On the asymptotic number of m-ary weakly increasing trees

Olivier Bodini 1, Antoine Genitrini 2, Mehdi Naima 1, Alois Panholzer 3, Alexandros Singh 1

March 15, 2021

1 Université Sorbonne Paris-Nord, LIPN
2 Sorbonne Université, LIP6
3 Technische Universität Wien, IDMG
Table of contents

1. Introduction to increasing tree labellings

2. Specification of increasing labellings on binary trees

3. Asymptotics of increasing labellings on binary trees

4. Two specifications of increasing labellings on d-ary trees

5. Complete asymptotic framework
Introduction to increasing tree labellings
Increasing trees

- There are different kinds of trees (labelled, plane, rooted, restricted degrees, ...).

- Analysis of permutations and data structures like binary search trees using increasing binary trees.

 \cite{Drm09, Maj92, FGM06}

- Trees of epidemic spreading and manuscript reconstruction are also increasing trees.

- Study the number of executions of a parallel process and their synchronisations. This leads to repeated labellings. \cite{BGP16, BGR17}
There are different kinds of trees (labelled, plane, rooted, restricted degrees, ...). Increasing trees have labelings that are increasing along their branches. They are used in:

- Analysis of permutations and data structures like binary search trees using increasing binary trees. [Drm09, Mah92, FGM06]
- Trees of epidemic spreading and manuscript reconstruction are also increasing trees.
- Study the number of executions of a parallel process and their synchronizations. This leads to repeated labelings. [BGP16, BGR17]
Increasing trees

- There are different kinds of trees (labelled, plane, rooted, restricted degrees, ...).

Increasing trees have labelings that are increasing along their branches. They are used in:

- Analysis of permutations and data structures like binary search trees using increasing binary trees. [Drm09, Mah92, FGM+06]
Increasing trees

- There are different kinds of trees (labelled, plane, rooted, restricted degrees, ...).

Increasing trees have labellings that are increasing along their branches. They are used in:

- Analysis of permutations and data structures like binary search trees using increasing binary trees. [Drm09, Mah92, FGM+06]

- Trees of epidemic spreading and manuscript reconstruction are also increasing trees.
There are different kinds of trees (labelled, plane, rooted, restricted degrees, ...). Increasing trees have labelings that are increasing along their branches. They are used in:

- Analysis of permutations and data structures like binary search trees using increasing binary trees. [Drm09, Mah92, FGM+06]
- Trees of epidemic spreading and manuscript reconstruction are also increasing trees.
- Study the number of executions of a parallel process and their synchronisations. This leads to repeated labelings. [BGP16, BGR17]
Some related works on increasing trees

- Increasing trees [BFS92].
 No label repetitions and labellings along branches are strictly increasing.

- Monotone functions on trees [PU83].
 The maximum label is fixed and does not depend on the size of the tree.
 Labellings along branches are weakly increasing and some labels may be skipped.

- Strictly monotonic binary [BGGW20].
 Specific case of strictly monotonic trees with arity 2.

- Ranked Schröder trees [BGN19].
 Two increasing labellings where all arities are allowed.

- Families of monotonic trees [BGNS20].
 A general asymptotic for cases where the number of repetitions allowed is not bounded.
Some related works on increasing trees

- Increasing trees [BFS92].
 No label repetitions and labellings along branches are strictly increasing.

- Monotone functions on trees [PU83].
 The *maximum label is fixed* and does not depend on the size of the tree. Labellings along branches are weakly increasing and some labels may be skipped.
Some related works on increasing trees

- Increasing trees [BFS92]. No label repetitions and labellings along branches are strictly increasing.
- Monotone functions on trees [PU83]. The maximum label is fixed and does not depend on the size of the tree. Labellings along branches are weakly increasing and some labels may be skipped.
- Strictly monotonic binary [BGGW20]. Specific case of strictly monotonic trees with arity 2.
Some related works on increasing trees

- Increasing trees [BFS92].
 No label repetitions and labellings along branches are strictly increasing.

- Monotone functions on trees [PU83].
 The maximum label is fixed and does not depend on the size of the tree.
 Labellings along branches are weakly increasing and some labels may be skipped.

- Strictly monotonic binary [BGGW20].
 Specific case of strictly monotonic trees with arity 2.

- Ranked Schröder trees [BGN19].
 Two increasing labellings where all arities are allowed.
Some related works on increasing trees

- Increasing trees [BFS92].
 No label repetitions and labellings along branches are strictly increasing.

- Monotone functions on trees [PU83].
 The *maximum label is fixed* and does not depend on the size of the tree.
 Labellings along branches are weakly increasing and some labels may be skipped.

- Strictly monotonic binary [BGGW20].
 Specific case of strictly monotonic trees with arity 2.

- Ranked Schröder trees [BGN19].
 Two increasing labellings where all arities are allowed.

- Families of monotonic trees [BGNS20].
 A general asymptotic for cases where the number of repetitions allowed is not bounded.

...
Increasing labellings on trees

- It is possible to define several *increasing labellings on tree structures*.
- We always consider labellings *without gaps* that is if m is the maximum label appearing in the tree all labels between 1 and m also appear.
Increasing labellings on trees

- It is possible to define several increasing labellings on tree structures.
- We always consider labellings without gaps that is if m is the maximum label appearing in the tree all labels between 1 and m also appear.

<table>
<thead>
<tr>
<th>Increasing</th>
<th>Connected monotonic</th>
<th>Strict monotonic</th>
<th>Monotonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label repetitions</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Branches</td>
<td>strictly increasing</td>
<td>weakly increasing</td>
<td>strictly increasing</td>
</tr>
<tr>
<td>Repetitions</td>
<td>in the same subtree</td>
<td>anywhere</td>
<td>anywhere</td>
</tr>
</tbody>
</table>
Increasing labellings on trees

- It is possible to define several *increasing labellings on tree structures*.
- We always consider labellings *without gaps* that is if m is the maximum label appearing in the tree all labels between 1 and m also appear.

<table>
<thead>
<tr>
<th>Label repetitions</th>
<th>Increasing</th>
<th>Connected monotonic</th>
<th>Strict monotonic</th>
<th>Monotonic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Branches</td>
<td>strictly increasing</td>
<td>weakly increasing</td>
<td>strictly increasing</td>
<td>weakly increasing</td>
</tr>
<tr>
<td>Repetitions</td>
<td>in the same subtree</td>
<td>anywhere</td>
<td>anywhere</td>
<td>anywhere</td>
</tr>
</tbody>
</table>

This labellings can be defined on any tree structures but in this talk we will focus only on plane d-ary trees.
Specification of increasing labellings on binary trees
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

$$IB(z) = z + z^2 IB'(z)$$

The first coefficients are:

\[(IB_n)_{n \geq 0} = 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, ...\]

referenced under EIS A000142.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

(IB)(z) = z + z^2(IB)'(z)

The first coefficients are:

\[(IB)_n\]_{n=0} = 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ...

referenced under EIS A000142.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step \(i \geq 1 \) do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled \(i \) and attach to it 2 new leaves.

`IB(z) = z + z^2IB'(z)`

The first coefficients are:

\[
\begin{align*}
(IBM)_{n=0} &= 0, \\
(IBM)_{n=1} &= 1, \\
(IBM)_{n=2} &= 2, \\
(IBM)_{n=3} &= 6, \\
(IBM)_{n=4} &= 24, \\
(IBM)_{n=5} &= 120, \\
(IBM)_{n=6} &= 720, \\
(IBM)_{n=7} &= 5040, \\
(IBM)_{n=8} &= 40320, \\
(IBM)_{n=9} &= 362880, \\
(IBM)_{n=10} &= 3628800,
\end{align*}
\]

referenced under EIS A000142.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.

![Tree Diagram]

Symbolic method with ordinary generating functions

$IB(z) = z + z^2 IB'(z)$

The first coefficients are:

$\begin{align*}
IB_n & \quad n \geq 0 \\
& = 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \ldots
\end{align*}$

referenced under EIS A000142.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

$$IB(z) = z + z^2 IB'(z)$$

The first coefficients are:

\[
(IB_n)_{n \geq 0} = 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \ldots
\]

referenced under EIS A000142.
Evolution process for increasing binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a leaf of the so-far built tree.
2. Replace it with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

\[IB(z) = z + z^2 IB'(z) \]

The first coefficients are:

\[(IB_n)_{n \geq 0} = 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \ldots \]

referenced under EIS A000142.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

$$SB(z) = z + SB(z + z^2) - SB(z)$$

The first coefficients are:

$$(SB_n)_{n \geq 0} = 0, 1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, \ldots$$

referenced under EIS A171792.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.

2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step \(i \geq 1 \) do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled \(i \) and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

\[
SB(z) = z + SB(z + z^2) - SB(z)
\]

The first coefficients are:

\[
(n)_{n \geq 0} = 0, 1, 1, 2, 7, 34, 214, 1512, 16011, 192544, ...
\]

referenced under EIS A171792.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.

2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.

2. Replace each with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

$$SB(z) = z + SB(z + z^2) - SB(z)$$

The first coefficients are:

$$(SB_n)_{n \geq 0} = 0, 1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, \ldots$$

referenced under EIS A171792.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.
Evolution process for strict monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non empty subset of leaves of the so-far built tree.
2. Replace each with an internal node labelled i and attach to it 2 new leaves.

Symbolic method with ordinary generating functions

\[SB(z) = z + SB(z + z^2) - SB(z) \]

The first coefficients are:

\[(SB_n)_{n \geq 0} = 0, 1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, \ldots \]

referenced under EIS A171792.
We covered two labellings where the paths along branches are strictly increasing.
Increasing labellings of binary trees

<table>
<thead>
<tr>
<th>Label repetitions</th>
<th>Branches</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>strictly increasing</td>
<td>in the same subtree</td>
</tr>
<tr>
<td>yes</td>
<td>weakly increasing</td>
<td>anywhere</td>
</tr>
<tr>
<td>yes</td>
<td>strictly increasing</td>
<td>anywhere</td>
</tr>
<tr>
<td>yes</td>
<td>weakly increasing</td>
<td>anywhere</td>
</tr>
</tbody>
</table>

We covered two labellings where the paths along branches are strictly increasing.

Idea to get weakly increasing labellings along branches

Instead of replacing leaves with new binary nodes, we can replace them by entire tree shapes.
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$$MB(z) = z + MB\left(\text{cat}(z)\right) - MB(z)$$

where $\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$

The first coefficients are:

$$(MB_n)_{n \geq 0} = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, \ldots$$
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.

2. For each $\ell \in L$ choose an unlabelled binary tree shape.

3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$$MB(z) = z + MB(cat(z)) - MB(z)$$

where $cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + ...$

The first coefficients are:

$(MB_n)_{n \geq 0} = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, ...$
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

\[
MB(z) = z + MB\left(\text{cat}(z)\right) - MB(z)
\]

where \(\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots\)

The first coefficients are:

\[
MB_n \quad n \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, \ldots
\]
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step \(i \geq 1 \) do:

1. Choose a non-empty subset \(L \) of leaves of the so-far built tree such that \(|L| \in r \).
2. For each \(\ell \in L \) choose an unlabelled binary tree shape.
3. Replace \(\ell \) with the chosen unlabelled tree, labelling all its internal nodes \(i \).

Symbolic method with ordinary generating functions

\[
MB(z) = z + MB(cat(z)) - MB(z)
\]

where

\[
cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots
\]

The first coefficients are:

\[
MB_n \at n \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, \ldots
\]
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

\[
MB(z) = z + MB(cat(z)) - MB(z)
\]

where \(cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots \)

The first coefficients are:

\[
\begin{align*}
MB_n & \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 1729584, 24265584, \ldots
\end{align*}
\]
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

\[MB(z) = z + MB\left(\text{cat}(z)\right) - MB(z) \]

where

\[\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + ... \]

The first coefficients are:

\[MB_n \quad n \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, ... \]
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$$MB(z) = z + MB(\text{cat}(z)) - MB(z)$$

where $\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$

The first coefficients are: $MB_n \mid n \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, \ldots$
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$$MB(z) = z + MB(\text{cat}(z)) - MB(z)$$

where

$$\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$$

The first coefficients are:

$$(MB_n)_{n \geq 0} = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, \ldots$$
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step \(i \geq 1 \) do:

1. Choose a non-empty subset \(L \) of leaves of the so-far built tree such that \(|L| \in r \).
2. For each \(\ell \in L \) choose an unlabelled binary tree shape.
3. Replace \(\ell \) with the chosen unlabelled tree, labelling all its internal nodes \(i \).
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$MB(z) = z + MB(cat(z)) - MB(z)$

where $cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + ...$

The first coefficients are:

$MB_n \quad n \geq 0 = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, ...$
Evolution process monotonic binary trees

Start at step 0 with a leaf; at each step $i \geq 1$ do:

1. Choose a non-empty subset L of leaves of the so-far built tree such that $|L| \in r$.
2. For each $\ell \in L$ choose an unlabelled binary tree shape.
3. Replace ℓ with the chosen unlabelled tree, labelling all its internal nodes i.

Symbolic method with ordinary generating functions

$$MB(z) = z + MB(cat(z)) - MB(z)$$

where $cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$

The first coefficients are:

$$(MB_n)_{n \geq 0} = 0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, \ldots$$
Asymptotics of increasing labellings on binary trees
Methodology of the proof

- All labellings can be specified in the world of OGF with simple evolution processes.
- From these specifications we get divergent series.

<table>
<thead>
<tr>
<th>Specification</th>
<th>IB(z) = z + z^2 IB'(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>IB(z) = z + z^2 IB'(z)</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>CB(z) = z + (cat(z) - z) \cdot CB'(z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>SB(z) = z + SB(z + z^2) - SB(z)</td>
</tr>
<tr>
<td>Monotonic</td>
<td>MB(z) = z + MB(cat(z)) - MB(z)</td>
</tr>
</tbody>
</table>

where $\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$
Methodology of the proof

- All labellings can be specified in the world of OGF with simple evolution processes.
- From these specifications we get divergent series.

<table>
<thead>
<tr>
<th>Specification</th>
<th>IB(z) = z + z^2 IB'(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td></td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>CB(z) = z + (cat(z) − z) · CB'(z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>SB(z) = z + SB(z + z^2) − SB(z)</td>
</tr>
<tr>
<td>Monotonic</td>
<td>MB(z) = z + MB(cat(z)) − MB(z)</td>
</tr>
</tbody>
</table>

where \(cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots \)

A method was described in [BGGW20] to obtain the asymptotic enumeration of strict monotonic binary trees. The ideas are the following:
Methodology of the proof

- All labellings can be specified in the world of OGF with simple evolution processes.
- From these specifications we get divergent series.

<table>
<thead>
<tr>
<th>Specification</th>
<th>IB(z) = z + z^2 \cdot IB'(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>CB(z) = z + (cat(z) - z) \cdot CB'(z)</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>SB(z) = z + SB(z + z^2) - SB(z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>MB(z) = z + MB(cat(z)) - MB(z)</td>
</tr>
</tbody>
</table>

where \(cat(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots \)

A method was described in [BGGW20] to obtain the asymptotic enumeration of strict monotonic binary trees. The ideas are the following:

- From the specification we get:

\[
B_1 = 1, \\
B_n = \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n-k}{k} B_{n-k}.
\]
Methodology of the proof

- All labellings can be specified in the world of OGF with simple evolution processes.
- From these specifications we get divergent series.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$IB(z) = z + z^2 IB'(z)$</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$CB(z) = z + (\text{cat}(z) - z) \cdot CB'(z)$</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$SB(z) = z + SB(z + z^2) - SB(z)$</td>
</tr>
<tr>
<td>Monotonic</td>
<td>$MB(z) = z + MB(\text{cat}(z)) - MB(z)$</td>
</tr>
</tbody>
</table>

where $\text{cat}(z) = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \ldots$

A method was described in [BGGW20] to obtain the asymptotic enumeration of strict monotonic binary trees. The ideas are the following:

- From the specification we get:

 $B_1 = 1,$

 $B_n = \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n-k}{k} B_{n-k}.$

- Define a new recurrence b_n, that normalises the coefficients of B_n.

 $b_n = \frac{B_n}{(n-1)! (\ln 2)^n}.$
Methodology of the proof II

- Write a new recurrence on b_n:

$$b_n = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \frac{(\ln 2)^k}{k!} \frac{(n-k)(n-k-1)\ldots(n-2k+1)}{(n-1)(n-2)\ldots(n-k)} b_{n-k} \cdot \gamma_{n,k}$$
Write a new recurrence on b_n:

$$b_n = \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(\ln 2)^k}{k!} \frac{(n-k)(n-k-1)\ldots(n-2k+1)}{(n-1)(n-2)\ldots(n-k)} \gamma_{n,k} b_{n-k}.$$

Find bounds on $\gamma_{n,k}$:

For $1 \leq k \leq n$ we can show that:

$$1 - \frac{k(k-1)}{n} - \frac{k(k-1)^2}{n^2} \leq \gamma_{n,k} \leq 1 - \frac{k(k-1)}{n} + \frac{k(k-1)^3}{2n^2}.$$
Methodology of the proof II

- Write a new recurrence on b_n:

 \[
 b_n = \sum_{k=1}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(\ln 2)^k}{k!} \frac{(n-k)(n-k-1) \cdots (n-2k+1)}{(n-1)(n-2) \cdots (n-k)} b_{n-k}.
 \]

- Find bounds on $\gamma_{n,k}$:
 For $1 \leq k \leq n$ we can show that:

 \[
 1 - \frac{k(k-1)}{n} - \frac{k(k-1)^2}{n^2} \leq \gamma_{n,k} \leq 1 - \frac{k(k-1)}{n} + \frac{k(k-1)^3}{2n^2}.
 \]

- Define a_n such that:

 \[
 b_n = a_n + \sum_{k=1}^{n} \frac{(\ln 2)^k}{k!} \left(1 - \frac{k(k-1)}{n} \right) b_{n-k}.
 \]
Methodology of the proof II

- Write a new recurrence on b_n:

$$
b_n = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \frac{(\ln 2)^k}{k!} \frac{(n - k)(n - k - 1) \ldots (n - 2k + 1)}{(n - 1)(n - 2) \ldots (n - k)} b_{n-k}.
$$

- Find bounds on $\gamma_{n,k}$:

For $1 \leq k \leq n$ we can show that:

$$
1 - \frac{k(k-1)}{n} - \frac{k(k-1)^2}{n^2} \leq \gamma_{n,k} \leq 1 - \frac{k(k-1)}{n} + \frac{k(k-1)^3}{2n^2}.
$$

- Define a_n such that:

$$
b_n = a_n + \sum_{k=1}^{n} \frac{(\ln 2)^k}{k!} \left(1 - \frac{k(k-1)}{n}\right) b_{n-k}.
$$

- Show that $a_n = O\left(\frac{b_n}{n^2}\right)$
Methodology of the proof II

- Write a new recurrence on b_n:
 $$b_n = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \frac{(\ln 2)^k}{k!} \frac{(n - k)(n - k - 1) \ldots (n - 2k + 1)}{(n - 1)(n - 2) \ldots (n - k)} b_{n-k}.$$

- Find bounds on $\gamma_{n,k}$:
 For $1 \leq k \leq n$ we can show that:
 $$1 - \frac{k(k-1)}{n} - \frac{k(k-1)^2}{n^2} \leq \gamma_{n,k} \leq 1 - \frac{k(k-1)}{n} + \frac{k(k-1)^3}{2n^2}.$$

- Define a_n such that:
 $$b_n = a_n + \sum_{k=1}^{n} \frac{(\ln 2)^k}{k!} \left(1 - \frac{k(k-1)}{n}\right) b_{n-k}.$$

- Show that $a_n = O\left(\frac{b_n}{n^2}\right)$

- The generating function of $b(z) = \sum_{n \geq 0} b_n z^n$ satisfies:
 $$2zb'(z) = za'(z) + z \left(e^z \ln 2 \ b(z)\right)' - (z \ln 2)^2 \ e^z \ln 2 \ b(z).$$
Methodology of the proof II

- Write a new recurrence on b_n:
 \[b_n = \sum_{k=1}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(\ln 2)^k}{k!} \frac{(n-k)(n-k-1) \ldots (n-2k+1)}{(n-1)(n-2) \ldots (n-k)} b_{n-k}. \]

- Find bounds on $\gamma_{n,k}$:
 For $1 \leq k \leq n$ we can show that:
 \[1 - \frac{k(k-1)}{n} - \frac{k(k-1)^2}{n^2} \leq \gamma_{n,k} \leq 1 - \frac{k(k-1)}{n} + \frac{k(k-1)^3}{2n^2}. \]

- Define a_n such that:
 \[b_n = a_n + \sum_{k=1}^{n} \frac{(\ln 2)^k}{k!} \left(1 - \frac{k(k-1)}{n}\right) b_{n-k}. \]

- Show that $a_n = O\left(\frac{b_n}{n^2}\right)$

- The generating function of $b(z) = \sum_{n \geq 0} b_n z^n$ satisfies:
 \[2zb'(z) = za'(z) + z \left(e^z \ln 2 b(z)\right)' - (z \ln 2)^2 e^z \ln 2 b(z). \]

- Deduce that:
 \[b_n \underset{n \to \infty}{=} c \left(\frac{1}{\ln 2}\right)^n n^{-\ln 2} \quad \text{where } c \text{ is a constant that involves the evaluation of } a'(z) \]
In summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>IB(z) = z + z^2 IB'(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>IB(z) = z + z^2 IB'(z)</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>CB(z) = z + (cat(z) − z) · CB'(z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>SB(z) = z + SB(z + z^2) − SB(z)</td>
</tr>
<tr>
<td>Monotonic</td>
<td>SB(z) = z + SB(cat(z)) − SB(z)</td>
</tr>
</tbody>
</table>

- By noticing that the substitution can be written as an unbounded sum.
In summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>$IB(z) = z + z^2 \cdot IB'(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$CB(z) = z + (\text{cat}(z) - z) \cdot CB'(z)$</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$SB(z) = z + SB(z + z^2) - SB(z)$</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$SB(z) = z + SB(\text{cat}(z)) - SB(z)$</td>
</tr>
</tbody>
</table>

- By noticing that the substitution can be written as an unbounded sum.
- All 4 specifications can be represented as parameters of the following general specification.

$$B(z) = z + \sum_{i \in r} \frac{1}{i!} B^{(i)}(z) \cdot \phi(z)^i.$$

$\frac{B^{(i)}(z)}{i!}$ corresponds to erasing i leaves.

<table>
<thead>
<tr>
<th></th>
<th>$\phi(z)$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>z^2</td>
<td>${1}$</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$\text{cat}(z) - z$</td>
<td>${1}$</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>z^2</td>
<td>\mathbb{N}^*</td>
</tr>
<tr>
<td>Monotonic</td>
<td>$\text{cat}(z) - z$</td>
<td>\mathbb{N}^*</td>
</tr>
</tbody>
</table>
The following theorem generalises the method described in [BGGW20]. Let
\(\phi_i = [z^i] \phi(z) \)

Condition

<table>
<thead>
<tr>
<th>Let (r \subset \mathbb{N}^*). Let (\phi(z)) be a coloured degree function and such that, (\phi_2 \geq 1) and (\phi_n \xrightarrow{n \to \infty} O \left(\frac{n!}{n^5} \right)).</th>
</tr>
</thead>
</table>

Let \(B_n^{\phi,r} \) be the number of trees of size \(n \) built via the evolution process.
A general theorem

The following theorem generalises the method described in [BGGW20]. Let
\[\phi_i = [z^i] \phi(z) \]

Condition

Let \(r \subset \mathbb{N}^* \). Let \(\phi(z) \) be a *coloured degree function* and such that, \(\phi_2 \geq 1 \) and

\[\phi_n \xrightarrow{n \to \infty} O \left(\frac{n!}{n^5} \right). \]

Let \(B_{n}^{\phi, r} \) be the number of trees of size \(n \) built via the evolution process

Theorem

Let \(\phi(z) \) be a coloured degree function as in the condition, and \(r \subset \mathbb{N}^* \), with \(r \neq \emptyset \). Let \(\min(r) = 1 \), then as \(n \) tends to infinity

\[B_{n}^{\phi, r} \xrightarrow{n \to \infty} \kappa n! \left(\frac{\phi_2}{\rho} \right)^n n^{-1 + \frac{\rho \phi_3}{\phi_2^2} - \frac{\rho f''(\rho)}{f'(\rho)}} \],

where \(\kappa \) is a constant that depends on \(\phi(z) \) and \(r \). Let \(f(z) = \sum_{i \in r} \frac{z^i}{i!} \), then \(\rho \) is the smallest positive real of the equation \(f(z) - 1 = 0 \).
Comparison of binary trees increasing labellings

<table>
<thead>
<tr>
<th>Increasing</th>
<th>r</th>
<th>$\phi(z)$</th>
<th>Asymptotics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z^2</td>
<td></td>
<td>$(n - 1)!$</td>
<td>[FS09], Theorem I</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>${1}$</td>
<td>$(\text{cat}(z) - z)$</td>
<td>$c_3 \cdot n! \cdot n$</td>
<td>Theorem I</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>\mathbb{N}^*</td>
<td>z^2</td>
<td>$c_4 \cdot (n - 1)! \cdot \left(\frac{1}{\ln 2}\right)^n \cdot n^{-\ln 2}$</td>
<td>[BGGW20], Theorem I</td>
</tr>
<tr>
<td>Monotonic (weakly increasing)</td>
<td>\mathbb{N}^*</td>
<td>$(\text{cat}(z) - z)$</td>
<td>$c_5 \cdot (n - 1)! \cdot \left(\frac{1}{\ln 2}\right)^n \cdot n^{\ln 2}$</td>
<td>Theorem I</td>
</tr>
</tbody>
</table>

Table 1: Comparison of the asymptotic behaviour of labelled binary trees under different labelling models.

Figure: Simulation for $n \in \{1, 100\}$ of binary trees with different increasing labellings divided by their expected asymptotic first order.
Two specifications of increasing labellings on d-ary trees
Specification by the number of leaves

All 4 specifications can be represented as parameters of the same functional equation

\[B(z) = z + \sum_{i \in r} \frac{1}{i!} B(i)(z) \cdot \phi(z)^i. \]

\(B(i)(z) \) corresponds to erasing \(i \) leaves.

<table>
<thead>
<tr>
<th>Specification</th>
<th>(\phi(z))</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>(I(z) = z + z^d \cdot I'(z))</td>
<td>(z^d)</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>(C(z) = z + (T_d(z) - z) \cdot C'(z))</td>
<td>(T_d(z) - z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>(S(z) = z + S(z + z^d) - S(z))</td>
<td>(z^d)</td>
</tr>
<tr>
<td>Monotonic</td>
<td>(M(z) = z + M(T_d(z)) - M(z))</td>
<td>(T_d(z) - z)</td>
</tr>
</tbody>
</table>

Where \(T_d(z) \) is the generating function of the class of plane \(d \)-ary trees counted by their number of leaves.

\[T_d(z) = z + T_d(z)^d \]
Specification by the number of leaves

All 4 specifications can be represented as parameters of the same functional equation

\[B(z) = z + \sum_{i \in r} \frac{1}{i!} B^{(i)}(z) \cdot \phi(z)^i. \]

\[\frac{B^{(i)}(z)}{i!} \] corresponds to erasing \(i \) leaves.

<table>
<thead>
<tr>
<th>Specification</th>
<th>(\phi(z))</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>(I(z) = z + z^d) (I'(z))</td>
<td>(z^d)</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>(C(z) = z + (T_d(z) - z)) (C'(z))</td>
<td>(T_d(z) - z)</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>(S(z) = z + S(z + z^d) - S(z))</td>
<td>(z^d)</td>
</tr>
<tr>
<td>Monotonic</td>
<td>(M(z) = z + M(T_d(z)) - M(z))</td>
<td>(T_d(z) - z)</td>
</tr>
</tbody>
</table>

Where \(T_d(z) \) is the generating function of the class of plane \(d \)-ary trees counted by their number of leaves.

\[T_d(z) = z + T_d(z)^d \]

<table>
<thead>
<tr>
<th>(d)</th>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>22</td>
<td>152</td>
<td>1264</td>
<td>12304</td>
<td>137332</td>
<td>1729584</td>
<td>24265584</td>
<td>375316704</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>638</td>
<td>0</td>
<td>9336</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: First values of monotonic \(d \)-ary trees.
Known results on d-ary increasing trees

- 2 out of the 4 increasing labellings have asymptotic enumeration formulae that are known.

<table>
<thead>
<tr>
<th></th>
<th>Asymptotics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$c_d , n! , (d - 1)^n , n^{-\frac{d-2}{d-1}}$</td>
<td>[FS09], [BFS92]</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$\kappa_d , n! , \left(\frac{d-1}{\ln 2}\right)^n , n^{-\frac{d \ln 2}{2(d-1)} - \frac{d-2}{d-1}}$</td>
<td>[BGGW20]</td>
</tr>
<tr>
<td>Monotonic</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Known results on d-ary increasing trees

- 2 out of the 4 increasing labellings have asymptotic enumeration formulae that are known.

<table>
<thead>
<tr>
<th></th>
<th>Asymptotics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$c_d , n! , (d - 1)^n , n^{-\frac{d-2}{d-1}}$</td>
<td>[FS09], [BFS92]</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$\kappa_d , n! , (\frac{d-1}{\ln 2})^n , n^{-\frac{d \ln 2}{2(d-1)} - \frac{d-2}{d-1}}$</td>
<td>[BGGW20]</td>
</tr>
<tr>
<td>Monotonic</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- The classical increasing asymptotics can be solved in the world of EGF and explicit generating functions can be obtained.
- Moreover, the recurrences are D-finite.
Known results on d-ary increasing trees

- 2 out of the 4 increasing labellings have asymptotic enumeration formulae that are known.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Asymptotics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$c_d n! (d - 1)^n n^{-\frac{d-2}{d-1}}$</td>
<td>[FS09], [BFS92]</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$\kappa_d n! \left(\frac{d-1}{\ln 2}\right)^n n^{-\frac{d \ln 2}{2(d-1)} - \frac{d-2}{d-1}}$</td>
<td>[BGGW20]</td>
</tr>
<tr>
<td>Monotonic</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- The classical increasing asymptotics can be solved in the world of EGF and explicit generating functions can be obtained.
- Moreover, the recurrences are D-finite.
- The strict monotonic specifications are formal and their renormalisation does not satisfy known differential equations.
• Theorem 1 does not cover cases where there are no binary nodes.
• The sequences appear with periodicities since the size is the number of leaves.
• In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions.
Theorem 1 does not cover cases where there are no binary nodes.

The sequences appear with periodicities since the size is the number of leaves.

In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a \(d\)-ary tree with \(n\) internal nodes has \((d - 1)n + 1\) leaves which represent possible new nodes positions.

For example to specify strict monotonic \(d\)-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

\[
ML_d (z) = z + ML_d \left(z + z^d \right) - ML_d (z)
\]
Specification by the number of internal nodes

- Theorem 1 does not cover cases where there are no binary nodes.
- The sequences appear with periodicities since the size is the number of leaves.
- In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions.

- For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d(z) = z + ML_d(z + z^d) - ML_d(z)$$

The specification by the number of internal nodes gives:

$$MT_d(z) = z + (1 + z) MT_d(z (1 + z)^{d-1}) - MT_d(z)$$
Theorem 1 does not cover cases where there are no binary nodes.

The sequences appear with periodicities since the size is the number of leaves.

In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions.

For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d (z) = z + ML_d (z + z^d) - ML_d (z)$$

The specification by the number of internal nodes gives:

$$MT_d (z) = z + (1 + z) MT_d (z (1 + z)^{d-1}) - MT_d (z)$$
Theorem 1 does not cover cases where there are no binary nodes.
The sequences appear with periodicities since the size is the number of leaves.
In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a d-ary tree with n internal nodes has
$(d - 1)n + 1$ leaves which represent possible new nodes positions.
For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d(z) = z + ML_d(z + z^d) - ML_d(z)$$

The specification by the number of internal nodes gives:

$$MT_d(z) = z + (1 + z) MT_d(z(1 + z)^{d-1}) - MT_d(z)$$
Theorem 1 does not cover cases where there are no binary nodes. The sequences appear with periodicities since the size is the number of leaves. In fact it is possible to specify counting the number of internal nodes.

They key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions. For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d (z) = z + ML_d \left(z + z^d \right) - ML_d (z)$$

The specification by the number of internal nodes gives:

$$MT_d (z) = z + (1 + z) MT_d \left(z \left(1 + z \right)^{d-1} \right) - MT_d (z)$$
They key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions.

For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d(z) = z + ML_d(z + zd) - ML_d(z)$$

The specification by the number of internal nodes gives:

$$MT_d(z) = z + (1 + z) MT_d(z(1 + z)^{d-1}) - MT_d(z)$$
Theorem 1 does not cover cases where there are no binary nodes.
- The sequences appear with periodicities since the size is the number of leaves.
- In fact it is possible to specify counting the number of internal nodes.

The key idea is to notice that a d-ary tree with n internal nodes has $(d - 1)n + 1$ leaves which represent possible new nodes positions.

For example to specify strict monotonic d-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

$$ML_d (z) = z + ML_d (z + z^d) - ML_d (z)$$

The specification by the number of internal nodes gives:

$$MT_d (z) = z + (1 + z) MT_d (z (1 + z)^{d-1}) - MT_d (z)$$
Theorem 1 does not cover cases where there are no binary nodes. The sequences appear with periodicities since the size is the number of leaves. In fact it is possible to specify counting the number of internal nodes.

The key idea is to notice that a \(d \)-ary tree with \(n \) internal nodes has \((d - 1)n + 1\) leaves which represent possible new nodes positions. For example to specify strict monotonic \(d \)-ary (labels along branches are strictly increasing but there can be label repetitions on different branches). The specification by leaves gives:

\[
ML_d (z) = z + ML_d \left(z + z^d \right) - ML_d (z)
\]

The specification by the number of internal nodes gives:

\[
MT_d (z) = z + (1 + z) MT_d \left(z (1 + z)^{d-1} \right) - MT_d (z)
\]
Specifications by the number of internal nodes

<table>
<thead>
<tr>
<th>Specification</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>(I(z) = z + ((d - 1) z I'(z) + I(z)))</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>(C(z) = T_d(z) + ((d - 1)zC'(z) + C(z)) T_d(z))</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>(S(z) = z + (1 + z)S(z(1 + z)^{d-1}) - S(z))</td>
</tr>
<tr>
<td>Monotonic</td>
<td>(M(z) = T_d(z) + (1 + T_d(z)) M(z(1 + T_d(z))^{d-1}) - M(z))</td>
</tr>
</tbody>
</table>

Where \(T_d(z) \) is the generating function of the class of plane \(d \)-ary trees counted by their number of internal nodes.

\[
T_d(z) = z (1 + T_d(z))^d
\]
Specifications by the number of internal nodes

<table>
<thead>
<tr>
<th>Specification</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$l(z) = z + ((d - 1)z l'(z) + l(z))^z$</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$C(z) = T_d(z) + ((d - 1)z C'(z) + C(z))^T_d(z)$</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$S(z) = z + (1 + z)S(z(1 + z)^{d-1}) - S(z)$</td>
</tr>
<tr>
<td>Monotonic</td>
<td>$M(z) = T_d(z) + (1 + T_d(z))^M(z(1 + T_d(z))^{d-1}) - M(z)$</td>
</tr>
</tbody>
</table>

Where $T_d(z)$ is the generating function of the class of plane d-ary trees counted by their number of internal nodes.

$$T_d(z) = z (1 + T_d(z))^d$$

- These specifications do not involve periodicities.
Specifications by the number of internal nodes

<table>
<thead>
<tr>
<th>Specification</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$I(z) = z + ((d - 1) z I'(z) + I(z)) z$</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$C(z) = T_d(z) + ((d - 1) z C'(z) + C(z)) T_d(z)$</td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$S(z) = z + (1 + z) S(z(1 + z)^{d-1}) - S(z)$</td>
</tr>
<tr>
<td>Monotonic</td>
<td>$M(z) = T_d(z) + (1 + T_d(z)) M(z(1 + T_d(z))^{d-1}) - M(z)$</td>
</tr>
</tbody>
</table>

Where $T_d(z)$ is the generating function of the class of plane d-ary trees counted by their number of internal nodes.

\[T_d(z) = z (1 + T_d(z))^d \]

- These specifications do not involve periodicities.
- The same method presented before can be applied to obtain asymptotic enumeration formulae.
Complete asymptotic framework
We can now complete the asymptotic picture on d-ary trees.

<table>
<thead>
<tr>
<th>Type</th>
<th>Asymptotics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>$c_d \ n! \ (d-1)^n \ n^{-\frac{d-2}{d-1}}$</td>
<td>[FS09], [BFS92]</td>
</tr>
<tr>
<td>Connected monotonic</td>
<td>$\alpha_d \ n! \ (d-1)^n \ n^{\frac{2}{d-1}}$</td>
<td></td>
</tr>
<tr>
<td>Strict monotonic</td>
<td>$\kappa_d \ n! \ (\frac{d-1}{ln\ 2})^n \ n^{-\frac{d\ ln\ 2}{2(d-1)} - \frac{d-2}{d-1}}$</td>
<td>[BGGW20]</td>
</tr>
<tr>
<td>Monotonic</td>
<td>$\beta_d \ n! \ (\frac{d-1}{ln\ 2})^n \ n^{\frac{d\ ln\ 2}{2(d-1)} - \frac{d-2}{d-1}}$</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and future work

- We saw that it is possible to specify label repetitions and weakly increasing labellings on d-ary trees in the world of OGF.
- The same method can be applied to specify plane oriented recursive trees (PORTs) and d-bundled trees.
- How difficult it is to have a general specification of these labellings on any simple trees class?
- What can be said about non-plane trees?
Thank you for listening
References

[FGM+06] Philippe Flajolet, Xavier Gourdon, Conrado Martinez, Philippe Flajolet, Xavier Gourdon, Conrado Martinez, Random Binary, and Search Trees. Patterns in Random Binary Search Trees To cite this version : HAL Id : inria-00073700 apport de recherche. 2006.

