) gives

EρDf∞ = Eρ
∑
v∈V

1(`(o, v) = (f,∞)) = Eρ
∑
v∈V

1(`(v, o) = (f,∞)) = EρD∞f ,

(if `(u, v) = (a, b) then if `(v, u) = (b, a)). We deduce from (8) that

Eρ(Df∞ +D∞f +D∞∞) ≥ 2.

We conclude by observing that degG(o) = Df∞ +D∞f +D∞∞.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Since U(Gn) converges to ρ ∈ Puni(G∗R+
) and {0, 1} is a finite set, U(G′n)

is tight in Puni(G∗Ω). Up to considering subsequences, we may assume that U(G′n) converges to

ρ̃ ∈ Puni(G∗Ω), the law of (Ḡ, ω̃, o) where ω̃(e) = (ω(e),1(e ∈ S)) and S is a subset of edges of Ḡ.

Identifying a graph with its edges, we should prove that ρ̃-a.s. S = MSF(G).

We start with the inclusion MSF(G) ⊂ S. Let on be uniformly distributed on the vertices of Gn.

From Skorohod’s representation theorem, we may assume that on a common probability space, with
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probability one, (Ḡn, ω̃n, on) converges to (Ḡ, ω̃, o) for the distance dloc. Let e = {u, v} ∈ MSF(G).

We may assume that G(ω(e), u) is finite. We may take t large enough such that (G, o)t contains

G(ω(e), u) and G(ω(e) − 2−t, u) = G(ω(e), u) (from (6)). From the definition of dloc, for all n

large enough, (Ḡn, on)t+1 is rooted isomorphic to (Ḡ, o)t+1 and all weights in (Gn, on)t+1 are within

distance 2−t−1 from their corresponding weight in (G, o)t+1. If un, vn and en = {un, vn} denote the

vertices and edge associated with u, v and e by the isomorphism, then there can be no path in Gn

from un to vn that has all of its edges shorter than ωn(e). Thus, we find that for all n large enough,

the edge en is in MST(Gn). Since MST(Gn) converges to S, we get the inclusion MSF(G) ⊂ S.

For the converse inclusion S ⊂ MSF(G), we may assume without loss of generality that ρ

is supported on infinite graphs (on the event that G is a finite graph, the equality of S and

MST(G) = MSF(G) is trivial and conditioning on G infinite preserves unimodularity, see §2.8).

First, we have

EU(Gn)degMSF(G)(o) =
1

|Vn|
∑
v∈Vn

degMST(Gn)(v) = 2
|Vn| − 1

|Vn|
≤ 2.

Hence, since MST(Gn) converges to S, from Fatou’s Lemma, we find

Eρ̃degS(o) ≤ 2.

However, since G is an infinite graph, the connected component of the root in MSF(G), MSF(G)(o)

is an infinite tree. By Lemma 3.5, we get

Eρ̃degMSF(G)(o) ≥ 2.

From the first inclusion MSF(G) ⊂ S, we deduce that Eρ̃degMSF(G)(o) = 2 and

Eρ̃
∑
v∈V

1({o, v} ∈ S\MSF(G)) = Eρ̃degS(o)− Eρ̃degMSF(G)(o) = 0.

In particular, ρ̃-a.s. no neighbor of the root is in S\MSF(G). It remains to apply Lemma 2.9.

Exercise 3.6. We define an end of a rooted infinite tree (T, o) as a semi-infinite self-avoiding

path on T starting from o. Let ρ ∈ Puni(G∗) be supported on infinite rooted graph. Show that if

EρdegG(o) = 2 then ρ-a.s. (G, o) is a tree and it has one or two ends. (Hint : refine the proof of

Lemma 3.5).

3.3 Example of an explicit computation

The unimodularity can often be used more or less implicitly to derive close form interesting formulas.

We will illustrate this on the minimal spanning forest of a random weighted tree T = (T̄ , ω), where

(T̄ , o) has distribution UGW(P ), where P is a probability measure on N such that∑
k≥0

k2P (k) <∞
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and

P (0) = P (1) = 0. (9)

For x ∈ [0, 1], the generating functions of P and P̂ defined by (2) are ϕ(x) =
∑

k≥0 P (k)xk and

ϕ̂(x) = ϕ′(x)/ϕ′(1). Given T̄ , we consider a collection (ω(e))e∈E of iid variables uniform on [0, 1].

It builds a weighted tree T = (T̄ , ω) and we may then define the associated minimal spanning forest

MSF(T ).

Lemma 3.7. Let ρ be the law of the above weighted random rooted tree (T, o). We have

τ =
1

2
Eρ
∑
v∈V

w(o, v)1({o, v} ∈ MSF(T )) = −ϕ′(1)

∫ 1

0
(1− x) ln (1− ϕ̂(x))dx.

Lemma 3.7 can be used in conjunction with Corollary 3.4. For example, if T̄ is the infinite

d-regular tree, we find

τ = −d
∫ 1

0
(1− x) ln

(
1− xd−1

)
dx.

Proof of Lemma 3.7. For t > 0, let S(t) = T (t, o) be the connected component of the root in the

forest spanned by weights less than t. If Pt is the law of degS(t)(o), it is a simple exercise to check

that

ϕt(x) = E[xdegS(t)(o)] = ϕ(1− t+ tx),

and (S(t), o) has distribution UGW(Pt). We denote by Ŝ(t) a Galton-Watson tree with offspring

distribution P̂t and by (1, . . . , N), the neighbors of the root o in T . Using the conditional indepen-

dence of ((T\{o, 1})(o), o) and ((T\{o, 1})(1), 1) given N , we have

2τ =
∑
k≥1

kP (k)

∫ 1

0
tP({o, 1} ∈ MSF(T )|ω(o, 1) = t,N = k)dt

=
∑
k≥1

kP (k)

∫ 1

0
t
(

1− P
(
|Ŝ(t)| =∞

)
P(|S(t)| =∞|N = k − 1)

)
dt.

Now, from (2), if (T̂ , o) is weighted Galton-Watson tree with offspring distribution P̂ then, for any

measurable function h : G∗[0,1] → R+,∑
k≥1

kP (k)E[h(T, o)|N = k − 1] = ϕ′(1)Eh(T̂ , o)2. (10)

Applied to h = 1(|S(t)| =∞), we deduce that

2τ = ϕ′(1)

∫ 1

0
t

(
1− P

(
|Ŝ(t)| =∞

)2
)
dt = ϕ′(1)

∫ 1

0
t
(
1− q(t)2

)
dt,

2Writing the left hand side of (10) as E
∑
v∈V 1({o, v} ∈ E)h((T\{o, v})(o), o)), we see that (10) is the unimodu-

larity equation (5) applied to f(G, u, v) = 1({u, v} ∈ E)h((G\{u, v})(u), u))
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where ρ(t) = 1− q(t) is the smallest solution in [0, 1] of x = ϕ̂t(x). Now, from (9), ϕ̂ and q are C1

invertible maps from [0, 1] to [0, 1]. We also observe that 1− q(t) = ϕ̂(1− tq(t)), hence

t =
1− ϕ̂−1(1− q(t))

q(t)

By integration by parts and change of variable s = 1− q(t), it follows that∫ 1

0
t(1− q(t)2)dt =

∫ 1

0
t2q′(t)q(t)dt =

∫ 1

0

(1− ϕ̂−1(s))2

1− s
ds.

We now repeat the same procedure, by integration by parts and change of variable x = ϕ̂−1(s), we

get

−
∫ 1

0

(1− ϕ̂−1(s))2

1− s
ds = 2

∫ 1

0

(
ϕ̂−1

)′
(s)(1− ϕ̂−1(s)) ln(1− s)ds = 2

∫ 1

0
(1− x) ln(1− ϕ̂(x))dx.

Exercise 3.8. We consider the skeleton tree and we put iid uniform [0, 1] weights on its edges.

What is its minimal spanning forest ?

4 Graph Matchings

We will now give a new illustration of the local weak topology in the context of counting problems

and convergence of Boltzmann-Gibbs measure. We will restrict ourselves to the case of graph

matchings. Many other cases have been treated both in the mathematical and physics literature,

to a cite a few [32, 17, 29, 21, 34]. The content of this section is essentially contained in [16] and

use important ingredients from [26, 25, 37].

4.1 Definition and first properties

A matching on a finite graph G = (V,E) is a subset of pairwise non-adjacent edges M ⊆ E. The

|V | − 2|M | isolated vertices of (V,M) are said to be exposed by M . We let M(G) denote the set of

all possible matchings on G. The matching number of G is defined as

ν(G) = max
M∈M(G)

|M |, (11)

and those M which achieve this maximum – or equivalently, have the fewest exposed vertices – are

called maximum matchings.

The partition function of matchings is encoded into the matching polynomial,

PG(z) =
∑

M∈M(G)

z|V |−2|M |.
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Note that PG(1) = |M(G)| is the number of matchings in G.

We now consider a natural family of probability distributions on the set of matchings M(G),

parametrized by a single parameter z > 0 called the temperature (note that the standard temper-

ature T in physics would correspond to z = e−1/T but this will not be important here): for any

M ∈M(G),

µzG(M) =
z|V |−2|M |

PG(z)
, (12)

In statistical physics, this is called the monomer-dimer model at temperature z on G (see Heilmann

and Lieb [26] for a complete treatment). At temperature z = 1, µ1
G is the uniform distribution on

matchings. Note also that the lowest degree coefficient of PG is precisely the number of maximal

matchings on G. Therefore, µzG converges to the uniform distribution on the maximum matching

as the temperature z tends to zero. The free entropy of µzG is defined as,

logPG(z).

In particular, the free entropy of µ1
G is log |M(G)|.

In the sequel, we will consider a sequence of finite graphs Gn converging to a local weak limit

ρ ∈ Puni(G∗). As we shall see the asymptotic of ν(Gn), µzGn and logPGn(z) can be computed

directly on the local weak limit ρ. To perform this, following Zdeborová and Mézard [37], we

introduce the main order parameter, the cavity ratio of rooted graph (G, o) defined as

Rz(G, o) =
PG−o(z)

PG(z)
, (13)

where G−o be the graph obtained from G by removing o. The basic identities of statistical physics

imply that the Boltzmann-Gibbs measure µzG can be recovered from the cavity ratios.

Lemma 4.1. For any finite graph G and o ∈ V , we have

µzG (o is exposed) = zRz(G, o).

If M has distribution µzG, and m ∈M(G), the cylinder-event marginals satisfy

µzG(m ⊆M) =

2|m|∏
k=1

Rz(G− {v1, . . . , vk−1}, vk),

they are consistent and independent of the ordering v1, . . . v2|m| of the vertices spanned by m. Finally

logPG(z) = |V | log z +
∑
v∈V

∫ ∞
z

1− xRx(G, v)

x
dx.
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Proof. The matching which expose o are precisely the matchings of G−o. It gives the first formula.

Similarly, for the second formula, matchings which contain m are the machings of form m ∪ m′

where m′ ∈M(G− {v1, . . . , v2|m|}). We get

µzG (m ⊆M) =
PG−{v1,...,v2|m|}(z)

PG(z)
=

2|m|∏
k=1

PG−{v1,...,vk}(z)

PG−{v1,...,vk−1}(z)
.

For the last formula, we first observe that

P ′G(z) =
∑

M∈M(G)

(|V | − 2|M |)z|V |−1−2|M |

=
∑

M∈M(G)

∑
v∈V

1(v exposed in M)z|V |−1−2|M |

=
∑
v∈V

PG−v(z).

We deduce that the logarithmic derivative of PG satisfies,

(logPG(z))′ =
∑
v∈V

Rz(G, v). (14)

Integrating for any z < y,

logPG(z) = logPG(y)−
∑
v∈V

∫ y

z
Rs(G, v)ds

= |V | log z + log
(
y−|V |PG(y)

)
+
∑
v∈V

∫ y

z

(
1

x
−Rx(G, v)

)
dx

Since PG is a monic polynomial of degree |V |, as y → ∞, y−|V |PG(y) goes to 1. Also, since

Ry(G, v) is a ratio of two monic polynomials of degree |V | − 1 and |V |, we have, as y → ∞,

Ry(G, v) = 1/y +O(1/y2) (where the O(·) depends on G). We may thus take the limit as y →∞
in the above expression.

Dividing the matchings on whether or not they expose the root, we find the recursion,

PG(z) = zPG−o(z) +
∑
v∼o

PG−o−z(z). (15)

Dividing by PG−o(z),
1

Rz(G, o)
= z +

∑
v∼o

Rz(G− o, v).

We thus arrive at the fundamental local recursion :

Rz(G, o) =

(
z +

∑
v∼o

Rz(G− o, v)

)−1

. (16)
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The recursion (16) determines uniquely the functional Rz on the class of finite rooted graphs, and

may thus be viewed as an inductive definition of the cavity ratio. We will use this alternative

characterization to define a continuous extension to infinite graphs with bounded degree, even

though the above recursion never ends. The key argument will be a development around the

following remarkable Lee-Yang type theorem.

Theorem 4.2 (Heilmann-Lieb [26]). The roots of PG(z) are pure imaginary.

Sketch of proof. The polynomial QG(z) =
∑

M∈M(G)(−1)|M |z|V |−2|M | = (−i)|V |PG(iz) satisfies

from (15) the recursion QG(z) = zQG−o(z) −
∑

v∼oQG−o−z(z). As in [26, Theorem 4.2], we may

then check by recursion on the size of the graph that the roots of QG are real. In the forthcoming

Lemma 4.3, we will give an alternative proof using instead the recursion (16).

A consequence of Theorem 4.2 is that the domain of analycity of z 7→ Rz(G, o) contains the

right complex half-plane

H+ = {z ∈ C : <(z) > 0}

(see [20, 19] for generalizations of Heilmann-Lieb’s Theorem and related Lee-Yang type theorems

in combinatorics).

4.2 The monomer-dimer model on infinite graphs

4.2.1 Continuity of the monomer-dimer model

We let H denote the space of analytic functions on H+, equipped with its usual topology of uniform

convergence on compact sets. To be precise, let {Kj}j≥1 be an exhaustion of H+ by compact sets,

that is Kj+1 is contained in the interior of Kj and any compact K of H+ is contained in some Kj .

We introduce the distance on H,

d(f, g) =
∑
j≥1

2−j
‖f − g‖L∞(Kj)

1 + ‖f − g‖L∞(Kj)
,

where, ‖g‖L∞(K) = supz∈K |g(z)|. Then (H, d) is a complete separable metric space. We fix an

integer d and define G∗d ⊂ G∗ as the set of unlabeled rooted graphs with degrees bounded by d. The

next central lemma can be seen as an extension of Heilmann-Lieb’s Theorem 4.2.

Lemma 4.3 (Local recursion). The following holds,

(i) For every fixed z ∈ H+, the local recursion (16) determines a unique Rz : G∗d → H+.

(ii) For every fixed g ∈ G∗d , R(g) : z 7→ Rz(g) is in H.

(iii) The G∗d → H mapping g 7→ R(g) is continuous.
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This above result has strong implications for the monomer-dimer model, which we now list.

The first one is the existence of an infinite volume limit for the Gibbs-Boltzmann distribution.

Theorem 4.4 (Monomer-dimer model on infinite graphs). Consider a graph G with degrees bounded

by d and a temperature z > 0. As m ranges over all finite matchings of G, the cylinder-event

marginals

µzG(m ⊆M) =

2|m|∏
k=1

Rz(G− {v1, . . . , vk−1}, vk),

are consistent and independent of the ordering v1, . . . v2|m| of the vertices spanned by m. They

thus determine a unique probability distribution µzG over the matchings of G. It coincides with the

former definition in the case where G is finite, and extends it continuously in the following sense :

for any o ∈ V and for any sequence (Gn, on) of finite rooted graphs in G∗d converging for the local

topology to (G, o), we have

(Gn, on,Mn)
d−−−→

n→∞
(G, o,M),

in the local weak sense for random weighted graphs, where Mn has law µzGn and M has law µzG.

We may also deduce from the continuity of the free entropy in the monomer-dimer model.

Corollary 4.5. Let Gn = (Vn, En) be a sequence of finite graphs such that U(Gn) converges weakly

to ρ ∈ Puni(G∗) and |En| = O(|Vn|). There exists an analytic function s(z) on H+ which depends

only on ρ such that for any z > 0,

lim
n→∞

1

|Vn|
logPGn(z) = s(z).

Finally, if ρ-a.s. degG(o) ≤ d for some integer d ≥ 1 then s(z) = log z +
∫∞
z

1−xEρRx(G,o)
x dx, where

under Eρ, (G, o) has distribution ρ, the function z 7→ log z is the branch of the logarithm analytic

on C\R− and the integral
∫∞
z is the limit of the integral from z ∈ H+ to y ∈ R+, y → +∞.

A similar result was established in [26] for the lattice case and in [8, 7, 34, 1] under various

assumptions. It implies notably that the free entropy for matchings is estimable over all bounded

degree graphs. It is possible to extend Lemma 4.3 and Theorem 4.4 to non-uniformly bounded

graphs to graphs whose path trees have finite branching number (for the definition of paths trees

see [25] and branching number see [31]).

Without entering into details, it can be proved that gz(G, o) = iR−iz(G, o) is the Cauchy-

Stieltjes transform of a symmetric probability measure on R, the matching measure, µ(G,o). That

is, for any z ∈ C\R,

gz(G, o) = iR−iz(G, o) =

∫
dµ(G,o)(λ)

λ− z
. (17)

Then, for real x > 0, Rx(G, o) =
∫
x/(λ2 + x2)dµ(G,o)(λ) and

s(z) = E
∫

log |iz + λ|dµ(G,o)(λ),
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see [1, 2]. Also, it follows from [25] that µ(G,o) is the spectral measure at the root of the adjacency

operator of the path-tree of (G, o). This illustrates interesting links between spectral graph theory

and matching theory, see the monographs [25, 28].

4.2.2 Proof of Lemma 4.3

The local recursion (16) involves mappings of the form :

φz,d : (x1, . . . , xd) 7→

(
z +

d∑
i=1

xi

)−1

,

where d ≥ 0 is an integer. In the following lemma, we gather a few elementary properties of this

transformation, which are immediate to check but will be of constant use throughout the paper.

Lemma 4.6. For any integer d ≥ 0 and z ∈ H+,

(i) φz,d maps analytically Hd
+ into H+

(ii) |φz,d| is uniformly bounded by 1/<(z) on Hd
+.

From Lemma 4.6(i), it follows that the cavity ratio of a finite rooted graph belongs to H, when

viewed as a function of the temperature z. Lemma 4.6(ii) and Montel’s theorem guarantee that

the family of all those cavity ratios is tight in H. This analytic tightness can also be found in [26].

Combined with the following uniqueness property at high temperature, it will quickly lead to the

proof of Lemma 4.3.

The local recursion (16) also involves graph transformations of the form (G, o) 7→ (G − o, v),

where v ∼ o. Starting from a given (G, o) ∈ G∗d , we let Succ∗(G, o) ⊆ G∗d denote the (denumer-

able) set of all rooted graphs that can be obtained by successively applying finitely many such

transformations. Let

D =
{
z ∈ C;<(z) >

√
d
}
⊆ H+.

Lemma 4.7 (Uniqueness at high temperature). Let (G, o) ∈ G∗d and z ∈ D. If

R1
z, R

2
z : Succ∗(G, o)→ H+

both satisfy the local recursion (16) then R1
z = R2

z.

Proof. Set α = 2/<(z) and β = <(z)−2. From (16) and Lemma 4.6(ii), the absolute difference

∆ = |R1
z −R2

z| must satisfy

∆(G, o) ≤ α and ∆(G, o) ≤ β
∑
v∼o

∆(G− o, v).

In turn, each ∆(G − o, v) appearing in the second upper-bound may be further expanded into

β
∑

w∼v,w 6=o ∆(G − o − v, w). Iterating this procedure k times, one obtains ∆(G, o) ≤ βkdkα.

Taking the infimum over all k yields ∆(G, o) = 0, since z ∈ D means precisely βd < 1. �

We may now prove Lemma 4.3.
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Proof of Lemma 4.3. For clarity we divide the proof in three parts.

Step 1 : Analytic existence. Fix (G, o) ∈ G∗d , and consider an arbitrary collection of H+ → H+

analytic functions z 7→ R0
z(H,u), indexed by the elements (H,u) ∈ Succ∗(G, o). For every n ≥ 1,

define recursively

Rnz (H,u) =

(
z +

∑
v∼u

Rn−1
z (H − u, v)

)−1

, (18)

for all z ∈ H+ and (H,u) ∈ Succ∗(G, o). By Lemma 4.6, each sequence (z 7→ Rnz (H,u)) , n ∈ N, is

tight in H. Consequently, their joint collection as (H,u) varies in the denumerable set Succ∗(G, o)

is sequentially tight in the product space HSucc∗(G,o). Passing to the limit in (18), we see that

any pre-limit Rz : Succ∗(G, o)→ H+ must automatically satisfy (16) for each z ∈ H+. By Lemma

4.7, this determines uniquely the value of Rz(G, o) for z with sufficiently large real part, and hence

everywhere in H+ by analycity. To sum up, we have just proved the following : for every (G, o) ∈ G∗d ,

the limit

R(G, o) := lim
n→∞

Rn(G, o) (19)

exists in H, satisfies the recursion (16), and does not depend upon the choice of the initial condition

R0 ∈ HSucc∗(G,o).

Step 2 : Pointwise uniqueness. Let us now show that any S : Succ∗(G, o) → H+ satisfying the

recursion (16) at a fixed value z = z0 ∈ H+ must coincide with the z = z0 specialization of the

analytic solution constructed above. For each (H,u) ∈ Succ∗(G, o), the constant initial function

R0
z(H,u) = S(H,u) is trivially analytic from H+ to H+, so the iteration (18) must converge to the

analytic solution Rz. Since Rnz0 = S for any integer n ≥ 0, we obtain Rz0 = S, as desired. The first

two steps prove claims (i)-(ii) of the lemma.

Step 3 : Continuity. Finally, we prove claim (iii). Consider a sequence (Gn, o) , n ≥ 1 in G∗d
converging locally to (G, o). Let us show that in H,

R(Gn, on) −−−→
n→∞

R(G, o). (20)

It is routine that, up to rooted isomorphisms, G,G1, G2, . . . may be represented on a common

vertex set, in such a way that o = on and for each fixed k ≥ 1, (Gn, o)k = (G, o)k for all n ≥ nk. By

construction, any simple path v1 . . . vk starting from the root in G is now also a simple path starting

from the root in each Gn, n ≥ nk, so the H−valued sequence (R(Gn − {v1, . . . , vk−1}, vk)) , n ≥ nk,
is well defined, and tight (Lemma 4.6). Again, the denumerable collection of all sequences obtained

by letting the simple path v1 . . . vk vary in (G, o) is sequentially tight for the product topology, and

any pre-limit must by construction satisfy (16). By pointwise uniqueness, the convergence (20)

must hold.
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4.2.3 Convergence of the Boltzmann distribution : proof of Theorem 4.4 and Corol-

lary 4.5

Proof of Theorem 4.4. Consider an infinite (G, o) ∈ G∗d , and let (Gn, on)n≥1 be a sequence of finite

rooted connected graphs converging locally to (G, o). As above, represent G,G1, G2, . . . on a com-

mon vertex set, in such a way that on = o and for each k ≥ 1, (Gn, o)k = (G, o)k for all n ≥ nk.

Now fix an arbitrary finite matching m in G, and denote by v1, . . . , v2|m| the vertices spanned by m,

in any order. By construction, m is also a matching of Gn for large enough n. But the matchings

of Gn that contain m are exactly the matchings of Gn−{v1, . . . , v2|m|}, and hence, by Lemma 4.1,

µzGn (m ⊆M) =

2|m|∏
k=1

Rz(Gn − {v1, . . . , vk−1}, vk).

But (Gn − {v1, . . . , vk−1}, vk) converges locally to (G − {v1, . . . , vk−1}, vk), and by Lemma 4.3(iii)

Rz is continuous. We get

µzGn (m ⊆M) −−−→
n→∞

2|m|∏
k=1

Rz(G− {v1, . . . , vk−1}, vk).

as requested.

Proof of Corollary 4.5. From recursion (16) and Lemma 4.6(ii), we have

|1− xRx(G, o)| =
∣∣∣∣ ∑

v∼oRx(G− o, v)

x+
∑

v∼oRx(G− o, v)

∣∣∣∣ ≤ degG(o)

<(x)2
.

On the other end, from Lemma 4.1, for any z ∈ H+,

1

|Vn|
logPGn(z) = log z +

∫ ∞
z

1− xEU(Gn)Rx(G, v)

x
dx.

From what precedes, if 2|En| ≤ c|Vn|,∣∣∣∣1− xEU(Gn)Rx(G, v)

x

∣∣∣∣ ≤ c

<(x)3
.

Analytic convergence of the free entropy follows from Theorem 4.4 and Montel’s Theorem.

4.3 The zero-temperature limit

4.3.1 Continuity of the matching number

Motivated by the asymptotic study of maximum matchings, we now let the temperature z → 0 and

study the matching number defined in (11).
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Theorem 4.8 (matching number is estimable). Let Gn = (Vn, En), n ∈ N, be a sequence of finite

graphs such that U(Gn) converges weakly to ρ ∈ Puni(G∗). Then,

lim
n→∞

ν(Gn)

|Vn|
= γ, (21)

where γ depends only on ρ. Moreover, if degG(o) ≤ d for some integer d ≥ 1 then

γ =
1− limz→0 EρzRz(G, o)

2
, (22)

where under Eρ, (G, o) has distribution ρ.

Statement (21) was first proved by Elek and Lippner [24], when the underlying graph is the

lattice, it is a consequence of [26, Lemma 8.7]. We will follow the proof of [16] which is more

constructive and we allow explicit computations in the next subsection. To some extent it is again

possible to extend the definition (22) for γ to a larger class of ρ ∈ Puni(G∗). Also, it can expressed

in terms of the matching measure defined in (17) as γ = (1− Eρµ(G,o){0})/2.

4.3.2 Proof of Theorem 4.8

We first use Theorem 4.4 to prove a version of Theorem 4.8 for graphs with bounded degree.

Lemma 4.9 (The zero temperature limit in graphs with bounded degree). For any (G, o) ∈ G∗d ,

the zero temperature limit

S(G, o) = lim
z→0
↓ zRz(G, o)

exists. Moreover, S : G∗d → [0, 1] is the largest solution to the recursion

S(G, o) =

1 +
∑
v∼o

(∑
w∼v

S(G− o− v, w)

)−1
−1

, (23)

with the conventions 0−1 = ∞, ∞−1 = 0. When G is finite, S(G, o) is the probability that o is

exposed in a uniform maximum matching.

Proof. Fix (G, o) ∈ G∗d . First, we claim that z 7→ zRz(G, o) is non-decreasing on R+. Indeed, this

is obvious if G is reduced to o, since in that case the zRz(G, o) = 1. It then inductively extends to

any finite graph (G, o), because iterating twice (16) gives

zRz(G, o) =

1 +
∑
v∼o

(
z2 +

∑
w∼v

zRz(G− o− v, w)

)−1
−1

. (24)

For the infinite case, (G, o) is the local limit of the sequence of finite truncations ((G, o)k) , k ≥ 1,

so by continuity of the cavity ratio Lemma 4.3(iii), Rz(G, o) = limk→∞Rz(G, o)k must be non-

decreasing in z as well.
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This guarantees the existence of the [0, 1]−valued limit

S(G, o) = lim
z→0
↓ zRz(G, o).

Moreover, taking the z → 0 limit in (24) guarantees the recursive formula (23).

Finally, consider T : Succ∗(G, o)→ [0, 1] satisfying the recursion (23). Let us show by induction

over integer k ≥ 0 that for every (H,u) ∈ Succ∗(G, o) and z > 0,

T (H,u) ≤ zRz(H,u)2k. (25)

The statement is trivial when k = 0 (zRz(H,u)0 = 1), and is preserved from k to k + 1 because

zRz(H,u)2k+2 =

1 +
∑
v∼u

(
z2 +

∑
w∼v

zRz(H − u− v, w)2k

)−1
−1

≥

1 +
∑
v∼u

(∑
w∼v

T (H − u− v, w)

)−1
−1

= T (H,u).

Letting k →∞ and then z → 0 in (25) yields S ≤ T , which completes the proof

This naturally raises the following question : may the zero temperature limit be interchanged

with the infinite volume limit ? The answer is not straightforward : unlike recursion (16), the

recursion (23) may admit several distinct solutions, and this translates as follows : in the limit

of zero temperature, correlation decay breaks for the monomer-dimer model, in the precise sense

that the functional S : G∗d → [0, 1] is no longer continuous with respect to local convergence. For

example, one can easily construct an infinite rooted tree (T, o) with bounded degree such that

lim
k→∞

↓ S(T, o)2k 6= lim
k→∞

↑ S(T, o)2k+1.

Despite this lack of correlation decay, the interchange of limits turns out to be valid “on average”,

i.e. when looking at a uniformly chosen vertex o. The key lemma is the next result.

Lemma 4.10 (Uniform logarithmic error). Let G = (V,E) be a finite graph. For any 0 < z < 1,

EU(G)zRz +
|E|
|V |

log 2

log z
≤ EU(G)S ≤ EU(G)zRz.

Proof. From Lemma 4.9, z 7→ EU(G)zRz is non-decreasing. It follows

EU(G)S ≤ EU(G)zRz ≤
−1

log z

∫ 1

z
s−1EU(G)sRsds.

Use (14), we rewrite this as

EU(G)S ≤ EU(G)zRz ≤
1

|V | log z
log

PG(z)

PG(1)
.

Now, PG(1) is the total number of matchings and is thus clearly at most 2|E|, while PG(z) is at

least z|V |−2ν(G). Since EU(G)S = 1− 2ν(G)/|V |, these two bounds yield exactly the statement.
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We may now prove Theorem 4.8.

Proof of Theorem 4.8. The proof is in two steps.

Step 1: we assume that Gn = (Vn, En) with |En| = O(|Vn|) and ρ-a.s. degG(o) ≤ d for some d ≥ 1.

Since U(Gn) converges weakly to ρ, by Lemma 4.3, for any z > 0,

lim
n→∞

EU(Gn)Rz = EρRz.

Let c > 0 large enough such that supn≥1 |En|/|Vn| ≤ c. Using Lemma 4.10 for Gn and letting

n→∞ in , we see that for any z < 1,

EρzRz +
c log 2

log z
≤ lim inf

n→∞
EU(Gn)S ≤ lim sup

n→∞
EU(Gn)S ≤ EρzRz.

Letting finally z → 0, we obtain the statement of the theorem.

Step 2: truncation. We now establish Theorem 4.8 in full generality. To this end, we introduce the

d−truncation Gd, d ≥ 0, of a graph G = (V,E), obtained from G by removing any edge incident

to a vertex with degree larger than d. This transformation is clearly continuous on G∗ endowed

with the local topology. Moreover, if G is finite, its effect on the matching number can be easily

controlled :

ν(Gd) ≤ ν(G) ≤ ν(Gd) + |{v ∈ V : degG(v) > d}|. (26)

Now, consider a sequence of finite graphs (Gn), n ≥ 1, such that U(Gn) converges weakly to ρ.

First, we fix d ∈ N and apply step 1 to the sequence (Gdn), n ≥ 1, to obtain :

lim
n→∞

ν(Gdn)

|Vn|
=

1− EρdS
2

,

where ρd is the d-truncation of ρ. Second, we may rewrite (26) as∣∣∣∣ν(Gdn)

|Vn|
− ν(Gn)

|Vn|

∣∣∣∣ ≤ PU(Gn) (degG(o) > d) =

∣∣{v ∈ Vn : degGn(v) > d}
∣∣

|Vn|
.

Letting n→∞, we obtain

lim sup
n→∞

∣∣∣∣1− EρdS
2

− ν(Gn)

|Vn|

∣∣∣∣ ≤ Pρ (degG(o) > d) .

This last line is, by an elementary application of Cauchy criterion, enough to guarantee the con-

vergence promised by Theorem 4.8 with γ = limd→∞(1− EρdS)/2.

4.4 Computation on Unimodular Galton-Watson trees

We now investigate the special case when ρ = UGW(P ). Thanks to the recursive nature of

the branching process and the unimodularity, the recursion defining γ simplifies into a recursive

distributional equation (RDE), which can been explicitly solved.
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Theorem 4.11. With the notation of Theorem 4.8, if ρ is a UGW tree with degree distribution P

and moment generating function ϕ(t) =
∑

k P (k)tk, we have

γ =
1−maxt∈[0,1]M(t)

2
,

where

M(t) = tϕ′(1− t) + ϕ(1− t) + ϕ

(
1− ϕ′(1− t)

ϕ′(1)

)
− 1. (27)

Differentiating the above expression, we see that any t achieving the maximum must satisfy

ϕ′(1)t = ϕ′
(

1− ϕ′(1− t)
ϕ′(1)

)
. (28)

For Erdős-Rényi random graphs with connectivity c, the degree of the limiting UGW tree is Poisson

with parameter c (i.e. ϕ(t) = exp(ct− c)), so that (28) becomes t = e−ce
−ct

. Theorem 4.11 is thus

consistent with a celebrated result by Karp and Sipser [27] on the matching number of Erdős-

Rényi graphs. Similarly, for random graphs with a prescribed degree sequence with a log-concave

assumption on the degree distribution, Theorem 4.11 covers a result by Bohmann and Frieze [11].

Given z > 0, Q ∈ P (N) and µ ∈ P ([0, 1]), we denote by ΘQ,z(µ) the law of the [0, 1]−valued

r.v.

Y=
1

z +
∑N

i=1Xi

,

where N ∼ Q and X1, X2, . . . ∼ µ, all of them being independent. This defines an operator Θν,z

on P ([0, 1]). The corresponding fixed point equation µ = Θν,z(µ) belongs to the general class of

RDE. Equivalently, it can be rewritten as

X
d
=

1

z +
∑N

i=1Xi

,

where X1, X2, . . . are i.i.d. copies of the unknown random variable X. Note that the same RDE

appears in the analysis of the spectrum and rank of adjacency matrices of random graphs [14, 15].

With this notation in hands, the infinite system of equations (16) defining Rz clearly leads to the

following distributional characterization:

Lemma 4.12. If (T, o) has distribution UGW(P ), then for any z > 0, Rz(T, o) has distribution

ΘP,z(µz), where νz is the unique solution of the RDE νz = Θ
P̂ ,z

(νz).

The same program can be carried out in the zero temperature limit. Specifically, given Q,Q′ ∈
P(N) and µ ∈ P ([0, 1]), we define ΘQ,Q′(ν) as the law of the [0, 1]−valued r.v.

Y =
1

1 +
∑N

i=1

(∑N ′i
j=1Xij

)−1 , (29)

where N ∼ Q, N ′i ∼ Q′, and Xij ∼ ν, all of them being independent. This defines an operator

ΘQ,Q′ on P ([0, 1]) whose fixed points will play a crucial role in our study. Indeed, Theorem 4.9

implies:
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Lemma 4.13. If (T, o) has distribution UGW(P ), the random variable S(T, o) has law Θ
P,P̂

(ν),

where ν is the largest solution (for stochastic domination) to the RDE ν = Θ
P̂ ,P̂

(ν) or with X ∼ ν,

X
d
=

1

1 +
∑N

i=1

(∑Ni
j=1Xij

)−1 , (30)

where N ∼ P̂ , N ′i ∼ P̂ , and Xij ∼ ν, all of them being independent,

Above, the stochastic domination on P([0, 1]) is the partial order ν1 ≤ ν2 if for any continuous,

increasing function ϕ : [0, 1]→ R, ∫
ϕdν1 ≤

∫
ϕdν2.

Recall that by Theorem 4.8, the mean of Θ
P,P̂

(ν) gives precisely the asymptotic size of a

maximum matching for any sequence of finite random graphs whose random weak limit is UGW(P ).

We will now solve this RDE. Combined with Theorem 4.8 and a simple continuity argument to

remove the bounded degree assumption, this will prove Theorem 4.11.

The remaining of this section is dedicated to solving (30) when P has a finite second moment. We

will assume that P (0) +P (1) < 1, otherwise P̂ = δ0 and µ = δ1 is clearly the only solution to (30).

We recall that ϕ(z) is the generating function of P . For any x ∈ [0, 1], we set x = ϕ′(1− x)/ϕ′(1)

and then M defined in (27) can be rewritten as

M(x) = ϕ′(1)xx+ ϕ(1− x) + ϕ(1− x)− 1.

Observe that M ′(x) = ϕ′′∗(1 − x)
(
x− x

)
and therefore, any x ∈ [0, 1] where M admits a local

extremum must satisfy x = x. We will say that M admits an historical record at x if x = x and

M(x) > M(y) for any 0 ≤ y < x. Since M is analytic, there are only finitely many such records in

[0, 1]. In fact, they are in one-to-one correspondence with the solutions to the RDE (30).

Lemma 4.14. If p1 < . . . < pr are the locations of the historical records of M , then the RDE (30)

admits exactly r solutions ; moreover, these solutions can be stochastically ordered, say ν1< . . .<νr,

and for any i ∈ {1, . . . , r},

(i) νi({0}c) = pi ;

(ii) Θ
P,P̂

(νi) has mean M(pi).

Theorem 4.11 follows immediately from Lemma 4.14 and Lemma 4.13. It thus remains to

prove Lemma 4.14. The space P ([0, 1]) is naturally equipped with the weak topology and the

stochastic domination. The proof of Lemma 4.14 will be based on two lemmas, the first one being

straightforward.

Lemma 4.15. For any Q,Q′ ∈ P(N)\{δ0}, ΘQ,Q′ is continuous and strictly increasing on P ([0, 1]).
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Lemma 4.16. For any ν ∈ P ([0, 1]), letting p = ν ({0}c), we have

(i) Θ
P̂ ,P̂

(ν) ({0}c) = p

(ii) if Θ
P̂ ,P̂

(ν) ≤ ν, then the mean of Θ
P,P̂

(ν) is at least M(p).

(iii) if Θ
P̂ ,P̂

(ν) ≥ ν, then the mean of Θ
P,P̂

(ν) is at most M(p);

In particular, if ν = Θ
P̂ ,P̂

(ν), then p = p and Θ
P,P̂

(ν) has mean M(p).

Proof. In equation (29) it is clear that Y > 0 if and only if for any i ∈ {1, . . . , N}, there exists

j ∈ {1, . . . , Ni
′} such that Xij > 0. Denoting by ϕ̂ the generating function of P̂ , this rewrites:

Θ
P̂ ,P̂

(ν) ({0}c) = ϕ̂ (1− ϕ̂ (1− ν ({0}c))) .

But from (2), it follows that ϕ̂(x) = ϕ′(x)/ϕ′(1), i.e. ϕ̂ (1− x) = x, hence the first result.

Now let X ∼ ν, N ∼ P , N̂ ∼ P̂ , and let S, S1, . . . have the distribution of the sum of N̂ i.i.d.

copies of X, all these variables being independent. Then, Θ
P,P̂

(ν) has mean

E

[
1

1 +
∑N

i=1 Si
−1

]
= E

[(
1−

∑N
i=1 Si

−1

1 +
∑N

i=1 Si
−1

)
1{∀i=1...N,Si>0}

]

= ϕ(1− p)− ϕ′(1)E

[
S−1

S−1 + 1 +
∑N̂

i=1 Si
−1

1{S>0,∀i=1...N̂ ,Si>0}

]

= ϕ(1− p)− ϕ′(1)E
[

Y

Y + S
1{S>0}

]
,

where the second and last lines follow from (2), see also (10), and Y ∼ Θ
P̂ ,P̂

(ν), respectively. Now,

for any s > 0, x 7→ x
x+s is increasing and hence, depending on whether Θ

P̂ ,P̂
(ν) ≥ ν or Θ

P̂ ,P̂
(ν) ≤ ν,

Θ
P,P̂

(ν) has mean at most/least:

ϕ(1− p)− ϕ′(1)E
[

X

X + S
1{S>0}

]
= ϕ(1− p)− pϕ′(1)E

[
1

1 +N ′
1{N ′≥1}

]
,

with N ′ =
∑N̂

i=1 1{Xi>0} and we used the exchangeability of the vector (X,X1, · · · , XN̂
) given N̂ .

Finally, using the definition (2) and the well known identity (n+ 1)
(
n
d

)
= (d+ 1)

(
n+1
d+1

)
, we find

pϕ′(1)E
[

1

1 +N ′
1{N ′≥1}

]
= pϕ′(1)

∑
n≥1

P̂ (n)
n∑
d=1

(
n

d

)
pd(1− p)n−d

d+ 1

=
∑
n≥1

P (n+ 1)
(
1− p(n+ 1)(1− p)n − (1− p)n+1

)
=

∑
k≥0

P (k)
(

1− pk(1− p)k−1 − (1− p)k
)

= 1− pϕ′(1− p)− ϕ(1− p).

Since p̄ = ϕ′(1−p)/ϕ′(1), we get finally, ϕ(1−p)−pϕ′(1)E
[

1
1+N ′1{N ′≥1}

]
= M(p) as requested.
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We now have all the ingredients we need to prove Lemma 4.14.

Proof of Lemma 4.14. Let p ∈ [0, 1] such that p = p, and define ν0 = Bernoulli(p). From Lemma

4.16 we know that Θ
P̂ ,P̂

(ν0) ({0}c) = p, and since Bernoulli(p) is the largest element of P([0, 1])

putting mass p on {0}c, we have Θ
P̂ ,P̂

(ν0) ≤ ν0. Immediately, Lemma 4.15 guarantees that the

limit

ν∞ = lim
k→∞

↘ Θk
P̂ ,P̂

(ν0)

exists in P ([0, 1]) and is a fixed point of Θ
P̂ ,P̂

. Moreover, by Fatou’s Lemma, the number p∞ =

ν∞ ({0}c) must satisfy p∞ ≤ p. But then the mean of Θ
P,P̂

(ν∞) must be both

- equal to M(p∞) by Lemma 4.16 with ν = ν∞ ;

- at least M(p) since ∀k ≥ 0, the mean of Θ
P,P̂

(
Θk
P̂ ,P̂

(µ0)
)

is at least M(p) (by Lemma 4.16

with ν = Θk
P̂ ,P̂

(ν0)).

We have just shown both M(p) ≤ M(p∞) and p∞ ≤ p. From this, we will now deduce the one-

to-one correspondence between historical records of M and fixed points of Θ
P̂ ,P̂

. We treat each

inclusion separately.

First, if M admits an historical record at p, then clearly p∞ = p, so ν∞ is a fixed point satisfying

ν∞ ({0}c) = p.

Conversely, considering a fixed point ν with ν ({0}c) = p, we want to deduce that M admits an

historical record at p. We first claim that ν is the above defined limit ν∞. Indeed, ν ≤ Bernoulli(p)

implies ν ≤ ν∞ (Θ
P̂ ,P̂

is increasing), and in particular p ≤ p∞. Therefore, p = p∞ and M(p) =

M(p∞). In other words, the two ordered distributions Θ
P,P̂

(ν) ≤ Θ
P,P̂

(ν∞) share the same mean,

hence are equal. This ensures ν = ν∞. Now, if q < p is any historical record location, we know

from what precedes that

λ∞ = lim
k→∞

↘ Θk
P̂ ,P̂

(Bernoulli(q))

is a fixed point of Θ
P̂ ,P̂

satisfying λ∞ ({0}c) = q. But q < p, so Bernoulli(q) < Bernoulli(p),

hence λ∞ ≤ ν∞. Moreover, this limit inequality is strict because λ∞ ({0}c) = q < p = ν∞ ({0}c).
Consequently, Θ

P,P̂
(λ∞) < Θ

P,P̂
(ν∞) and taking expectations, M(q) < M(p). Thus, M admits an

historical record at p.
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