Combinatorics of groups via Stallings graphs

Frédérique Bassino LIPN, Université Sorbonne Paris Nord Journées ALEA 2025, March 2025

- Mini-course content -

Stallings Graphs : a unique finite representation

- of finitely generated subgroups of a free group,
- of quasi-convex subgroups of an automatic group.
- Algebraic properties via Stallings graphs.
- Statistical properties of finitely generated subgroups of a free groups.

- Mini-course content -

Stallings Graphs : a unique finite representation

- of finitely generated subgroups of a free group,
- of quasi-convex subgroups of an automatic group.
- Algebraic properties via Stallings graphs.
- Statistical properties of finitely generated subgroups of a free groups.

In this mini-course, the ambient groups are always finitely generated.

I. Free Groups

- Free groups -

- ► A group is a set equipped with an associative internal composition law, an identity element 1, and such that every element *a* has an inverse a⁻¹.
- ▶ A group *F* is free on a set *A* if every element of *F* can be uniquely expressed as a reduced product of elements from $A \cup A^{-1}$, where reduced means that no sub-product of the form $a \cdot a^{-1}$ occurs.

- The free group F_A on A -

 Let A = {a, b,...} be a finite set of letters of cardinality r ≥ 2
 Let A⁻¹ be the set of formal inverses of the letters A⁻¹ = {a⁻¹, b⁻¹...}

A word w on the alphabet $A \cup A^{-1}$ is reduced when it contains no pattern aa^{-1} or $a^{-1}a$:

 $aab^{-1}ccba^{-1}$ is reduced $aab^{-1}bcba^{-1}$ is not reduced

- The free group F_A on A -

- Let A = {a, b, ...} be a finite set of letters of cardinality r ≥ 2
 Let A⁻¹ be the set of formal inverses of the letters A⁻¹ = {a⁻¹, b⁻¹...}
- A word w on the alphabet $A \cup A^{-1}$ is reduced when it contains no pattern aa^{-1} or $a^{-1}a$:

 $aab^{-1}ccba^{-1}$ is reduced $aab^{-1}bcba^{-1}$ is not reduced

► If w is a word, its associated reduced word \overline{w} is obtained by repeatedly removing **in any order** the aa^{-1} or $a^{-1}a$:

$$w = abbb^{-1}a^{-1}ccc^{-1}c^{-1}a^{-1} \rightarrow aba^{-1}ccc^{-1}c^{-1}a^{-1}$$
$$\rightarrow aba^{-1}cc^{-1}a^{-1} \rightarrow aba^{-1}a^{-1} = \overline{w}$$

- The free group F_A on A -

- Let A = {a,b,...} be a finite set of letters of cardinality r ≥ 2
 Let A⁻¹ be the set of formal inverses of the letters A⁻¹ = {a⁻¹, b⁻¹...}
- A word w on the alphabet $A \cup A^{-1}$ is reduced when it contains no pattern aa^{-1} or $a^{-1}a$:

 $aab^{-1}ccba^{-1}$ is reduced $aab^{-1}bcba^{-1}$ is not reduced

► If w is a word, its associated reduced word \overline{w} is obtained by repeatedly removing **in any order** the aa^{-1} or $a^{-1}a$:

$$w = abbb^{-1}a^{-1}ccc^{-1}c^{-1}a^{-1} \rightarrow aba^{-1}ccc^{-1}c^{-1}a^{-1}$$
$$\rightarrow aba^{-1}cc^{-1}a^{-1} \rightarrow aba^{-1}a^{-1} = \overline{w}$$

• The free group F_A on A is the set of all reduced words on $A \cup A^{-1}$ with the operation $u \cdot v = \overline{uv}$

- Cayley graph of a group -

Let G be a group and S a generating set of G, the Cayley graph of G is the graph

- ▶ whose vertices are the elements *g* of *G*
- and whose edges are of the form $g \to gs$ and of color c_s for $g \in G$ and $s \in S$.

In a Cayley graph, all edges can be read backward.

- The Cayley graph of F_A with $A = \{a, b\}$ -

Figure: The Cayley graph of F_A with $A = \{a, b\}$

- Basis of a free group -

- ► The set *A* is a base of F_A : each element of F_A can be uniquely written as a reduced word on $A \cup A^{-1}$.
- It is not unique $(\{ab^{-1}, b\}, \{aba, ba\}, \ldots)$.
- But all bases have the same cardinality.

- Basis of a free group -

- ► The set *A* is a base of F_A : each element of F_A can be uniquely written as a reduced word on $A \cup A^{-1}$.
- It is not unique $(\{ab^{-1}, b\}, \{aba, ba\}, \ldots)$.
- But all bases have the same cardinality.

If $F_A = F_B$ then the following diagram commutes

$$\begin{array}{ccc} F_A & \xrightarrow{\phi \text{ isomorphism}} & F_B \\ \downarrow & & \downarrow \\ (\mathbb{Z}/2\mathbb{Z})^A & \xrightarrow{\psi} & (\mathbb{Z}/2\mathbb{Z})^B \end{array}$$

and ψ is surjective. So dim $(\mathbb{Z}/2\mathbb{Z})^A \ge \dim (\mathbb{Z}/2\mathbb{Z})^B$ and $|A| \ge |B|$. Using the same argument with ϕ^{-1} shows that $|A| \le |B|$. Thus |A| = |B|.

- Cosets and quotient group -

Let *H* be a subgroup of *G*, for any $g \in G$, the right coset of *g* is

$$Hg = \{hg \mid h \in H\}.$$

► The number of right cosets (or of left cosets) of a subgroup H in a group G is its index [G : H].

- Cosets and quotient group -

• Let *H* be a subgroup of *G*, for any $g \in G$, the right coset of *g* is

$$Hg = \{hg \mid h \in H\}.$$

- ► The number of right cosets (or of left cosets) of a subgroup H in a group G is its index [G : H].
- ▶ If gH = Hg (or $g^{-1}Hg = H$), for all $g \in G$, the subgroup is normal.

- Cosets and quotient group -

• Let *H* be a subgroup of *G*, for any $g \in G$, the right coset of *g* is

$$Hg = \{hg \mid h \in H\}.$$

- ► The number of right cosets (or of left cosets) of a subgroup H in a group G is its index [G : H].
- ▶ If gH = Hg (or $g^{-1}Hg = H$), for all $g \in G$, the subgroup is normal.
- ▶ If *H* is normal, its set of right cosets is the quotient group with

$$Hg_1 \cdot Hg_2 = Hg_1g_2.$$

- Presentations of groups and free group -

• Any group is isomorphic to a quotient group of some free group.

- Presentations of groups and free group -

- Any group is isomorphic to a quotient group of some free group.
- A group *G* has the presentation $G = \langle S | R \rangle$ if *G* is the "freest group" generated by *S* subject only to the relations *R*.
- The group G have this presentation if it is isomorphic to the quotient of F_S by the normal closure of R.

Examples:

- The free group F_S on S has the presentation $F_S = \langle S \mid \emptyset \rangle$.
- The cyclic group of order *n* has the presentation $\langle a \mid a^n = 1 \rangle$.

- The modular group -

The modular group has the presentation

$$\mathsf{PSL}_2(\mathbb{Z}) = \langle a, b \mid a^2 = 1, b^3 = 1 \rangle.$$

- The modular group -

The modular group has the presentation

$$\mathsf{PSL}_2(\mathbb{Z}) = \langle a, b \mid a^2 = 1, b^3 = 1 \rangle.$$

Figure: The Cayley graph of $\mathsf{PSL}_2(\mathbb{Z}) = \langle a, b \mid a^2 = 1, b^3 = 1 \rangle$.

II. Stallings graph of a subgroup

- Schreier coset graph of a subgroup -

Let *H* be a subgroup of *G*, *S* a generating set of *G*, the Schreier coset graph Sch(H) is the graph

- whose vertices are the right cosets $Hg = \{hg : h \in H\}$ for $g \in G$
- ▶ and whose edges are of the form $Hg \xrightarrow{s} Hgs$ for $g \in G$ and $s \in S$.

- Schreier coset graph of a subgroup -

Let *H* be a subgroup of *G*, *S* a generating set of *G*, the Schreier coset graph Sch(H) is the graph

- whose vertices are the right cosets $Hg = \{hg : h \in H\}$ for $g \in G$
- ▶ and whose edges are of the form $Hg \xrightarrow{s} Hgs$ for $g \in G$ and $s \in S$.

Properties:

- ► In a Schreier graph, all edges can be read backward : $Hg \xrightarrow{s} Hgs$ and $Hg \xleftarrow{s^{-1}} Hgs$
- A Schreier graph is connected, deterministic, co-deterministic and complete.
- The Cayley graph of the group G itself is the Schreier coset graph for $H = \{1_G\}$.

- Example in the free group -

Figure: The Schreier graph of $H = \langle bab \rangle$ in F_A with $A = \{a, b\}$.

- Example in the modular group -

Figure: The Schreier graph of $H = \langle bab \rangle$ in $\mathsf{PSL}_2(\mathbb{Z})$.

- Stallings graph of a subgroup -

Let *H* a subgroup of *G*, *S* a generating set *G*, the Stallings graph of is the unique subgraph of Sch(H)

- rooted at the vertex corresponding to the subgroup H
- and spanned by all loops (closed paths) originating and ending at *H* labeled by a geodesic (shortest path) representation of an element in *H* in the Schreier graph of *H*.

- Stallings graph of a subgroup -

Let *H* a subgroup of *G*, *S* a generating set *G*, the Stallings graph of is the unique subgraph of Sch(H)

- rooted at the vertex corresponding to the subgroup H
- and spanned by all loops (closed paths) originating and ending at *H* labeled by a geodesic (shortest path) representation of an element in *H* in the Schreier graph of *H*.
- ► The vertex *H* is called the base vertex.
- This construction provides a graphical representation of the subgroup facilitating the study of its structural properties.

- Example in the free group -

Figure: The Stallings graph of $H = \langle bab \rangle$ in F_A with $A = \{a, b\}$.

- Example in the modular group -

$$\begin{array}{c} H\\ b\\ H\\ b\\ Hb\\ = Ha^{2} \\ b\\ a \\ b\\ a \\ = Hb^{2} \\ b\\ a \\ = Hb^{2} \end{array}$$

Figure: The Stallings graph of $H = \langle bab \rangle$ in $\mathsf{PSL}_2(\mathbb{Z})$.

- Another example in the free group -

Figure: The Schreier graph of $H = \langle ababa \rangle$ in F_A with $A = \{a, b\}$.

- Another example in the free group -

Figure: The Stallings graph of $H = \langle ababa \rangle$ in F_A with $A = \{a, b\}$.

- Another example in the modular group -

Figure: The Schreier graph of $H = \langle ababa \rangle$ in $\mathsf{PSL}_2(\mathbb{Z})$.

- Another example in the modular -

Figure: The Stallings graph of $H = \langle ababa \rangle$ in $\mathsf{PSL}_2(\mathbb{Z})$.

- Stallings graphs and their generalizations -

 Stallings (1983) : for the finitely generated subgroups of free groups.

- Stallings graphs and their generalizations -

- Stallings (1983) : for the finitely generated subgroups of free groups.
- Markus-Epstein (2007) : for the finitely generated subgroups of amalgamated products of finite groups.
- Silva, Soler-Escriva, Ventura (2016) : for the finitely generated subgroups of virtually free groups.
- Kharlampovich, Miasnikov, Weil (2017) : for the quasi-convex subgroups of automatic groups.

- Stallings graphs and their generalizations -

- Stallings (1983) : for the finitely generated subgroups of free groups.
- Markus-Epstein (2007) : for the finitely generated subgroups of amalgamated products of finite groups.
- Silva, Soler-Escriva, Ventura (2016) : for the finitely generated subgroups of virtually free groups.
- Kharlampovich, Miasnikov, Weil (2017) : for the quasi-convex subgroups of automatic groups.
- Delgado and Ventura (2013) : a decorated graph structure to represent subgroups of direct products of free and free abelian groups.

- Finitely generated subgroups of free groups -

Subgroups of a free group are free (theorem of Nielsen-Schreier).
- Finitely generated subgroups of free groups -

- Subgroups of a free group are free (theorem of Nielsen-Schreier).
- $H = \langle u_1, u_2, \dots, u_k \rangle$ is the subgroup of F_A finitely generated by the *k* reduced words u_1, u_2, \dots, u_k of F_A .
- ▶ The rank of *H* is the cardinal of a minimal set of generators of *H*.

- Finitely generated subgroups of free groups -

- Subgroups of a free group are free (theorem of Nielsen-Schreier).
- $H = \langle u_1, u_2, \dots, u_k \rangle$ is the subgroup of F_A finitely generated by the *k* reduced words u_1, u_2, \dots, u_k of F_A .
- ▶ The rank of *H* is the cardinal of a minimal set of generators of *H*.
- A free group with finite rank contains subgroups with any countable rank.
- $\langle b^i a b^{-i} \mid 0 \le i < k \rangle$ has rank *k*.
- $\langle b^i a b^{-i} \mid i \in \mathbb{N} \rangle$ has an infinite rank.

Action of the group generators in the Stalling graph –

A Stallings graph is deterministic and co-deterministic. Hence the two following configurations never occur for $p \neq q$:

Every generator of the ambiant group acts as a partial injection on the set of vertices of the Stallings graph.

Let $Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}$. Let *H* be the subgroup generated by *Y*. **Goal:** Build the Stallings graph of *H*.

Let $Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}$. Let *H* be the subgroup generated by *Y*. **Goal:** Build the Stallings graph of *H*.

Let $Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}$. Let *H* be the subgroup generated by *Y*. **Goal:** Build the Stallings graph of *H*.

Let $Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}$. Let *H* be the subgroup generated by *Y*. **Goal:** Build the Stallings graph of *H*.

Let
$$Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}.$$

Let *H* be the subgroup generated by *Y*.
Goal: Build the Stallings graph of *H*.

Edges can be used backward:

The flower graph with positive labels for $Y = \{aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1}\}$:

There is a problem: The graph is not deterministic.

There is a problem: The graph is not deterministic.

There is a problem: The graph is not co-deterministic.

If necessary, at the end, we iteratively remove vertices of arity 1 other than the base vertex.

If necessary, at the end, we iteratively remove vertices of arity 1 other than the base vertex.

Theorem: we always obtain the same graph, up to the state labels : the Stallings graph of H.

If necessary, at the end, we iteratively remove vertices of arity 1 other than the base vertex.

Theorem: we always obtain the same graph, up to the state labels : the Stallings graph of H.

The Stallings graph can be computed in $\mathcal{O}(m \log^* n)$, *m* being the number of foldings and *n* the sum of the length of the generators, using Union-Find (Touikan 2006).

- Characterization of Stallings graphs of subgroups of free groups -

Theorem: A positively labeled finite graph is the Stallings graph of a finitely generated subgroup of a free group if and only if

- the action of each letter is a partial injection;
- the graph is weakly connected (connected as an undirected graph);
- every vertex, but possibly the base vertex, has at least two incident edges (counting both ingoing and outgoing edges).

- Properties of the Stallings graph -

Theorem (membership): A reduced word *u* is in *H* if and only if it labels a loop begining and ending at the base vertex.

Theorem (rank and bases): The rank of finitely generated subgroup *H* of a free group is computable from its Stallings graph :

$$\mathsf{rk}(H) = E - V + 1.$$

To obtain a base, choose a spanning tree T of the Stallings graph. The elements of the base are the labels of the loops at the base vertex using e and edges in the spanning tree for each edge e that is not in T.

 $H = \langle aba^{-1}ba^{-1}, bbba^{-1}b^{-1}, bba^{-1} \rangle$ is of rank 2, and $\{bab^{-1}a^{-1}, bba^{-1}\}$ is a base of H.

- Properties of the Stallings graph : finite index -

The index [G : H] of a subgroup H in a group G is its number of right cosets (or of left cosets).

Theorem (finite index): A subgroup $H \le F$ of the free group F is of finite index if and if its Stallings graphs is finite and complete. Then each letter acts like a permutation on the set of vertices and

$$\mathsf{rk}(H) - 1 = [F:H](\mathsf{rk}(F) - 1)$$
 (Schreier index formula)

- Properties of the Stallings graph : purity -

A subgroup $H \le F$ of the free group F is pure if for any $g \in F$ and $n \ge 1$, $g^n \in H \Rightarrow g \in H$.

A deterministic automaton is aperiodic if : for any $g \in F$, any vertex q and any $n \ge 2$, if g^n labels a loop at q then g also labels a loop at q.

Theorem (purity): (Birget, Margolis, Meakin, Weil, 2000)

A finitely generated subgroup of a free group is pure if and only if its Stallings graph is aperiodic.

• Testing if a Stallings graph is aperiodic is PSPACE-complete. Testing if a finite automaton is aperiodic is PSPACE-complete (Cho, Huynh, 1991).

- The intersection of finitely generated subgroups of free groups -

Theorem (intersection): The intersection of two finitely generated subgroups can be computed in time and space $\mathcal{O}(n_1 \cdot n_2)$ where n_1 (resp. n_2) is the size (here the number of vertices) of the first (resp. second) Stallings graph.

Rank of the intersection of finitely generated subgroups :

- The intersection of two finitely generated subgroups is finitely generated (Howson, 1954).
- ▶ $\mathsf{rk}(H \cap K) 1 \le 2(\mathsf{rk}(H) 1)(\mathsf{rk}(K) 1)$ (H. Neumann, 1956).
- ► Hanna Neumann's conjecture / Mineyev theorem (2012):

 $\mathsf{rk}(H \cap K) - 1 \le (\mathsf{rk}(H) - 1)(\mathsf{rk}(K) - 1).$

- Normality and malnormality -

Conjugacy

To obtain the Stallings graph of the conjugate $H^g = g^{-1}Hg$ of H, replace the base vertex of the Stallings graph of H by the vertex reached after reading g from the base vertex v in the Schreier graph.

Normality

- A subgroup $H \leq G$ is normal if, for all $g \in G$, $H^g = H$.
- Proposition: If a finitely generated subgroup of a free group is normal, then it is of finite index.

Malnormality

- A subgroup *H* is malnormal if, for all $g \notin H, H^g \cap H = 1$.
- Proposition: A finitely generated subgroup H of a frez group is malnormal
 - if and only if every non-diagonal connected component of the product graph of the Stallings graph of H with itself is a tree;
 - if and only if there are no two loops of the same label in the Stallings graph of H.

- Geodesically automatic group -

Let $G = \langle A \mid R \rangle$ be a group, G is geodesically automatic if there exist:

- ► an automaton A_G that accepts all the *geodesic* representatives of the elements of G;
- ▶ and, for each $a \in A \cup A^{-1} \cup \{1\}$, an automaton that accepts a pair (w_1, w_2) , for all words w_i accepted by \mathcal{A}_G , exactly when $w_1a = w_2$ in G.

Examples: Hyperbolic groups, RAAG.

► A subgroup H ≤ G is quasi-convex if there exists k > 0, such that any geodesic path in the Cayley graph of G connecting two elements of H remains within a k-neighborhood of H.

- ► A subgroup H ≤ G is quasi-convex if there exists k > 0, such that any geodesic path in the Cayley graph of G connecting two elements of H remains within a k-neighborhood of H.
- This means that a shortest path u = a₁...a_p between any two elements of H does not stray too far from H itself : for 1 ≤ i ≤ p, ∃|v_i| ≤ k such that a₁...a_iv_i ∈ H.

- ► A subgroup H ≤ G is quasi-convex if there exists k > 0, such that any geodesic path in the Cayley graph of G connecting two elements of H remains within a k-neighborhood of H.
- This means that a shortest path u = a₁...a_p between any two elements of H does not stray too far from H itself : for 1 ≤ i ≤ p, ∃|v_i| ≤ k such that a₁...a_iv_i ∈ H.
- Proposition: A subgroup of a finitely generated group is quasi-convex if and only if its Stallings graph is finite (Kharlampovich, Miasnikov, Weil 2017).

- ► A subgroup H ≤ G is quasi-convex if there exists k > 0, such that any geodesic path in the Cayley graph of G connecting two elements of H remains within a k-neighborhood of H.
- This means that a shortest path u = a₁...a_p between any two elements of H does not stray too far from H itself : for 1 ≤ i ≤ p, ∃|v_i| ≤ k such that a₁...a_iv_i ∈ H.
- Proposition: A subgroup of a finitely generated group is quasi-convex if and only if its Stallings graph is finite (Kharlampovich, Miasnikov, Weil 2017).
- Theorem: The quasi-convexity of a subgroup is an undecidable property (Kapovich, 1996).

Theorem (Kharlampovich, Miasnikov, Weil, 2017): Let $G = \langle A \mid R \rangle$ be a finitely presented (*A* and *R* are finite) geodesically automatic group.

Theorem (Kharlampovich, Miasnikov, Weil, 2017): Let $G = \langle A \mid R \rangle$ be a finitely presented (*A* and *R* are finite) geodesically automatic group. Let *H* be quasi-convex subgroup of *G*.

Theorem (Kharlampovich, Miasnikov, Weil, 2017):

Let $G = \langle A | R \rangle$ be a finitely presented (*A* and *R* are finite) geodesically automatic group.

Let H be quasi-convex subgroup of G.

Then the Stallings graph of H is finite and effectively computable by a partial algorithm.

A partial algorithm computing the Stallings graph $\Gamma(H)$

- 1. Compute the Stallings graph of the **free subgroup** generated by the generators of *H*.
- 2. For each relator, add at each vertex of the graph a loop (closed path) labeled by this relator.
- 3. Fold the edges of the graph.
- 4. Iterate Step 2 and 3 until all the geodesic representations of the elements of *H* can be read in $\Gamma(H)$.
- 5. Remove the vertices that do not belong to a geodesic path.

A partial algorithm computing the Stallings graph $\Gamma(H)$

- 1. Compute the Stallings graph of the **free subgroup** generated by the generators of *H*.
- 2. For each relator, add at each vertex of the graph a loop (closed path) labeled by this relator.
- 3. Fold the edges of the graph.
- 4. Iterate Step 2 and 3 until all the geodesic representations of the elements of *H* can be read in $\Gamma(H)$.
- 5. Remove the vertices that do not belong to a geodesic path.

There is no bound on the time complexity of this algorithm; otherwise, it would be possible to determine whether a set of generators generates a quasi-convex subgroup.

– In the modular group $\mathsf{PSL}_2(\mathbb{Z}) = \langle a, b \mid a^2 = 1, b^3 = 1 \rangle$ –

- The geodesic words consist of alternations of $a^{\pm 1}$ and $b^{\pm 1}$.
- ► To obtain a geodesic representative for the element represented by a word *u*
 - ▶ first freely reduce *u*,
 - delete every occurrence of a^2 , b^3 and their inverses,
 - replace every occurrence of b^2 (resp. b^{-2}) by b^{-1} (resp. b).
- ▶ $\mathsf{PSL}_2(\mathbb{Z})$ is geodesically automatic.
- Every subgroup is quasi-convex.
- Combinatorial et algebraic study of properties of the Stallings graphs of subgroups (Bassino, Nicaud, Weil, 2021, 2024, 2025+).

Figure: The Stallings graph of $\langle abab^{-1}, babab \rangle$ in F_A with $A = \{a, b\}$

Figure: The Stallings graph of $\langle abab^{-1}, babab \rangle$ in F_A with $A = \{a, b\}$

Figure: The "free" Stallings graph with the loops labeled by the relators a^2 and b^3 .

Figure: The "free" Stallings graph with the loops labeled by the relators a^2 and b^3 .

Figure: The "free" Stallings graph with the loops labeled by the relators a^2 and b^3 .

Figure: The Stallings graph of $\langle abab^{-1}, babab \rangle$ in $\mathsf{PSL}_2(\mathbb{Z})$.

- Properties of the Stallings graph -

- Membership can be tested.
- ► The finitness of the subgroup can be tested.
- A generating set can be computed.
- There is method to determine the rank of the subgroup (the size of minimal set of generators).
- ► The intersection can be computed.
- Finite index : If the Stalling graph is finite and complete, the subgroup is of finite index. But the converse is not proven.

- Properties of the Stallings graph -

- Membership can be tested.
- ► The finitness of the subgroup can be tested.
- A generating set can be computed.
- There is method to determine the rank of the subgroup (the size of minimal set of generators).
- ► The intersection can be computed.
- Finite index : If the Stalling graph is finite and complete, the subgroup is of finite index. But the converse is not proven.

III. Graph-Based Distribution

- Size of a subgroup : the number of vertices -

Define the size |H| of a finitely generated subgroup H as the number of vertices of its Stallings graph Γ_H .

Let G_n denote the set of all Stallings graphs with *n* vertices and whose set of vertices is [n], the vertex 1 being the base vertex.

Some questions:

- What can we say about the cardinality of G_n ?
- Can we design an algorithm to draw an element of G_n uniformly at random?
- ▶ What are the typical algebraic properties (rank, ...) of a random element of *G_n*, for the uniform distribution?

[Bassino, Nicaud, Weil 2008, 2016] and [Bassino, Martino, Nicaud, Ventura, Weil 2013].

- Reminder : Characterization of Stallings graphs -

Theorem: a positively labelled graph on [n] is the Stallings graph of a finitely generated subgroup if and only if

- the action of each letter is a partial injection;
- the graph is weakly connected (connected as an undirect graph);
- every vertex, but possibly 1, has at least two edges (counting both ingoing and outgoing edges).

- Reminder : Characterization of Stallings graphs -

Theorem: a positively labelled graph on [n] is the Stallings graph of a finitely generated subgroup if and only if

- the action of each letter is a partial injection;
- the graph is weakly connected (connected as an undirect graph);
- every vertex, but possibly 1, has at least two edges (counting both ingoing and outgoing edges).

A given size-*n* subgroup *H* has exactly (n - 1)! associated Stallings graphs (by relabeling all the vertices, but vertex 1): the uniform distribution on G_n induces the uniform distribution on size-*n* finitely generated subgroups.

- An Example -

Figure: A random Stallings graph with 200 vertices.

- Partial injections -

A partial injection is a set of cycles and non-empty sequences of labeled "atoms".

- Partial injections -

A partial injection is a set of cycles and non-empty sequences of labeled "atoms".

• If \mathcal{I} denote the set of all partial injection, we have

$$\mathcal{I} = \text{Set}\left(\text{Seq}_{\geq 1}(\mathcal{Z}) \stackrel{.}{\cup} \text{Cyc}(\mathcal{Z})\right),$$

• The goal is to analyze the exponential generating series of \mathcal{I}

$$I(z) = \sum_{n \ge 0} \frac{I_n}{n!} z^n.$$

where I_n denote the number of partial injections on a size-*n* set.

- Symbolic method (Flajolet, Sedgewick, 2008) -

"sets of cycles and non-empty sequences"

This yields directly

$$I(z) = \exp\left(\log\left(\frac{1}{1-z}\right) + \frac{z}{1-z}\right) = \frac{1}{1-z}\exp\left(\frac{z}{1-z}\right)$$

- Number of partial injections -

$$I(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$$

satisfies the conditions of the saddle point theorem, and therefore if I_n denote the number of partial injection from [n] to [n] we have:

$$rac{I_n}{n!} \sim rac{e^{-1/2}}{2\sqrt{\pi}} n^{-1/4} e^{2\sqrt{n}},$$

the saddle point is $\zeta = 1 - \frac{1}{\sqrt{n}} + \mathcal{O}(\frac{1}{n}).$

- Weakly connected? -

Proposition: For $r \ge 2$, *r* uniform random partial injections on a size-*n* set forms a weakly connected graph with probability $p_n = 1 - \frac{2^r}{n^{r-1}} + o(\frac{1}{n^{r-1}}).$

The number of pairs of partial injections is I_n^2 and the radius of convergence of $\sum \frac{1}{n!}I_n^2 z^n$ is zero!. We cannot use analytic techniques.

The proof use a theorem of Bender.

- Proof for bijections -

Proposition: The size-*n* graph obtained when taking two random **permutations** uniformly at random is weakly connected with high probability.

Proof: If the graph is not connected, the set of vertices [n] can be split in two subsets *X* and *Y* that are stable under the action of the two permutations.

Thus, summing over the size k of X, the probability of having such configurations is bounded from above by

$$\frac{1}{n!^2} \sum_{k=1}^{n-1} \binom{n}{k} k!^2 (n-k)!^2 = \sum_{k=1}^{n-1} \frac{1}{\binom{n}{k}},$$

which is $\mathcal{O}(\frac{1}{n})$.

- Last condition -

Theorem: a positively labelled graph on [n] is the Srallings graph of a finitely generated subgroup if and only if

- the action of each letter is a partial injection;
- the graph is weakly connected (connected as an undirect graph)
- every vertex, but possibly 1,has at least two incident edges (counting both ingoing and outgoing edges).

- Vertices with zero or one outgoing or ingoing edge -

- ► If *x* is a vertex with 0 edge, then *x* must be isolated for all injections.
- ► If x is a vertex with 1 edge, then x must be isolated for one injection and an endpoint for the other injection when r = 2.

The probability it is isolated for one injection is $\frac{I_{n-1}}{I_n}$, which is smaller than $\frac{1}{n}$.

- Computing the number of sequences -

If A(z) is a power series, let $[z^n]A(z)$ denote its coefficient a_n .

Let $I_{n,k}$ be the number of size-*n* injections having *k* sequences, and let I(z, u) be the bivariate generating function defined by:

$$I(z,u) = \sum_{n\geq 0} \sum_{k\geq 0} \frac{I_{n,k}}{n!} z^n u^k,$$

Observe that I(z, 1) = I(z) and that

$$\frac{\left[z^{n}\right]\frac{d}{du}I(z,u)\Big|_{u=1}}{\left[z^{n}\right]I(z)} = \frac{\sum_{k\geq0}k\,I_{n,k}}{I_{n}}$$

is the expected number of sequences in a size-*n* injection. Using the second derivative, we also get an expression of the variance of the number of sequences in a size-*n* injection. - Using marks -

$$\mathcal{I} = \operatorname{Set}\left(\bullet\operatorname{Seq}_{\geq 1}(\mathcal{Z}) \ \dot{\cup} \ \operatorname{Cyc}(\mathcal{Z})\right)$$

There is one blue mark for each non-empty sequence. The bivariate EGS of \mathcal{I} is

$$I(z, u) = \exp\left(\frac{zu}{1-z} + \log\left(\frac{1}{1-z}\right)\right) = \frac{1}{1-z}\exp\left(\frac{zu}{1-z}\right)$$

Appling the saddle point theorem on

$$I(z) = \frac{1}{(1-z)^p} \exp\left(\frac{z}{1-z}\right) (p=1,2)$$
, we obtain that

- the expected number of sequences is \sqrt{n} with standard deviation $o(\sqrt{n})$
- the probability that a given vertex is an endpoint is in $\mathcal{O}(\frac{1}{\sqrt{n}})$
- ► the probability that it has 0 or 1 edge with probability O(n^{-3/2}): there is such a vertex with probability O(n^{-1/2}): with high probability the graph has no such vertex.

- Stallings graph with high probability -

Theorem: For $r \ge 2$, a *r*-tuple of partial injections of [n] generically (*i.e.* with a probability that tends to 1 when *n* tends to ∞) forms a Stallings graph.

- Stallings graph with high probability -

Theorem: For $r \ge 2$, a *r*-tuple of partial injections of [n] generically (*i.e.* with a probability that tends to 1 when *n* tends to ∞) forms a Stallings graph.

Corollary: The number of finitely generated subgroups of size *n* is equivalent to

$$\frac{I_n^r}{(n-1)!} \sim \frac{(2e)^{-r/2}}{\sqrt{2\pi}} e^{-(r-1)n+2r\sqrt{n}} n^{(r-1)n+\frac{r+2}{4}}$$

- Stallings graph with high probability -

Theorem: For $r \ge 2$, a *r*-tuple of partial injections of [n] generically (*i.e.* with a probability that tends to 1 when *n* tends to ∞) forms a Stallings graph.

Corollary: The number of finitely generated subgroups of size *n* is equivalent to

$$\frac{I_n^r}{(n-1)!} \sim \frac{(2e)^{-r/2}}{\sqrt{2\pi}} e^{-(r-1)n+2r\sqrt{n}} n^{(r-1)n+\frac{r+2}{4}}$$

Proposition: For $r \ge 2$, the average rank of a subgroup *H* of the free group with a size-*n* Stallings graph is

$$rk(H) = (r-1)n - r\sqrt{n} + o(\sqrt{n})$$

- Malnormality -

Definition: A subgroup *H* of *G* is malnormal when for every $g \notin H$, $g^{-1}Hg \cap H = \{1\}$.

Theorem: A finitely generated free subgroup H is not malnormal if and only if there are two loops with the same label in the Stallings graph of H.

Sufficient conditions:

• If there is a *a*-cycle of length at least 2, the subgroup is not malnormal.

• If there are at least two *a*-cycles of length 1, the subgroup is not marnomal.

- Malnormality -

Partial injections with no cycles:

$$\mathcal{J} = \operatorname{Set}\left(\operatorname{Seq}_{\geq 1}(\mathcal{Z})\right) \Longrightarrow J = \exp\left(\frac{z}{1-z}\right)$$

Partial injections with only 1 cycle which is of length 1:

$$\mathcal{K} = \mathcal{Z} \star \operatorname{Set}\left(\operatorname{Seq}_{\geq 1}(\mathcal{Z})\right) \Longrightarrow J = z \exp\left(\frac{z}{1-z}\right)$$

By the saddle point theorem: **Theorem:**

- ► The probability that a size *n* partial injection has no cycle of length greater than 2 is asymptotically equivalent to $\frac{e}{\sqrt{n}}$.
- ► The probabibility that a random finitely generated subgroup of a free group is malnormal is $O(n^{-r/2})$.

- Random generation of a finitely generated subgroup -

Recall that

• The action of each letter is a partial injection:

 \longrightarrow Generate as many partial injections as the size of the alphabet

The graph is weakly connected and every vertex, but possibly 1, has at least two edges

 \longrightarrow Reject if it is not true, and try again

- Random generation of a partial injection -

A partial injection is a set of disjoint *components*, that are either cycles or non-empty sequences.

To recursively generate a uniform partial injection:

- choose the size k of a component according to the distribution of the sizes of components in a random size n partial injection;
- choose whether that the size k component is a cycle or a sequence – according to the distribution of these two types among size k components;
- and choose a size n k partial injection.

- Pointing -

Let C = Set(A). If we mark an atom uniformly at random, we also designate the element of A which contains this atom.

If ΘC denotes the set of all elements of C with one marked atom, we have the bijection

 $\Theta \mathcal{C} \equiv \Theta \mathcal{A} \star \mathcal{C}$

- Pointing -

The generating function of ΘA is

$$\sum_{n\geq 0} n \, \frac{a_n}{n!} \, z^n = z \frac{d}{dz} A(z)$$

 $\Theta C \equiv \Theta A \star C$ is a combinatorial interpretation of

$$z\frac{d}{dz}\exp(A(z)) = z\frac{d}{dz}A(z) \times \exp(A(z))$$

If we select one atom, the probability it is in a component of size k is

$$\frac{\frac{ka_k}{k!}\frac{c_{n-k}}{(n-k)!}}{\frac{nc_n}{n!}} = \binom{n}{k}\frac{ka_kc_{n-k}}{nc_n}$$

- Size of a component -

In our settings, an element of A is either a non-empty sequence or a cycle, hence $a_k = k! + (k - 1)!$. The probability of pointing a size-*k* component is therefore

$$\binom{n}{k} \frac{ka_k I_{n-k}}{nI_n}$$

It can easily be computed if the I_m have been preprocessed. If we compute the derivative of I(z) we obtain that

$$I'(z) = \frac{2-z}{(1-z)^3} \exp\left(\frac{z}{1-z}\right) = \frac{2-z}{(1-z)^2} I(z)$$

And therefore

$$I_n = 2nI_{n-1} - (n-1)^2 I_{n-2},$$

 \implies we can compute the I_n efficiently.

- Random generation -

A direct computation shows that a given size-*k* component is a cycle with probability $\frac{1}{k+1}$

We can therefore build the random injection component by component.

Theorem: There exists an algorithm to generate size-*n* random Stallings graphs whose average complexity is linear.

- Bibliography -

- F. Bassino, A. Martino, C. Nicaud, E. Ventura and P. Weil. Statistical properties of subgroups of free groups. <u>Random</u> Struct. Algorithms, 42(3):349-373, 2013.
- F. Bassino, C. Nicaud and P. Weil. Random generation of finitely generated subgroups of a free group. Int. Journ. of Algebra Comput. 18(2) 375-405, 2008
- F. Bassino, C. Nicaud and P. Weil. Generic properties of subgroups of free groups and finite presentations. In Algebra and computer science, volume 677 of Contemp. Math., pages 1-43. Amer. Math. Soc., Providence, RI, 2016.
- F. Bassino, C. Nicaud and P. Weil. Statistics of subgroups of the modular group. Int. J. Algebra Comput., 31(8):1691-1751, 2021.
- F. Bassino, C. Nicaud and P. Weil. Random generation of subgroups of the modular group with a fixed isomorphism type. Electron. J. Combin., 31(4) P4.7, 2024.
- J.-C. Birget, S. Margolis, J. Meakin, and P. Weil. PSPACE-complete problems for subgroups of free groups and inverse finite automata. Theoret. Comput. Sci 242(1):247-281, 2000.
- S. Cho, D. Huynh, Finite-automaton aperiodicity is PSPACE-complete, Theoret. Comput. Sci. 88: 99-116, 1991.
- ▶ J. Delgado and E. Ventura. A Algorithmic problems for free-abelian times free groups. J. Algebra, 391:256-283, 2013.
- J. Delgado, E. Ventura. Stallings automata. Preprint arXiv:2403.10757 (survey)
- ▶ Ph. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press 2009
- A. G. Howson. On the intersection of finitely generated free groups. Journal of the London Mathematical Society s1-29.4, p. 428-434, 1954.
- T. Jitsukawa. Malnormal subgroups of free groups. In Computational and statistical group theory, volume 298 of Contemp. Math., pages 83-95. Amer. Math. Soc., Providence, RI, 2002
- I. Kapovich. Detecting quasiconvexity: algorithmic aspects. Geometric and Computational Perspectives on Infinite Groups, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, , p. 91-99 Amer. Math. Soc. (1996).
- I. Kapovich, A. Myasnikov. Stallings Foldings and Subgroups of Free Groups, J. Algebra, 248 (2): 608-668. 2002. (survey)
- L. Markus-Epstein. Stallings foldings and subgroups of amalgams of finite groups. <u>Internat. J. Algebra Comput.</u> 17(8):1493-1535, 2007.
- ▶ I. Mineyev. ASubmultiplicativity and the Hanna Neumann Conjecture. Ann. Math. 175.1, p. 393-414, 2012.
- H. Neumann. AOn the intersection of finitely generated free groups. Publicationes Mathematicae 4: 186-189, 1956.
- P. V. Silva, X. Soler-Escrivà, and E. Ventura. Finite automata for Schreier graphs of virtually free groups. J. Group Theory, 19(1):25-54, 2016.
- J.R. Stallings. Topology of finite graphs. Inventiones Math. 71 (1983) 551-565
- N. W. M. Touikan. A Fast Algorithm for Stallings' Folding Process. Int. J. Algebra Comput. 16(6): 1031-1046, 2006.

That's all, thanks!