Le lien entre Michael Jordan et Catalan

Jérémie Bettinelli
Éric Fusy Cécile Mailler Lucas Randazzo

March 20, 2017
Basketball walks

Basketball walk: integer-valued walk with step-set \([-2, -1, +1, +2]\)
Theorem (Banderier & Krattenthaler & Krinik & Kruchinin & Kruchinin & Nguyen & Wallner ’16)

The generating function G of basketball walks from 0 to 1 that are positive except at the origin, counted with weight z per step is given by

$$G(z) = -\frac{1}{2} + \frac{1}{2} \sqrt{\frac{2 - 3z - 2\sqrt{1 - 4z}}{z}}.$$

$G := \{\text{basketball walks from 0 to 1 that are positive except at the origin}\}$

$|\mathbf{w}|$: number of steps of \mathbf{w}

$$G(z) := \sum_{\mathbf{w} \in G} z^{|\mathbf{w}|} \quad \quad = \sum_{n=0}^{\infty} \left| \{\mathbf{w} \in G : |\mathbf{w}| = n\} \right| z^n$$
Catalan is everywhere!

The previous authors observed that

\[1 + G(z) + G^2(z) = \text{Cat}(z) \] \hspace{1cm} (1)

where \(\text{Cat} \) is the Catalan generating function.

\[\text{Cat}(z) = \sum_{n=0}^{\infty} c_n z^n \] where \(c_n := \frac{1}{n+1} \binom{2n}{n} \) is the \(n \)-th Catalan number

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012

\(n \)-edge rooted trees, \(n + 1 \)-leaf binary rooted trees, \(2n \)-step Dyck walks, well-parenthesized words with \(n \) pairs of parentheses, rooted triangulations of the \(n + 2 \)-gon, noncrossing partitions of the \(n \)-set, etc.
C-walks

C-walk: basketball walk from 0 to 0 that visits 1 and is positive except at the extremities

\[C := \{ \text{C-walks} \} \]

\[C(z) := \sum_{w \in C} z^{|w|} \]

\[C = ZG + ZG + G \]
C-walks

C-walk: basketball walk from 0 to 0 that visits 1 and is positive except at the extremities

\[C := \{ C\text{-walks}\} \]

\[C(z) := \sum_{w \in C} z^{|w|} \]

Equation (1) becomes \[C(z) = z \text{Cat}(z) - z \], which is the generating function of nontrivial binary trees counted with weight \(z \) per leaf.
Introduction & motivations

Binary trees

IUBTs

Refined enumeration

even step: step starting at even height
odd step: step starting at odd height

Proposition

The number of C-walks with $2d \pm 1$-steps, ℓ odd $+2$-steps or even -2-steps, and r odd -2-steps or even $+2$-steps is equal to

$$\frac{1}{d(d-1)} \binom{2d-2}{\ell+r+2d-2} \binom{\ell+r}{\ell}.$$
Matched statistics

Proposition

\[n\text{-step C-walk} \iff n\text{-leaf binary tree} \]

- \pm 1\text{-steps} \iff \text{double leaves}

- odd +2 / even −2 \iff \text{left leaves}

- even +2 / odd −2 \iff \text{right leaves}
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.
increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size \(n \): plane tree with \(n \) vertices labeled 1, 2, \ldots, \(n \) such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, ..., n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

An increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

An increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size \(n \): plane tree with \(n \) vertices labeled 1, 2, \ldots, \(n \) such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

An increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

increasing unary-binary tree of size \(n \): plane tree with \(n \) vertices labeled 1, 2, \ldots, \(n \) such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, \ldots, n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, ..., n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

An increasing unary-binary tree of size n is a plane tree with n vertices labeled 1, 2, ..., n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Increasing unary-binary tree

Increasing unary-binary tree of size n: plane tree with n vertices labeled 1, 2, 3, ..., n such that each vertex has at most 2 children, and all have larger labels.

We associate with it the permutation obtained by reading the labels of the tree in breadth-first search order.
Permutation avoiding 213
Permutation avoiding 213

contains 213

avoids 213
Counting IUBTs

IUBT: increasing unary-binary tree with associated permutation avoiding 213

Theorem

IUBTs are counted by G-walks (basketball walks from 0 to 1 that are positive except at the origin).

Proposition

For $n \geq 1$ and $0 \leq k \leq \lfloor (n - 1)/2 \rfloor$, the number of n-vertex IUBTs with exactly $n - 1 - 2k$ unary nodes is

$$\frac{1}{n} \binom{2n}{k} \binom{n - k}{k + 1}.$$
Matched statistics

IUBT: increasing unary-binary tree with associated permutation avoiding 213

Proposition

\[n\text{-step } G\text{-walk} \leftrightarrow n\text{-vertex IUBT} \]

staggered ±2-steps \[\leftrightarrow\] **unary nodes**

The red and purple steps are paired.

A **staggered ±2-step** is a ±2-step that is not paired with any other ±2-step.
Decomposition of binary trees

\[\mathcal{N} \]: class of nontrivial binary trees counted by number of leaves

Goal

Understand bijectively that \(\mathcal{C} = \mathcal{N} \)
Decomposition of binary trees

\mathcal{N}: class of nontrivial binary trees counted by number of leaves

Goal

Understand bijectively that $\mathcal{C} = \mathcal{N}$
Decomposition of binary trees

\mathcal{N}: class of nontrivial binary trees counted by number of leaves

Goal

Understand bijectively that $\mathcal{C} = \mathcal{N}$

$$
\mathcal{N} = \mathcal{N} \times (\mathbb{Z} + \mathcal{N}) \times (\mathbb{Z} + \mathcal{N})
$$
Elementary decomposition of basketball walks
Elementary decomposition of basketball walks

A

B

C
Elementary decomposition of basketball walks

A

B

C = B

Jérémie Bettinelli

March 20, 2017
Elementary decomposition of basketball walks

\[A = B + C = B + A \]
Elementary decomposition of basketball walks

\[A = B + A + B \]
Elementary decomposition of basketball walks

\[A = \mathbb{Z} + \mathbb{Z} \]

\[B = \mathbb{Z} + \mathbb{Z} \]

\[C = B \cup A \cup B \]
Elementary decomposition of basketball walks

\[A = \mathbb{Z} + \mathbb{Z} + A \]

\[B = \mathbb{Z} + \mathbb{Z} + B \]

\[C = B \]
Elementary decomposition of basketball walks

\[A = \mathbb{Z} + \mathbb{Z} \]

\[B = \mathbb{Z} \]

\[C = B \]
Elementary decomposition of basketball walks

\[A = 1 \]

\[B = \mathbb{Z} + \mathbb{A} + \mathbb{B} \]

\[C = \mathbb{B} \mathbb{A} \mathbb{B} \]
Elementary decomposition of basketball walks

\[A = 1 + Z + A + Z \]

\[B = Z + Z + A + B \]

\[C = B + A + B \]
Elementary decomposition of basketball walks

\[A = 1 + Z A Z A \]

\[B = Z Z + Z A B \]

\[C = B A B \]
Elementary decomposition of basketball walks

\[A = 1 + Z A Z A + B A B A \]

\[B = Z Z + Z A B \]

\[C = B A B \]
The bijection

\[
+1 - 1
\]
The bijection

\[\Phi: (+1 - 1) \rightarrow (\varepsilon, \varepsilon) \]
The bijection

\[\Phi \quad (\varepsilon, \varepsilon) \]
The bijection

\(\Phi \quad (\varepsilon, \varepsilon) \)

\(b_1 \quad c \quad a \quad \bar{b}_2 \)

\(\Phi \quad (\bar{c}, \quad b_1 \quad a \quad \bar{b}_2) \)
The bijection

\[a - 2 \]

\[b_1 \quad b_2 \quad a \quad -2 \]
The bijection

\[\Phi : (b_1, b_2, a, -2) \mapsto (\varepsilon, b_1, \overline{a}, \overline{b}_2) \]
The bijection

\[\Phi \quad \begin{pmatrix} \varepsilon, \\ b_1, \bar{a}, \bar{b}_2 \end{pmatrix} \]

\[\begin{align*}
\Phi : & \quad b_1, b_2, a, -2 \\
\Phi^{-1} : & \quad +2, a, \bar{b}, -1
\end{align*} \]
The bijection

\[
\begin{align*}
\Phi & \quad (\varepsilon, \ b_1 \ a \ b_2) \\
\Phi & \quad (\varepsilon, \ b \ a \ b_2)
\end{align*}
\]
The bijection

\[\begin{align*}
\Phi & \quad \mapsto \quad (\varepsilon, \quad \overline{a}, \quad \overline{b}_2) \\
\Phi & \quad \mapsto \quad (\overline{a}, \quad a, \quad -1) \\
\Phi & \quad \mapsto \quad (\overline{b}_2, \quad a_2, \quad -2) \\
\end{align*} \]
The bijection

\[
\begin{align*}
\Phi & \mapsto (\varepsilon, (b_1, a, b_2)) \\
\Phi & \mapsto (\varepsilon, (b, a, b_1)) \\
\Phi & \mapsto (\varepsilon, (b_1, a_1, b_2, a_2, -2))
\end{align*}
\]
The bijection

\[\Phi \]

\[(\varepsilon, \varepsilon) \]

\[(\bar{c}, b_1, a, \bar{b}_2) \]

\[(\varepsilon, \bar{a}, \bar{b}_2) \]

\[(\bar{b}, \bar{a}, -1, \varepsilon) \]

\[(\bar{b}_1, a_1, b_2, \bar{a}_2, -2, \varepsilon) \]
The bijection

\begin{center}
\begin{tikzpicture}

% Draw the first tree
\draw[red] (0,0) -- (1,1) -- (2,0) -- (3,1) -- (4,0);
\draw[green] (0,0) -- (1,1) -- (2,0) -- (3,1) -- (4,0);

% Draw the second tree
\draw[red] (5,0) -- (6,1) -- (7,0) -- (8,1) -- (9,0);
\draw[green] (5,0) -- (6,1) -- (7,0) -- (8,1) -- (9,0);

% Draw the third tree
\draw[red] (10,0) -- (11,1) -- (12,0) -- (13,1) -- (14,0);
\draw[green] (10,0) -- (11,1) -- (12,0) -- (13,1) -- (14,0);

% Draw the fourth tree
\draw[red] (15,0) -- (16,1) -- (17,0) -- (18,1) -- (19,0);
\draw[green] (15,0) -- (16,1) -- (17,0) -- (18,1) -- (19,0);

\end{tikzpicture}
\end{center}
The bijection
The bijection
The bijection

\[\text{Diagram showing two binary trees and their bijection.} \]
The bijection
The bijection
The bijection
Statistics
Statistics
Statistics
Valid permutations on a unary-binary tree

Lemma

A permutation is valid for a tree if and only if it avoids 213 and, the value taken at each node is a right-to-left minimum.
Valid permutations on a unary-binary tree

Lemma

A permutation is valid for a tree if and only if it avoids 213 and, the value taken at each node is a right-to-left minimum.
Valid permutations on a unary-binary tree

Lemma

A permutation is valid for a tree if and only if it avoids 213 and, the value taken at each node is a right-to-left minimum.
Valid permutations on a unary-binary tree

Lemma

A permutation is valid for a tree if and only if it avoids 213 and, the value taken at each node is a right-to-left minimum.
Valid permutations on a unary-binary tree

Lemma

A permutation is valid for a tree if and only if it avoids 213 and, the value taken at each node is a right-to-left minimum.
Encoding by decorated Motzkin paths
Encoding by decorated Motzkin paths

\begin{tikzpicture}
\t\node (1) at (0,0) {1};
\t\node (2) at (-1,-1) {2};
\t\node (3) at (1,-1) {3};
\t\node (4) at (-2,-2) {4};
\t\node (5) at (0,-2) {5};
\t\node (6) at (2,-2) {6};
\t\node (7) at (-1,-3) {7};
\t\node (8) at (0,-3) {8};
\t\node (9) at (1,-3) {9};
\t\node (10) at (-2,-4) {10};
\t\node (11) at (-1,-4) {11};
\t\node (12) at (0,-4) {12};
\t\node (13) at (1,-4) {13};
\t\node (14) at (2,-4) {14};
\t\node (15) at (1,-5) {15};
\t\node (16) at (2,-6) {16};
\t\node (17) at (1,-6) {17};
\t\node (18) at (0,-6) {18};
\t\node (19) at (-1,-6) {19};
\end{tikzpicture}
Encoding by decorated Motzkin paths

Introduction & motivations

Binary trees

Jérémie Bettinelli

Le lien entre Michael Jordan et Catalan

March 20, 2017
Encoding by decorated Motzkin paths
Coding by decorated Motzkin paths
Encoding by decorated Motzkin paths

Jérémie Bettinelli

Le lien entre Michael Jordan et Catalan

March 20, 2017
Encoding by decorated Motzkin paths
How to reconstruct the permutation
Counting decorated Motzkin walks

\(\mathcal{T} \): decorated Motzkin walks

Aim

We want to show that \(\mathcal{T} = \mathcal{G} \).

\[\mathcal{G} \]
Counting decorated Motzkin walks

\(\mathcal{T} \): decorated Motzkin walks

Aim

We want to show that \(\mathcal{T} = \mathcal{G} \).

\[
\mathcal{G} = \mathcal{Z} \cdot \mathcal{A} + \mathcal{Z} \cdot \mathcal{G} \cdot \mathcal{A}
\]
Counting decorated Motzkin walks

\(T \): decorated Motzkin walks

Aim

We want to show that \(T = G \).

\[
G = (ZA) + (ZA)^2 + (ZA)^3 + \ldots = \text{Seq}_{\geq 1}(ZA)
\]
Step 1: $\mathcal{T} = \text{Seq}_{\geq 1}(\mathcal{M})$

\mathcal{M}: decorated Motzkin walks whose last 0-step or +1-step is a +1-step.

Claim

$\mathcal{T} = \text{Seq}_{\geq 1}(\mathcal{M})$
Step 1: $\mathcal{T} = \text{Seq}_{\geq 1}(\mathcal{M})$

\mathcal{M}: decorated Motzkin walks whose last 0-step or +1-step is a +1-step

Claim

$\mathcal{T} = \text{Seq}_{\geq 1}(\mathcal{M})$

$\mathcal{T} - \mathcal{M} = \mathcal{M} \times \mathcal{T}$
Step 2: $\mathcal{M} = ZA$

We observed that $B = z/(1 - zA)$ and $A = 1 + (zA)^2 + (BA)^2$. Thus,

$$zA = z \left(1 + (zA)^2 + \frac{(zA)^2}{(1 - zA)^2} \right)$$
Step 2: $\mathcal{M} = ZA$

We observed that $B = z/(1 - zA)$ and $A = 1 + (zA)^2 + (BA)^2$. Thus,

$$zA = z \left(1 + (zA)^2 + \frac{(zA)^2}{(1 - zA)^2} \right)$$
Step 2: $\mathcal{M} = ZA$

We observed that $B = z/(1 - zA)$ and $A = 1 + (zA)^2 + (BA)^2$. Thus,

$$ZA = z \left(1 + (zA)^2 + \frac{(zA)^2}{(1 - zA)^2} \right)$$
Step 2: $\mathcal{M} = zA$

We observed that $B = z/(1 - zA)$ and $A = 1 + (zA)^2 + (BA)^2$. Thus,

$$zA = z \left(1 + (zA)^2 + \frac{(zA)^2}{(1 - zA)^2} \right)$$
Step 2: $\mathcal{M} =ZA$

We observed that $B = z/(1 - zA)$ and $A = 1 + (zA)^2 + (BA)^2$. Thus,

$$ZA = z \left(1 + (zA)^2 + \frac{(zA)^2}{(1 - zA)^2}\right)$$

$$M = z (1 + T - M)^2 = z \left(1 - M + \frac{M}{1 - M}\right)^2 = z \left(1 + M^2 + \frac{M^2}{(1 - M)^2}\right)$$
Merci !