Graph recolouring
Graph colouring

⇒

Reconfiguration graph

Solutions // Nodes. Most similar solutions // Neighbours.
Graph recolouring

\[\Rightarrow \]

Solutions // Nodes. Most similar solutions // Neighbours.
Graph recolouring

Graphs G and G'.
Graph recolouring
Graph recolouring \(\Rightarrow\) Reconfiguration graph

Solutions // Nodes. Most similar solutions // Neighbours.
Graph 3-recolouring: bad cases (1)
Graph 3-recolouring: bad cases (2)

\[
\begin{align*}
\alpha_w(\alpha, C_5) &= -3 \\
\beta_w(\beta, C_5) &= 3
\end{align*}
\]
Graph 3-recolouring: bad cases (2)

\[\alpha \]

\[w(\alpha, C_5) = -3 \]

\[\beta \]

\[w(\beta, C_5) = 3 \]

Marthe Bonamy

Graph recolouring
Graph 3-recolouring: bad cases (2)

\[\alpha \]
\[\beta \]

\[w(\alpha, C_5) = -3 \]
\[w(\beta, C_5) = 3 \]
Graph 3-recolouring: bad cases (2)

\[\alpha \]

\[\beta \]

\[w(\alpha, C_5) = -3 \]

\[w(\beta, C_5) = 3 \]
Graph 3-recolouring: bad cases (2)

\[\alpha_{w}(\alpha, C_{5}) = -3 \]

\[\beta_{w}(\beta, C_{5}) = 3 \]
Graph 3-recolouring: bad cases (2)

\[\alpha \left(w, C_5 \right) = -3 \]

\[\beta \left(w, C_5 \right) = 3 \]
Graph 3-recolouring: bad cases (2)

\[\alpha \left(w(\alpha, C_5) \right) = -3 \]

\[\beta \left(w(\beta, C_5) \right) = 3 \]
Graph 3-recolouring: bad cases (2)

\[w(\alpha, C_5) = -3 \quad \text{and} \quad w(\beta, C_5) = 3 \]
Theorem (Cereceda, Johnson, van den Heuvel ’11)

For any graph G, any two 3-colourings α, β, if
- Neither α nor β contain a frozen cycle, and
- α and β have the same wrapping number on every cycle,
then G can be recoloured from α to β.
Theorem (Cereceda, Johnson, van den Heuvel ’11)

For any graph G, any two 3-colourings α, β, if

- Neither α nor β contain a frozen cycle, and
- α and β have the same wrapping number on every cycle,

then G can be recoloured from α to β.

Corollary (Wrochna ’15)

All graphs with no cycle of length multiple of 3 are 3-colourable.
Conjecture (Folklore ’15)

Every graph with no induced cycle of length multiple of 3 contains an edge whose removal does not create an induced cycle of length multiple of 3.
Conjecture (Folklore ’15)

Every graph with no induced cycle of length multiple of 3 contains an edge whose removal does not create an induced cycle of length multiple of 3.

Hypothetical Corollary (Wrochna ’15)

All graphs with no induced cycle of length multiple of 3 are 3-colourable.

Theorem (Bonamy, Charbit, Thomassé ’15)

All graphs with no induced cycle of length multiple of 3 are \(O(1) \)-colourable.
Conjecture (Folklore ’15)

Every graph with no induced cycle of length multiple of 3 contains an edge whose removal does not create an induced cycle of length multiple of 3.

Nope! (Wrochna ’18)

Hypothetical Corollary (Wrochna ’15)

All graphs with no induced cycle of length multiple of 3 are 3-colourable.

Theorem (Bonamy, Charbit, Thomassé ’15)

All graphs with no induced cycle of length multiple of 3 are $O(1)$-colourable.
Kempe equivalence
Kempe equivalence
Kempe equivalence
Kempe equivalence
Kempe equivalence: Goal

\(\Delta \): Maximum degree of the graph
Kempe equivalence: Goal

Δ: Maximum degree of the graph

Theorem (Brooks ’41)

Every graph is Δ-colourable, except for cliques and odd cycles.
Kempe equivalence: Goal

\(\Delta\): Maximum degree of the graph

Theorem (Brooks ’41)

Every graph is \(\Delta\)-colourable, except for cliques and odd cycles.

Conjecture (Mohar ’05)

All the \(\Delta\)-colourings of a graph are Kempe equivalent.
Kempe equivalence: Results

The conjecture is false! (van den Heuvel '13)
Theorem (Feghali, Johnson, Paulusma '15)

True for all graphs with $\Delta \leq 3$ (other than the 3-prism).
Kempe equivalence: Results (2)

<table>
<thead>
<tr>
<th>Theorem (Feghali, Johnson, Paulusma ’15)</th>
<th>True for all graphs with $\Delta \leq 3$ (other than the 3-prism).</th>
</tr>
</thead>
</table>

| Theorem (B., Bousquet, Feghali, Johnson ’15) | True for all graphs (other than the 3-prism). |
Kempe equivalence: Results (2)

Theorem (Feghali, Johnson, Paulusma ’15)

True for all graphs with $\Delta \leq 3$ (other than the 3-prism).

Theorem (B., Bousquet, Feghali, Johnson ’15)

True for all graphs (other than the 3-prism).

Understand Glauber Dynamics (analyse Antiferromagnetic Potts Model when the temperature tends to 0)
Theorem (Feghali, Johnson, Paulusma '15)

True for all graphs with $\Delta \leq 3$ (other than the 3-prism).

Theorem (B., Bousquet, Feghali, Johnson '15)

True for all graphs (other than the 3-prism).

Understand Glauber Dynamics (analyse Antiferromagnetic Potts Model when the temperature tends to 0)

Murkier picture when fewer colours involved...
Hadwiger’s conjecture

\(K_t\)-minor: \(t \) pairwise disjoint connected subgraphs that are pairwise adjacent.

Conjecture (Hadwiger ’43)

Any graph with no \(K_t\)-minor is \((t - 1)\)-colourable.
Hadwiger’s conjecture

K_t-minor: t pairwise disjoint connected subgraphs that are pairwise adjacent.

Conjecture (Hadwiger ’43)

Any graph with no K_t-minor is $(t - 1)$-colourable.

True for $t \leq 6$.
Hadwiger’s conjecture

\(K_t\)-minor: \(t\) pairwise disjoint connected subgraphs that are pairwise adjacent.

Conjecture (Hadwiger ’43)

Any graph with no \(K_t\)-minor is \((t – 1)\)-colourable.

True for \(t \leq 6\).

Conjecture (Las Vergnas, Meyniel ’81)

All the \(t\)-colourings of a graph with no \(K_t\)-minor are Kempe equivalent.

Marthe Bonamy Graph recolouring
Hadwiger’s conjecture

K_t-minor: t pairwise disjoint connected subgraphs that are pairwise adjacent.

Conjecture (Hadwiger ‘43)

Any graph with no K_t-minor is $(t - 1)$-colourable.

True for $t \leq 6$.

Conjecture (Las Vergnas, Meyniel ’81)

All the t-colourings of a graph with no K_t-minor are Kempe equivalent.

True for $t \leq 5$.
Hadwiger’s conjecture

K_t-minor: t pairwise disjoint connected subgraphs that are pairwise adjacent.

Conjecture (Hadwiger ’43)

Any graph with no K_t-minor is $(t − 1)$-colourable.

True for $t \leq 6$.

Conjecture (Las Vergnas, Meyniel ’81)

All the t-colourings of a graph with no K_t-minor are Kempe equivalent.

True for $t \leq 5$.

Theorem (B., Heinrich, Legrand, Narboni ’21)

For any $\varepsilon > 0$ and large enough t, the $(\frac{3}{2} − \varepsilon)t$-colourings of a graph with no K_t-minor are not necessarily Kempe equivalent.
Theorem (Vizing '64)

For any graph, \(\Delta \leq \chi' \leq \Delta + 1 \).
Theorem (Vizing ’64)

For any graph, \(\Delta \leq \chi' \leq \Delta + 1 \).

Proof through “Kempe changes”.
Theorem (Vizing ’64)

For any graph, $\Delta \leq \chi' \leq \Delta + 1$.

Proof through “Kempe changes”.
Reconfiguration as a tool

Theorem (Vizing ’64)

For any graph, $\Delta \leq \chi' \leq \Delta + 1$.

Proof through “Kempe changes”.

![Graph diagram](image-url)
Reconfiguration as a tool

Theorem (Vizing '64)

For any graph, $\Delta \leq \chi' \leq \Delta + 1$.

Proof through “Kempe changes”.

\[
\begin{align*}
\text{Diagram:} & \\
\text{Initial coloring:} & \\
\text{Intermediate coloring:} & \\
\text{Final coloring:} &
\end{align*}
\]
Reconfiguration as a tool

Theorem (Vizing '64)

For any graph, $\Delta \leq \chi' \leq \Delta + 1$.

Proof through “Kempe changes”.
Theorem (Vizing ’64)

For any graph, for any proper edge colouring α, there is a proper $(\Delta + 1)$-edge colouring β such that α and β are Kempe-equivalent.

Conjecture (Vizing ’65)

For any graph, for any proper edge colouring α, there is a proper χ'-edge colouring β such that α and β are Kempe-equivalent.

Conjecture (Mohar ’06)

For any graph G, for any two $(\Delta(G) + 2)$-edge colourings α and β of G, they are Kempe-equivalent.

Theorem (B., Defrain, Klimová, Lagoutte, Narboni ’20)

For any triangle-free graph, all $(\chi' + 1)$-edge-colourings are Kempe-equivalent.
Vizing’s and Mohar’s conjectures

<table>
<thead>
<tr>
<th>Theorem (Vizing ’64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any graph, for any proper edge colouring α, there is a proper $(\Delta + 1)$-edge colouring β such that α and β are Kempe-equivalent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Vizing ’65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any graph, for any proper edge colouring α, there is a proper χ'-edge colouring β such that α and β are Kempe-equivalent.</td>
</tr>
</tbody>
</table>
Vizing’s and Mohar’s conjectures

<table>
<thead>
<tr>
<th>Theorem (Vizing ’64)</th>
<th>For any graph, for any proper edge colouring (\alpha), there is a proper ((\Delta + 1))-edge colouring (\beta) such that (\alpha) and (\beta) are Kempe-equivalent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjecture (Vizing ’65)</td>
<td>For any graph, for any proper edge colouring (\alpha), there is a proper (\chi')-edge colouring (\beta) such that (\alpha) and (\beta) are Kempe-equivalent.</td>
</tr>
<tr>
<td>Conjecture (Mohar ’06)</td>
<td>For any graph (G), for any two ((\Delta(G) + 2))-edge colourings (\alpha) and (\beta) of (G), they are Kempe-equivalent.</td>
</tr>
</tbody>
</table>
Vizing’s and Mohar’s conjectures

Theorem (Vizing ’64)

For any graph, for any proper edge colouring α, there is a proper $(\Delta + 1)$-edge colouring β such that α and β are Kempe-equivalent.

Conjecture (Vizing ’65)

For any graph, for any proper edge colouring α, there is a proper χ'-edge colouring β such that α and β are Kempe-equivalent.

Conjecture (Mohar ’06)

For any graph G, for any two $(\Delta(G) + 2)$-edge colourings α and β of G, they are Kempe-equivalent.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni ’20)

For any triangle-free graph, all $(\chi' + 1)$-edge-colourings are Kempe-equivalent.
Reconfiguration Graphs

Two solutions:
- In the same connected component?
- What distance between them?
Two solutions:
- In the same connected component?
- What distance between them?

Reconfiguration graph:
- Connected?
- Maximal diameter of a connected component?
Reconfiguration Graphs

- **Two solutions:**
 - In the same connected component?
 - What distance between them?

- **Reconfiguration graph:**
 - Connected?
 - Maximal diameter of a connected component?

Various problems, various elementary steps...
Reconfiguration graph connected \Rightarrow Efficient enumeration?
Elementary steps

Reconfiguration graph connected \Rightarrow Efficient enumeration?
Sampling?
Reconfiguration graph connected ⇒ Efficient enumeration?
Sampling? Approximate counting?
Elementary steps

Reconfiguration graph connected \Rightarrow Efficient enumeration? Sampling? Approximate counting?

Almost every thing is PSPACE-hard.
\Rightarrow Restricted graph classes, Fixed Parameter Tractability
Merci !
Merci !