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– Mini-course content –

▶ Stallings Graphs : a unique finite representation
▶ of finitely generated subgroups of a free group,
▶ of quasi-convex subgroups of an automatic group.

▶ Algebraic properties via Stallings graphs.

▶ Statistical properties of finitely generated subgroups of a free
groups.

In this mini-course, the ambient groups are always finitely generated.
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I. Free Groups



– Free groups –

▶ A group is a set equipped with an associative internal
composition law, an identity element 1, and such that every
element a has an inverse a−1.

▶ A group F is free on a set A if every element of F can be uniquely
expressed as a reduced product of elements from A ∪ A−1, where
reduced means that no sub-product of the form a · a−1 occurs.



– The free group FA on A –

▶ Let A = {a, b, . . .} be a finite set of letters of cardinality r ≥ 2
▶ Let A−1 be the set of formal inverses of the letters

A−1 = {a−1, b−1 . . .}
▶ A word w on the alphabet A ∪ A−1 is reduced when it contains no

pattern aa−1 or a−1a:

aab−1ccba−1 is reduced aab−1bcba−1 is not reduced

▶ If w is a word, its associated reduced word w is obtained by
repeatedly removing in any order the aa−1 or a−1a:

w = abbb−1a−1ccc−1c−1a−1 → aba−1ccc−1c−1a−1

→ aba−1cc−1a−1 → aba−1a−1 = w

▶ The free group FA on A is the set of all reduced words on
A ∪ A−1 with the operation u · v = uv
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– Cayley graph of a group –

Let G be a group and S a generating set of G, the Cayley graph of G is
the graph
▶ whose vertices are the elements g of G
▶ and whose edges are of the form g→ gs and of color cs for

g ∈ G and s ∈ S.

In a Cayley graph, all edges can be read backward.



– The Cayley graph of FA with A = {a, b} –

Figure: The Cayley graph of FA with A = {a, b}



– Basis of a free group –

▶ The set A is a base of FA : each element of FA can be uniquely
written as a reduced word on A ∪ A−1.

▶ It is not unique ({ab−1, b}, {aba, ba}, . . . ).
▶ But all bases have the same cardinality.

If FA = FB then the following diagram commutes

FA
ϕ isomorphism−−−−−−−−−→ FB

↓ ↓
(Z/2Z)A ψ−→ (Z/2Z)B

and ψ is surjective. So dim (Z/2Z)A ≥ dim (Z/2Z)B and |A| ≥ |B|.
Using the same argument with ϕ−1 shows that |A| ≤ |B|. Thus
|A| = |B|.
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– Cosets and quotient group –

▶ Let H be a subgroup of G, for any g ∈ G, the right coset of g is

Hg = {hg | h ∈ H}.

▶ The number of right cosets (or of left cosets) of a subgroup H in
a group G is its index [G : H].

▶ If gH = Hg (or g−1Hg = H), for all g ∈ G, the subgroup is
normal.

▶ If H is normal, its set of right cosets is the quotient group with

Hg1 · Hg2 = Hg1g2.
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– Presentations of groups and free group –

▶ Any group is isomorphic to a quotient group of some free group.

▶ A group G has the presentation G = ⟨S | R⟩ if G is the ”freest
group” generated by S subject only to the relations R.

▶ The group G have this presentation if it is isomorphic to the
quotient of FS by the normal closure of R.

Examples:
▶ The free group FS on S has the presentation FS = ⟨S | ∅⟩.
▶ The cyclic group of order n has the presentation ⟨a | an = 1⟩.
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– The modular group –

The modular group has the presentation

PSL2(Z) = ⟨a, b | a2 = 1, b3 = 1⟩.

Figure: The Cayley graph of PSL2(Z) = ⟨a, b | a2 = 1, b3 = 1⟩.
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II. Stallings graph of a subgroup



– Schreier coset graph of a subgroup –

Let H be a subgroup of G, S a generating set of G, the Schreier coset
graph Sch(H) is the graph
▶ whose vertices are the right cosets Hg = {hg : h ∈ H} for g ∈ G
▶ and whose edges are of the form Hg s−→ Hgs for g ∈ G and s ∈ S.

Properties:
▶ In a Schreier graph, all edges can be read backward : Hg s−→ Hgs

and Hg s−1
←−− Hgs

▶ A Schreier graph is connected, deterministic, co-deterministic
and complete.

▶ The Cayley graph of the group G itself is the Schreier coset
graph for H = {1G}.
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– Example in the free group –

Figure: The Schreier graph of H = ⟨bab⟩ in FA with A = {a, b}.



– Example in the modular group –

Figure: The Schreier graph of H = ⟨bab⟩ in PSL2(Z).



– Stallings graph of a subgroup –

Let H a subgroup of G, S a generating set G, the Stallings graph of is
the unique subgraph of Sch(H)

▶ rooted at the vertex corresponding to the subgroup H
▶ and spanned by all loops (closed paths) originating and ending at

H labeled by a geodesic (shortest path) representation of an
element in H in the Schreier graph of H.

▶ The vertex H is called the base vertex.
▶ This construction provides a graphical representation of the

subgroup facilitating the study of its structural properties.
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– Example in the modular group –

Figure: The Stallings graph of H = ⟨bab⟩ in PSL2(Z).



– Another example in the free group –

Figure: The Schreier graph of H = ⟨ababa⟩ in FA with A = {a, b}.



– Another example in the free group –

Figure: The Stallings graph of H = ⟨ababa⟩ in FA with A = {a, b}.



– Another example in the modular group –

Figure: The Schreier graph of H = ⟨ababa⟩ in PSL2(Z).



– Another example in the modular –

Figure: The Stallings graph of H = ⟨ababa⟩ in PSL2(Z).



– Stallings graphs and their generalizations –

▶ Stallings (1983) : for the finitely generated subgroups of free
groups.

▶ Markus-Epstein (2007) : for the finitely generated subgroups of
amalgamated products of finite groups.

▶ Silva, Soler-Escriva, Ventura (2016) : for the finitely generated
subgroups of virtually free groups.

▶ Kharlampovich, Miasnikov, Weil (2017) : for the quasi-convex
subgroups of automatic groups.

▶ Delgado and Ventura (2013) : a decorated graph structure to
represent subgroups of direct products of free and free abelian
groups.
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– Finitely generated subgroups of free groups –

▶ Subgroups of a free group are free (theorem of Nielsen-Schreier).

▶ H =< u1, u2, . . . , uk > is the subgroup of FA finitely generated
by the k reduced words u1, u2, . . . , uk of FA.

▶ The rank of H is the cardinal of a minimal set of generators of H.
▶ A free group with finite rank contains subgroups with any

countable rank.
▶ ⟨biab−i | 0 ≤ i < k⟩ has rank k.
▶ ⟨biab−i | i ∈ N⟩ has an infinite rank.
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– Action of the group generators in the Stalling graph –

A Stallings graph is deterministic and co-deterministic. Hence the
two following configurations never occur for p ̸= q:

x
p

q

a

a
or x

p

q

a

a

Every generator of the ambiant group acts as a partial injection on the
set of vertices of the Stallings graph.



– Stallings graph of a finitely generated subgroup of a free group –

Let Y = {aba−1ba−1, bbba−1b−1, bba−1}.
Let H be the subgroup generated by Y .

Goal: Build the Stallings graph of H.

First, for each element y of Y , build a loop (closed path) labeled by y
at base vertex 1.

1

2 3

45

a
b

a−1

b a−1

6 7

89

b
b

b
a−1b−1

10 11

b

b

a−1
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2 3

45

a
b

a−1
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6 7

89

b
b

b
a−1b−1

10 11

b

b

a−1

Edges can be used backward:

x ya ⇔ x ya−1
⇔ x y

a

a−1



The flower graph with positive labels for
Y = {aba−1ba−1, bbba−1b−1, bba−1}:

1

2 3

45

a
b

a
b a

6 7

89

b
b

b
ab

10 11

b

b

a



– Folding –
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b

b

a

6,9b
b

a

There is a problem: The graph is not deterministic.
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– Folding –

1

2 3

4,115

a
b

a
b a

7

8

b

10

b

b

6,9b

b

a

There is a problem: The graph is not co-deterministic.



– Result after foldings –

1

B A

C

b

a

b
a

b

If necessary, at the end, we iteratively remove vertices of arity 1 other
than the base vertex.

Theorem: we always obtain the same graph, up to the state labels :
the Stallings graph of H.

The Stallings graph can be computed in O(m log∗ n), m being the
number of foldings and n the sum of the length of the generators,
using Union-Find (Touikan 2006).
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– Characterization of Stallings graphs of subgroups of free groups –

Theorem: A positively labeled finite graph is the Stallings graph of a
finitely generated subgroup of a free group if and only if
▶ the action of each letter is a partial injection;
▶ the graph is weakly connected (connected as an undirected

graph);
▶ every vertex, but possibly the base vertex, has at least two

incident edges (counting both ingoing and outgoing edges).



– Properties of the Stallings graph –

Theorem (membership): A reduced word u is in H if and only if it
labels a loop begining and ending at the base vertex.

Theorem (rank and bases): The rank of finitely generated subgroup
H of a free group is computable from its Stallings graph :

rk(H) = E − V + 1.

To obtain a base, choose a spanning tree T of the Stallings graph. The
elements of the base are the labels of the loops at the base vertex
using e and edges in the spanning tree for each edge e that is not in T .

1

3 2

4

b

a

b
a

b

H =< aba−1ba−1, bbba−1b−1, bba−1 > is of rank 2, and
{bab−1a−1, bba−1} is a base of H.



– Properties of the Stallings graph : finite index –

The index [G : H] of a subgroup H in a group G is its number of right
cosets (or of left cosets).

Theorem (finite index): A subgroup H ≤ F of the free group F is of
finite index if and if its Stallings graphs is finite and complete.
Then each letter acts like a permutation on the set of vertices and

rk(H)− 1 = [F : H](rk(F)− 1) (Schreier index formula)



– Properties of the Stallings graph : purity –

A subgroup H ≤ F of the free group F is pure if for any g ∈ F and
n ≥ 1, gn ∈ H ⇒ g ∈ H.

A deterministic automaton is aperiodic if : for any g ∈ F, any vertex q
and any n ≥ 2, if gn labels a loop at q then g also labels a loop at q.

Theorem (purity): (Birget, Margolis, Meakin, Weil, 2000)
▶ A finitely generated subgroup of a free group is pure if and only

if its Stallings graph is aperiodic.
▶ Testing if a Stallings graph is aperiodic is PSPACE-complete.

Testing if a finite automaton is aperiodic is PSPACE-complete (Cho,
Huynh, 1991).



– The intersection of finitely generated subgroups of free groups –

Theorem (intersection): The intersection of two finitely generated
subgroups can be computed in time and space O(n1 · n2) where n1
(resp. n2) is the size (here the number of vertices) of the first (resp.
second) Stallings graph.

Rank of the intersection of finitely generated subgroups :
▶ The intersection of two finitely generated subgroups is finitely

generated (Howson, 1954).
▶ rk(H ∩K)− 1 ≤ 2(rk(H)− 1)(rk(K)− 1) (H. Neumann, 1956).
▶ Hanna Neumann’s conjecture / Mineyev theorem (2012):

rk(H ∩ K)− 1 ≤ (rk(H)− 1)(rk(K)− 1).



– Normality and malnormality –

Conjugacy
To obtain the Stallings graph of the conjugate Hg = g−1Hg of H,
replace the base vertex of the Stallings graph of H by the vertex
reached after reading g from the base vertex v in the Schreier graph.

Normality
▶ A subgroup H ≤ G is normal if, for all g ∈ G, Hg = H.
▶ Proposition: If a finitely generated subgroup of a free group is

normal, then it is of finite index.

Malnormality
▶ A subgroup H is malnormal if, for all g /∈ H, Hg ∩ H = 1.
▶ Proposition: A finitely generated subgroup H of a frez group is

malnormal
▶ if and only if every non-diagonal connected component of the

product graph of the Stallings graph of H with itself is a tree;
▶ if and only if there are no two loops of the same label in the

Stallings graph of H.



– Geodesically automatic group –

Let G = ⟨A | R⟩ be a group, G is geodesically automatic if there exist:

▶ an automaton AG that accepts all the geodesic representatives of
the elements of G;

▶ and, for each a ∈ A ∪ A−1 ∪ {1}, an automaton that accepts a
pair (w1,w2), for all words wi accepted by AG, exactly when
w1a = w2 in G.

Examples: Hyperbolic groups, RAAG.



– Quasi-convex subgroup –

▶ A subgroup H ≤ G is quasi-convex if there exists k > 0, such
that any geodesic path in the Cayley graph of G connecting two
elements of H remains within a k-neighborhood of H.

▶ This means that a shortest path u = a1 . . . ap between any two
elements of H does not stray too far from H itself : for
1 ≤ i ≤ p, ∃|vi| ≤ k such that a1 . . . aivi ∈ H.

▶ Proposition: A subgroup of a finitely generated group is
quasi-convex if and only if its Stallings graph is finite
(Kharlampovich, Miasnikov, Weil 2017).

▶ Theorem: The quasi-convexity of a subgroup is an undecidable
property (Kapovich, 1996).
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elements of H does not stray too far from H itself : for
1 ≤ i ≤ p, ∃|vi| ≤ k such that a1 . . . aivi ∈ H.

▶ Proposition: A subgroup of a finitely generated group is
quasi-convex if and only if its Stallings graph is finite
(Kharlampovich, Miasnikov, Weil 2017).

▶ Theorem: The quasi-convexity of a subgroup is an undecidable
property (Kapovich, 1996).



– Quasi-convex subgroup –

▶ A subgroup H ≤ G is quasi-convex if there exists k > 0, such
that any geodesic path in the Cayley graph of G connecting two
elements of H remains within a k-neighborhood of H.

▶ This means that a shortest path u = a1 . . . ap between any two
elements of H does not stray too far from H itself : for
1 ≤ i ≤ p, ∃|vi| ≤ k such that a1 . . . aivi ∈ H.

▶ Proposition: A subgroup of a finitely generated group is
quasi-convex if and only if its Stallings graph is finite
(Kharlampovich, Miasnikov, Weil 2017).

▶ Theorem: The quasi-convexity of a subgroup is an undecidable
property (Kapovich, 1996).



– Stallings graphs for quasi-convex subgroups –

Theorem (Kharlampovich, Miasnikov, Weil, 2017):
Let G = ⟨A | R⟩ be a finitely presented (A and R are finite)
geodesically automatic group.

Let H be quasi-convex subgroup of G.
Then the Stallings graph of H is finite and effectively computable by a
partial algorithm.
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– Stallings graphs for quasi-convex subgroups –

A partial algorithm computing the Stallings graph Γ(H)

1. Compute the Stallings graph of the free subgroup generated by
the generators of H.

2. For each relator, add at each vertex of the graph a loop (closed
path) labeled by this relator.

3. Fold the edges of the graph.

4. Iterate Step 2 and 3 until all the geodesic representations of the
elements of H can be read in Γ(H).

5. Remove the vertices that do not belong to a geodesic path.

There is no bound on the time complexity of this algorithm;
otherwise, it would be possible to determine whether a set of
generators generates a quasi-convex subgroup.
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– In the modular group PSL2(Z) = ⟨a, b | a2 = 1, b3 = 1⟩ –

▶ The geodesic words consist of alternations of a±1 and b±1.
▶ To obtain a geodesic representative for the element represented

by a word u
▶ first freely reduce u,
▶ delete every occurrence of a2, b3 and their inverses,
▶ replace every occurrence of b2 (resp. b−2) by b−1 (resp. b).

▶ PSL2(Z) is geodesically automatic.
▶ Every subgroup is quasi-convex.
▶ Combinatorial et algebraic study of properties of the Stallings

graphs of subgroups (Bassino, Nicaud, Weil, 2021, 2024,
2025+).



– Example : H = ⟨abab−1, babab⟩ in PSL2(Z) = ⟨a, b | a2 = 1, b3 = 1⟩ –

Figure: The Stallings graph of ⟨abab−1, babab⟩ in FA with A = {a, b}

Figure: The ”free” Stallings graph with the loops labeled by the relators a2

and b3.
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– Properties of the Stallings graph –

▶ Membership can be tested.
▶ The finitness of the subgroup can be tested.
▶ A generating set can be computed.
▶ There is method to determine the rank of the subgroup (the size

of minimal set of generators).
▶ The intersection can be computed.
▶ Finite index : If the Stalling graph is finite and complete, the

subgroup is of finite index. But the converse is not proven.
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III. Graph-Based Distribution



– Size of a subgroup : the number of vertices –

Define the size |H| of a finitely generated subgroup H as the number
of vertices of its Stallings graph ΓH .

Let Gn denote the set of all Stallings graphs with n vertices and whose
set of vertices is [n], the vertex 1 being the base vertex.

Some questions:
▶ What can we say about the cardinality of Gn?
▶ Can we design an algorithm to draw an element of Gn uniformly

at random?
▶ What are the typical algebraic properties (rank, . . . ) of a random

element of Gn, for the uniform distribution?

[Bassino, Nicaud, Weil 2008, 2016] and [Bassino, Martino, Nicaud,
Ventura, Weil 2013].



– Reminder : Characterization of Stallings graphs –

Theorem: a positively labelled graph on [n] is the Stallings graph of a
finitely generated subgroup if and only if
▶ the action of each letter is a partial injection;
▶ the graph is weakly connected (connected as an undirect graph);
▶ every vertex, but possibly 1, has at least two edges (counting

both ingoing and outgoing edges).

A given size-n subgroup H has exactly (n− 1)! associated Stallings
graphs (by relabeling all the vertices, but vertex 1): the uniform
distribution on Gn induces the uniform distribution on size-n finitely
generated subgroups.
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– An Example –

Figure: A random Stallings graph with 200 vertices.



– Partial injections –

6 1 5 3

2 7

4

▶ A partial injection is a set of cycles and non-empty sequences of
labeled ”atoms”.

▶ If I denote the set of all partial injection, we have

I = Set
(
Seq≥1(Z) ∪̇ Cyc(Z)

)
,

▶ The goal is to analyze the exponential generating series of I

I(z) =
∑
n≥0

In

n!
zn.

where In denote the number of partial injections on a size-n set.
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– Symbolic method (Flajolet, Sedgewick, 2008) –

▶ “sets of cycles and non-empty sequences”

Sets ←→ exp(•)
“of” ←→ composition

Cycles ←→ log( 1
1−•)

“and” ←→ +
Non-empty sequences ←→ •

1−•
Atom ←→ z

▶ This yields directly

I(z) = exp

(
log

(
1

1− z

)
+

z
1− z

)
=

1
1− z

exp

(
z

1− z

)



– Number of partial injections –

I(z) =
1

1− z
exp

(
z

1− z

)
satisfies the conditions of the saddle point theorem, and therefore if In

denote the number of partial injection from [n] to [n] we have:

In

n!
∼ e−1/2

2
√
π

n−1/4e2
√

n,

the saddle point is ζ = 1− 1√
n +O(1

n).



– Weakly connected? –

Proposition: For r ≥ 2, r uniform random partial injections on a
size-n set forms a weakly connected graph with probability
pn = 1− 2r

nr−1 + o( 1
nr−1 ).

The number of pairs of partial injections is I2
n and the radius of

convergence of
∑ 1

n! I
2
nzn is zero!.

We cannot use analytic techniques.

The proof use a theorem of Bender.



– Proof for bijections –

Proposition: The size-n graph obtained when taking two random
permutations uniformly at random is weakly connected with high
probability.

Proof: If the graph is not connected, the set of vertices [n] can be split
in two subsets X and Y that are stable under the action of the two
permutations.
Thus, summing over the size k of X, the probability of having such
configurations is bounded from above by

1
n!2

n−1∑
k=1

(
n
k

)
k!2(n− k)!2 =

n−1∑
k=1

1(n
k

) ,
which is O(1

n).



– Last condition –

Theorem: a positively labelled graph on [n] is the Srallings graph of a
finitely generated subgroup if and only if
▶ the action of each letter is a partial injection;
▶ the graph is weakly connected (connected as an undirect graph)
▶ every vertex, but possibly 1,has at least two incident edges

(counting both ingoing and outgoing edges).



– Vertices with zero or one outgoing or ingoing edge –
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8 7
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▶ If x is a vertex with 0 edge, then x must be isolated for all
injections.

▶ If x is a vertex with 1 edge, then x must be isolated for one
injection and an endpoint for the other injection when r = 2.

The probability it is isolated for one injection is In−1
In

, which is smaller
than 1

n .



– Computing the number of sequences –

If A(z) is a power series, let [zn]A(z) denote its coefficient an.

Let In,k be the number of size-n injections having k sequences, and let
I(z, u) be the bivariate generating function defined by:

I(z, u) =
∑
n≥0

∑
k≥0

In,k

n!
znuk,

Observe that I(z, 1) = I(z) and that

[zn] d
du I(z, u)

∣∣∣
u=1

[zn]I(z)
=

∑
k≥0 k In,k

In

is the expected number of sequences in a size-n injection.
Using the second derivative, we also get an expression of the variance
of the number of sequences in a size-n injection.



– Using marks –

I = Set
(
•Seq≥1(Z) ∪̇ Cyc(Z)

)
There is one blue mark for each non-empty sequence.
The bivariate EGS of I is

I(z, u) = exp

(
zu

1− z
+ log

(
1

1− z

))
=

1
1− z

exp

(
zu

1− z

)
Appling the saddle point theorem on
I(z) = 1

(1−z)p exp
(

z
1−z

)
(p = 1, 2), we obtain that

▶ the expected number of sequences is
√

n with standard deviation
o(
√

n)
▶ the probability that a given vertex is an endpoint is in O( 1√

n)

▶ the probability that it has 0 or 1 edge with probability O(n−3/2) :
there is such a vertex with probability O(n−1/2): with high
probability the graph has no such vertex.



– Stallings graph with high probability –

Theorem: For r ≥ 2, a r-tuple of partial injections of [n] generically
(i.e. with a probability that tends to 1 when n tends to∞) forms a
Stallings graph.

Corollary: The number of finitely generated subgroups of size n is
equivalent to

Ir
n

(n− 1)!
∼ (2e)−r/2
√

2π
e−(r−1)n+2r

√
nn(r−1)n+ r+2

4 .

Proposition: For r ≥ 2, the average rank of a subgroup H of the free
group with a size-n Stallings graph is

rk(H) = (r − 1)n− r
√

n + o(
√

n)
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– Malnormality –

Definition: A subgroup H of G is malnormal when for every g /∈ H,
g−1Hg ∩ H = {1}.

Theorem: A finitely generated free subgroup H is not malnormal if
and only if there are two loops with the same label in the Stallings
graph of H.

Sufficient conditions:
• If there is a a-cycle of length at least 2, the subgroup is not
malnormal.
• If there are at least two a-cycles of length 1, the subgroup is not
marnomal.



– Malnormality –

Partial injections with no cycles:

J = Set
(
Seq≥1(Z)

)
=⇒ J = exp

(
z

1− z

)
Partial injections with only 1 cycle which is of length 1:

K = Z ⋆ Set
(
Seq≥1(Z)

)
=⇒ J = z exp

(
z

1− z

)
By the saddle point theorem:
Theorem:
▶ The probability that a size n partial injection has no cycle of

length greater than 2 is asymptotically equivalent to e√
n .

▶ The probabibility that a random finitely generated subgroup of a
free group is malnormal is O(n−r/2).



– Random generation of a finitely generated subgroup –

Recall that
▶ The action of each letter is a partial injection:

−→ Generate as many partial injections as the size of the
alphabet

▶ The graph is weakly connected and every vertex, but possibly 1,
has at least two edges

−→ Reject if it is not true, and try again



– Random generation of a partial injection –

A partial injection is a set of disjoint components, that are either
cycles or non-empty sequences.
To recursively generate a uniform partial injection:
▶ choose the size k of a component according to the distribution of

the sizes of components in a random size n partial injection;
▶ choose whether that the size k component is a cycle or a

sequence – according to the distribution of these two types
among size k components;

▶ and choose a size n− k partial injection.



– Pointing –

Let C = Set(A). If we mark an atom uniformly at random, we also
designate the element of A which contains this atom.
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8 7

4

2

If ΘC denotes the set of all elements of C with one marked atom, we
have the bijection

ΘC ≡ ΘA ⋆ C



– Pointing –

The generating function of ΘA is∑
n≥0

n
an

n!
zn = z

d
dz

A(z)

ΘC ≡ ΘA ⋆ C is a combinatorial interpretation of

z
d
dz

exp (A(z)) = z
d
dz

A(z)× exp (A(z))

If we select one atom, the probability it is in a component of size k is

kak
k!

cn−k
(n−k)!
ncn
n!

=

(
n
k

)
kakcn−k

ncn



– Size of a component –

In our settings, an element of A is either a non-empty sequence or a
cycle, hence ak = k! + (k − 1)!. The probability of pointing a size-k
component is therefore (

n
k

)
kakIn−k

nIn

It can easily be computed if the Im have been preprocessed.
If we compute the derivative of I(z) we obtain that

I′(z) =
2− z

(1− z)3 exp

(
z

1− z

)
=

2− z
(1− z)2 I(z)

And therefore
In = 2nIn−1 − (n− 1)2In−2,

=⇒ we can compute the In efficiently.



– Random generation –

A direct computation shows that a given size-k component is a cycle
with probability 1

k+1

We can therefore build the random injection component by
component.

Theorem: There exists an algorithm to generate size-n random
Stallings graphs whose average complexity is linear.
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