The densest subgraph of sparse random graphs

Justin Salez (Université Paris 7)
with Venkat Anantharam (UC Berkeley)
The objective method (Aldous-Steele, 2004)

Context:
given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

Key assumption:
no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

Expected consequences:
1. efficient approximability by local distributed algorithms;
2. existence of an infinite-volume limit.

Idea:
formalize that via local weak convergence, and use this framework to replace the asymptotic study of large graphs by the direct analysis of their infinite-volume limits.
The objective method (Aldous-Steele, 2004)

- **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).
The objective method (Aldous-Steele, 2004)

- **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

- **Key assumption:** no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.
The objective method (Aldous-Steele, 2004)

- **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

- **Key assumption:** no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

- **Expected consequences:**
The objective method (Aldous-Steele, 2004)

▶ **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

▶ **Key assumption:** no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

▶ **Expected consequences:**
 1. efficient approximability by local distributed algorithms;
The objective method (Aldous-Steele, 2004)

- **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

- **Key assumption:** no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

- **Expected consequences:**
 1. efficient approximability by local distributed algorithms;
 2. existence of an infinite-volume limit.
The objective method (Aldous-Steele, 2004)

- **Context:** given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

- **Key assumption:** no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

- **Expected consequences:**
 1. efficient approximability by local distributed algorithms;
 2. existence of an infinite-volume limit.

- **Idea:** formalize that via *local weak convergence*, and use this framework to replace the asymptotic study of large graphs by the direct analysis of their infinite-volume limits.
Local convergence around a fixed root

Let G, o, and R be a countable, locally finite, connected rooted graph, a root, and a ball of radius R around o in G, respectively. We denote by G_n, o_n, and R_n their respective finite subgraphs around o, and by \equiv the equality of rooted graphs. We say that $\{G_n, o_n : n \in \mathbb{N}\} \to G, o$ locally converges if for each fixed R, there is $n_R \in \mathbb{N}$ such that $n \geq n_R \Rightarrow [G_n, o_n] \equiv [G, o]_{R_R}$. This means that the finite subgraphs of G_n around o_n converge to the graph G with root o in the neighborhood of radius R. The condition ensures that the local structure around the root is preserved under this convergence.
Local convergence around a fixed root

\((G, o)\): countable, locally finite, connected rooted graph
Local convergence around a fixed root

\((G, o)\) : countable, locally finite, connected rooted graph

\([G, o]_R\) : ball of radius \(R\) around \(o\) in \(G\)
Local convergence around a fixed root

\((G, o)\) : countable, locally finite, connected rooted graph

\([G, o]_R : \) ball of radius \(R\) around \(o\) in \(G\)
Local convergence around a fixed root

\((G, o)\) : countable, locally finite, connected rooted graph

\([G, o]_R \) : ball of radius \(R\) around \(o\) in \(G\)

\((G_n, o_n) \xrightarrow[n \to \infty]{} (G, o)\)
Local convergence around a fixed root

\((G, o)\) : countable, locally finite, connected rooted graph

\([G, o]_R : \) ball of radius \(R\) around \(o\) in \(G\)

\((G_n, o_n) \xrightarrow{n \to \infty} (G, o)\) if for each fixed \(R\), there is \(n_R \in \mathbb{N}\) such that

\[n \geq n_R \implies [G_n, o_n]_R \equiv [G, o]_R \]
Local weak convergence (Benjamini-Schramm, 2001)

\[G_\star = \{ \text{locally finite connected rooted graphs} \}. \]
Local weak convergence (Benjamini-Schramm, 2001)

\[G_\star = \{ \text{locally finite connected rooted graphs} \} . \]

\[G = (V, E) : \text{finite unrooted, possibly disconnected graph}. \]
Local weak convergence (Benjamini-Schramm, 2001)

\[G_\star = \{ \text{locally finite connected rooted graphs} \} . \]

\[G = (V, E) : \text{finite unrooted, possibly disconnected graph}. \]

Consider the law on \(G_\star \) obtained by choosing a root \(o \in V \) uniformly at random, and restricting to its connected component:
Local weak convergence (Benjamini-Schramm, 2001)

\(\mathcal{G}_\star = \{ \text{locally finite connected rooted graphs} \} \).

\(G = (V, E) : \) finite unrooted, possibly disconnected graph.

Consider the law on \(\mathcal{G}_\star \) obtained by choosing a root \(o \in V \) uniformly at random, and restricting to its connected component:

\[
\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.
\]
Local weak convergence (Benjamini-Schramm, 2001)

\(G_* = \{\text{locally finite connected rooted graphs}\}\).

\(G = (V, E)\) : finite unrooted, possibly disconnected graph.

Consider the law on \(G_*\) obtained by choosing a root \(o \in V\) uniformly at random, and restricting to its connected component:

\[
\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta[G, o].
\]

\(\mathcal{L}_G\) is an element of \(\mathcal{P}(G_*) := \{\text{probability measures on } G_*\}\).
Local weak convergence (Benjamini-Schramm, 2001)

\[G_* = \{ \text{locally finite connected rooted graphs} \}. \]

\[G = (V, E) : \text{finite unrooted, possibly disconnected graph.} \]

Consider the law on \(G_* \) obtained by choosing a root \(o \in V \) uniformly at random, and restricting to its connected component:

\[L_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}. \]

\(L_G \) is an element of \(\mathcal{P}(G_*) := \{ \text{probability measures on } G_* \}. \)

\(\{ G_n \}_{n \geq 1} : \text{sequence of finite graphs.} \)
Local weak convergence (Benjamini-Schramm, 2001)

\(G_\star = \{ \text{locally finite connected rooted graphs} \} \).

\(G = (V, E) \) : finite unrooted, possibly disconnected graph.

Consider the law on \(G_\star \) obtained by choosing a root \(o \in V \) uniformly at random, and restricting to its connected component:

\[
\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G, o]}.
\]

\(\mathcal{L}_G \) is an element of \(\mathcal{P}(G_\star) := \{ \text{probability measures on } G_\star \} \).

\(\{G_n\}_{n \geq 1} \) : sequence of finite graphs. If \(\{\mathcal{L}_{G_n}\}_{n \geq 1} \) admits a weak limit \(\mathcal{L} \in \mathcal{P}(G_\star) \), then call \(\mathcal{L} \) the **local weak limit** of \(\{G_n\}_{n \geq 1} \).
Local weak convergence (Benjamini-Schramm, 2001)

\[\mathcal{G}_\star = \{ \text{locally finite connected rooted graphs} \} . \]

\[G = (V, E) : \text{finite unrooted, possibly disconnected graph}. \]

Consider the law on \(\mathcal{G}_\star \) obtained by choosing a root \(o \in V \) uniformly at random, and restricting to its connected component:

\[
\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]} .
\]

\(\mathcal{L}_G \) is an element of \(\mathcal{P}(\mathcal{G}_\star) := \{ \text{probability measures on } \mathcal{G}_\star \} . \)

\(\{ G_n \}_{n \geq 1} : \text{sequence of finite graphs. If } \{ \mathcal{L}_{G_n} \}_{n \geq 1} \text{ admits a weak limit } \mathcal{L} \in \mathcal{P}(\mathcal{G}_\star) \), then call \(\mathcal{L} \) the \textbf{local weak limit} of \(\{ G_n \}_{n \geq 1} . \)

\(\triangleright \mathcal{L} \) describes the local geometry of \(G_n \) around a random node
Examples of local weak limits

Note: graphs must be sparse, i.e. $|E| \sim |V|$

G_n = box of size $n \times \ldots \times n$ in \mathbb{Z}^d

L = dirac at $(\mathbb{Z}^d, 0)$

G_n = random d-regular graph on n nodes

L = dirac at the d-regular infinite rooted tree

G_n = Erdős-Rényi graph with $p_n = c$ on n nodes

L = law of a Galton-Watson tree with degree Poisson(c)

G_n = random graph with degree distribution π on n nodes

L = law of a Galton-Watson tree with degree distribution π

G_n = uniform random tree on n nodes

L = Infinite Skeleton Tree (Grimmett, 1980)

G_n = preferential attachment graph on n nodes

L = Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
Examples of local weak limits

Note: graphs must be *sparse*, i.e. \(|E| \asymp |V|\)
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = $ box of size $n \times \ldots \times n$ in \mathbb{Z}^d
Examples of local weak limits

Note: graphs must be sparse, i.e. \(|E| \asymp |V| \)

- \(G_n = \) box of size \(n \times \ldots \times n \) in \(\mathbb{Z}^d \)
- \(\mathcal{L} = \) dirac at \((\mathbb{Z}^d, 0) \)
Examples of local weak limits

Note: graphs must be sparse, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 - $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$
- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
Examples of local weak limits

Note: graphs must be sparse, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 - $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$
- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 - $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 - $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 - $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 - $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 - $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 - $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$
Examples of local weak limits

Note: graphs must be sparse, i.e. $|E| \asymp |V|$

- $G_n =$ box of size $n \times \ldots \times n$ in \mathbb{Z}^d
 $\mathcal{L} =$ dirac at $(\mathbb{Z}^d, 0)$

- $G_n =$ random $d-$regular graph on n nodes
 $\mathcal{L} =$ dirac at the $d-$regular infinite rooted tree

- $G_n =$ Erdős-Rényi graph with $p_n = \frac{c}{n}$ on n nodes
 $\mathcal{L} =$ law of a Galton-Watson tree with degree Poisson(c)

- $G_n =$ random graph with degree distribution π on n nodes
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d\text{-regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d\text{-regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \pi \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \pi$
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \pi \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \pi$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
Examples of local weak limits

Note: graphs must be **sparse**, i.e. \(|E| \asymp |V|\)

- \(G_n = \) box of size \(n \times \ldots \times n\) in \(\mathbb{Z}^d\)
 \(\mathcal{L} = \) dirac at \((\mathbb{Z}^d, 0)\)

- \(G_n = \) random \(d\)-regular graph on \(n\) nodes
 \(\mathcal{L} = \) dirac at the \(d\)-regular infinite rooted tree

- \(G_n = \) Erdős-Rényi graph with \(p_n = \frac{c}{n}\) on \(n\) nodes
 \(\mathcal{L} = \) law of a Galton-Watson tree with degree Poisson\((c)\)

- \(G_n = \) random graph with degree distribution \(\pi\) on \(n\) nodes
 \(\mathcal{L} = \) law of a Galton-Watson tree with degree distribution \(\pi\)

- \(G_n = \) uniform random tree on \(n\) nodes
 \(\mathcal{L} = \) *Infinite Skeleton Tree* (Grimmett, 1980)
Examples of local weak limits

Note: graphs must be sparse, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \pi \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \pi$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
Examples of local weak limits

Note: graphs must be **sparse**, i.e. $|E| \asymp |V|$

- $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \pi \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \pi$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} \text{ (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
 $\mathcal{L} = \text{Polya-point graph} \text{ (Berger-Borgs-Chayes-Sabery, 2009)}$
An illustration: the nullity of large graphs
An illustration: the nullity of large graphs

$$\mu_G(\{0\}) = \frac{\dim \ker(A_G)}{|V|}.$$
An illustration: the nullity of large graphs

$$\mu_G(\{0\}) = \frac{\dim \ker(A_G)}{|V|}.$$ Asymptotics when G is large?

Conjecture (Bauer-Golinelli 2001). For G_n: Erdős-Rényi (n, cn),

$$\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-c\lambda} - c\lambda$.

Theorem (Bordenave-Lelarge-S., 2011)

1. $G_n \to L = \Rightarrow \mu_{G_n}(\{0\}) \to \mu_L(\{0\})$.
2. When $L = \text{Galton-Watson}(\pi)$,

$$\mu_L(\{0\}) = \min_{\lambda} \left\{ \lambda^* + f'(1)\lambda^* + f(1 - \lambda^*) + f(1 - \lambda) - 1 \right\},$$

where $f(z) = \sum n \pi_n z^n$ and $\lambda^* = f'(1)/(f'(1) - f(1))$.

An illustration: the nullity of large graphs

\[\mu_G(\{0\}) = \frac{\dim \ker(A_G)}{|V|}. \]

Asymptotics when \(G \) is large?

Conjecture (Bauer-Golinelli 2001). For \(G_n : \) Erdős-Rényi \((n, \frac{c}{n}) \),

\[\mu_{G_n}(\{0\}) \xrightarrow[n \to \infty]{} \lambda^* + e^{-c\lambda^*} + c\lambda^*e^{-c\lambda^*} - 1, \]

where \(\lambda^* \in [0, 1] \) is the smallest root of \(\lambda = e^{-ce^{-c\lambda}} \).
An illustration: the nullity of large graphs

$$
\mu_G(\{0\}) = \frac{\dim \ker(A_G)}{|V|}. \quad \text{Asymptotics when } G \text{ is large?}
$$

Conjecture (Bauer-Golinelli 2001). For $G_n :$ Erdős-Rényi $(n, \frac{c}{n})$,

$$
\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,
$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S., 2011)
An illustration: the nullity of large graphs

\[\mu_G(\{0\}) = \frac{\dim \ker(A_G)}{|V|}. \]

Asymptotics when \(G \) is large?

Conjecture (Bauer-Golinelli 2001). For \(G_n : \text{Erdős-Rényi} \ (n, \frac{c}{n}) \),

\[\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1, \]

where \(\lambda^* \in [0, 1] \) is the smallest root of \(\lambda = e^{-ce^{-c\lambda}} \).

Theorem (Bordenave-Lelarge-S., 2011)

1. \(G_n \to \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\}) \).
An illustration: the nullity of large graphs

\[\mu_G(\{0\}) = \frac{\dim \ker (A_G)}{|V|}. \]

Asymptotics when \(G \) is large?

Conjecture (Bauer-Golinelli 2001). For \(G_n : \text{Erdős-Rényi} \left(n, \frac{c}{n}\right)\),

\[\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1, \]

where \(\lambda^* \in [0, 1] \) is the smallest root of \(\lambda = e^{-c e^{-c\lambda}} \).

Theorem (Bordenave-Lelarge-S., 2011)

1. \(G_n \to \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\}) \).

2. When \(\mathcal{L} = \text{GALTON-WATSON}(\pi) \),

\[\mu_{\mathcal{L}}(\{0\}) = \min_{\lambda = \lambda^{**}} \left\{ f'(1)\lambda \lambda^* + f(1 - \lambda) + f(1 - \lambda^*) - 1 \right\}, \]

where \(f(z) = \sum_n \pi_n z^n \) and \(\lambda^* = \frac{f'(1 - \lambda)}{f'(1)} \).
Continuity with respect to local weak convergence

In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry only.

This can be rigorously formalized by a continuity theorem:

$$G_n^{\text{loc}} \xrightarrow{n \to \infty} L \Rightarrow \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)$$

Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.

Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.

Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...

Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry only.

Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.

Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.

Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)…
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters \(\Phi \) are essentially determined by the \textbf{local geometry} only.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{loc. \ n \to \infty} L \quad \Rightarrow \quad \Phi(G_n) \xrightarrow{\ n \to \infty} \Phi(L)
\]

- Algorithmic implication: \(\Phi \) is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: \(\Phi \) admits a limit along most sparse graph sequences. The distributional self-similarity of \(L \) may even allow for an explicit determination of \(\Phi(L) \).
- Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)…
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow{loc. \ n \to \infty} \mathcal{L} \implies \Phi(G_n) \xrightarrow{n \to \infty} \Phi(\mathcal{L})$$

- **Algorithmic implication:** Φ is efficiently approximable via local distributed algorithms, independently of network size.
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.

- This can be rigorously formalized by a continuity theorem:

 $G_n \xrightarrow{\text{loc.}} L \implies \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)$

- **Algorithmic implication**: Φ is efficiently approximable via local distributed algorithms, independently of network size.

- **Analytic implication**: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.

Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- This can be rigorously formalized by a continuity theorem:

\[G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \Rightarrow \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(\mathcal{L}) \]

- **Algorithmic implication:** Φ is efficiently approximable via local distributed algorithms, independently of network size.
- **Analytic implication:** Φ admits a limit along most sparse graph sequences. The distributional self-similarity of \(\mathcal{L} \) may even allow for an explicit determination of \(\Phi(\mathcal{L}) \).
- **Examples:** number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)…
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry only.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{\text{loc.}} L \quad \implies \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)
\]

- **Algorithmic implication**: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- **Analytic implication**: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.
- **Examples**: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{\text{loc.}} L \quad \Rightarrow \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)
\]

- **Algorithmic implication:** Φ is efficiently approximable via local distributed algorithms, independently of network size.
- **Analytic implication:** Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.
- **Examples:** number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011),
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- This can be rigorously formalized by a continuity theorem:

 $G_n \xrightarrow{\text{loc.}} L \quad \Rightarrow \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)$

- **Algorithmic implication**: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- **Analytic implication**: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.
- **Examples**: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013),
Continuity with respect to local weak convergence

- In the sparse regime, many important graph parameters Φ are essentially determined by the \textbf{local geometry} only.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{loc. \ n \to \infty} L \quad \Rightarrow \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)
\]

- \textbf{Algorithmic implication}: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- \textbf{Analytic implication}: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of $\Phi(L)$.
- \textbf{Examples}: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...
The densest subgraph problem
The densest subgraph problem

Fix a finite graph $G = (V, E)$
The densest subgraph problem

Fix a finite graph $G = (V, E)$

Densest subgraph: $H^* = \arg\max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$
The densest subgraph problem

Fix a finite graph $G = (V, E)$

Densest subgraph: $H^* = \arg\max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$

Maximum subgraph density: $\varrho^* = \max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$
The densest subgraph problem

Fix a finite graph $G = (V, E)$

Densest subgraph: $H^* = \arg\max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$

Maximum subgraph density: $\varrho^* = \max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\} = \frac{17}{10}$
The densest subgraph problem on large sparse graphs
The densest subgraph problem on large sparse graphs
The densest subgraph problem on large sparse graphs
Load balancing
Load balancing

An allocation on G is a function $\theta: \vec{E} \rightarrow [0, 1]$ satisfying

$$\theta(i, j) + \theta(j, i) = 1$$
Load balancing

An allocation on G is a function $\theta : \vec{E} \rightarrow [0, 1]$ satisfying

$$\theta(i, j) + \theta(j, i) = 1$$

The induced load at $i \in V$ is

$$\partial \theta(i) = \sum_{j \sim i} \theta(j, i)$$
Load balancing

An allocation on G is a function $\theta: \vec{E} \rightarrow [0, 1]$ satisfying

$$\theta(i, j) + \theta(j, i) = 1$$

The induced load at $i \in V$ is

$$\partial \theta(i) = \sum_{j \sim i} \theta(j, i)$$

The allocation is balanced if for each $(i, j) \in \vec{E}$

$$\partial \theta(i) < \partial \theta(j) \implies \theta(i, j) = 0$$
From local to global optimality

Claim.
For an allocation \(\theta \), the following are equivalent:
1. \(\theta \) is balanced
2. \(\theta \) minimizes \(\sum_i (\partial \theta(i)) \)
3. \(\theta \) minimizes \(\sum_i f(\partial \theta(i)) \) for any convex function \(f: \mathbb{R} \to \mathbb{R} \).

Corollary 1.
Balanced allocations always exist.

Corollary 2.
They all induce the same loads \(\partial \theta: V \to [0, \infty) \).

Corollary 3.
Balanced loads solve the densest subgraph problem: \(\max_{i \in V} \partial \theta(i) = \varrho^\star \) and \(\arg\max_{i \in V} \partial \theta(i) = H^\star \).
Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial_i \theta)$
3. θ minimizes $\sum_i f(\partial_i \theta)$ for any convex function $f: \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta: V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem: $\max_i \partial_i \theta = \rho^\star$ and $\arg\max_i \partial_i \theta = H^\star$.
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta : V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem:

$$\max_{i \in V} \partial \theta(i) = \varrho^\star$$
$$\text{argmax}_{i \in V} \partial \theta(i) = H^\star$$
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.
3. θ minimizes $\sum_i f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta : V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem: $\max_i \partial \theta(i) = \rho^\star$ and $\arg\max_i \partial \theta(i) = H^\star$.
Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.
3. θ minimizes $\sum_i f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.
3. θ minimizes $\sum_i f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \rightarrow \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta : V \rightarrow [0, \infty)$.
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.
3. θ minimizes $\sum_i f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta : V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem:
From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced
2. θ minimizes $\sum_i (\partial \theta(i))^2$.
3. θ minimizes $\sum_i f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta : V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem:

$$\max_{i \in V} \partial \theta(i) = \varrho^* \quad \text{and} \quad \arg \max_{i \in V} \partial \theta(i) = H^*$$
Example
Example
Example
How do those ‘densities’ look on a large sparse graph?
How do those ‘densities” look on a large sparse graph?
How do those ‘densities” look on a large sparse graph?
Density profile of a random graph with average degree 3
Density profile of a random graph with average degree 3

$|V| = 100$
Density profile of a random graph with average degree 3

$|V| = 100$

$|V| = 10000$
Density profile of a random graph with average degree 4
Density profile of a random graph with average degree 4

\[|V| = 100 \]
Density profile of a random graph with average degree 4

\[
|V| = 100
\]

\[
|V| = 10000
\]
The conjecture (Hajek, 1990)
The conjecture (Hajek, 1990)

\[\partial \Theta(G, o) : \text{load induced at } o \text{ by any balanced allocation on } G. \]
The conjecture (Hajek, 1990)

\[\partial \Theta(G, o) : \] load induced at \(o \) by any balanced allocation on \(G \).

Define the **density profile** of \(G = (V, E) \) as

\[\Lambda_G = \frac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G, o)} \in \mathcal{P}(\mathbb{R}). \]
The conjecture (Hajek, 1990)

\(\partial \Theta(G, o) \) : load induced at \(o \) by any balanced allocation on \(G \).

Define the **density profile** of \(G = (V, E) \) as

\[\Lambda_G = \frac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G, o)} \in \mathcal{P}(\mathbb{R}). \]

Conjecture: \(G_n \) Erdős-Rényi \((n, \frac{c}{n}) \); \(c \) fixed, \(n \to \infty \)
The conjecture (Hajek, 1990)

$\partial \Theta(G, o)$: load induced at o by any balanced allocation on G.

Define the **density profile** of $G = (V, E)$ as

$$\Lambda_G = \frac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G, o)} \in \mathcal{P}(\mathbb{R}).$$

Conjecture: G_n Erdős-Rényi $(n, \frac{c}{n})$; c fixed, $n \to \infty$

1. Λ_{G_n} concentrates around a deterministic $\Lambda \in \mathcal{P}(\mathbb{R})$
The conjecture (Hajek, 1990)

\[\partial \Theta(G, o) : \text{load induced at } o \text{ by any balanced allocation on } G. \]

Define the **density profile** of \(G = (V, E) \) as

\[\Lambda_G = \frac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G, o)} \in \mathcal{P}(\mathbb{R}). \]

Conjecture: \(G_n \) Erdős-Rényi \((n, \frac{c}{n})\); \(c \) fixed, \(n \to \infty \)

1. \(\Lambda_{G_n} \) concentrates around a deterministic \(\Lambda \in \mathcal{P}(\mathbb{R}) \)
2. \(\varrho^*(G_n) \xrightarrow{\mathbb{P}}_{n \to \infty} \sup\{ t \in \mathbb{R} : \Lambda(t, +\infty) > 0 \} \)
Result 1: the density profile of sparse graphs
Result 1: the density profile of sparse graphs

Theorem. Assume that $\mathcal{L} [\deg(G, o)] < \infty$.
Result 1: the density profile of sparse graphs

Theorem. Assume that \(\mathcal{L}[\text{deg}(G, o)] < \infty \). Then,

\[
G_n \xrightarrow{\text{loc.} \ n \to \infty} \mathcal{L} \quad \implies \quad \Lambda_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R}) \ n \to \infty} \Lambda_{\mathcal{L}}
\]
Theorem. Assume that $\mathcal{L} [\text{deg}(G, o)] < \infty$. Then,

$$G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \implies \quad \Lambda_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}$$

where $\Lambda_{\mathcal{L}}$ is the solution to a certain optimization problem on \mathcal{L}.
Result 1: the density profile of sparse graphs

Theorem. Assume that $\mathcal{L} [\deg(G, o)] < \infty$. Then,

\[
G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \implies \quad \Lambda_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}
\]

where $\Lambda_{\mathcal{L}}$ is the solution to a certain optimization problem on \mathcal{L}.

Specifically, the excess function $\Phi: t \mapsto \int_{\mathbb{R}} (x - t)^+ \Lambda_{\mathcal{L}}(dx)$
Result 1: the density profile of sparse graphs

Theorem. Assume that $L[\deg(G, o)] < \infty$. Then,

$$G_n \xrightarrow{\text{loc.}} L \quad \implies \quad \Lambda_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \Lambda_L$$

where Λ_L is the solution to a certain optimization problem on L.

Specifically, the excess function $\Phi: t \mapsto \int_{\mathbb{R}} (x - t)^+ \Lambda_L(dx)$ solves

$$\Phi(t) = \max_{f: G^* \to [0, 1]} \left\{ \frac{1}{2} L \left[\sum_{i \sim o} f(G, i) \wedge f(G, o) \right] - t L[f(G, o)] \right\}$$
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^\star to local weak limits by

$$\varrho^\star(L) := \sup \text{ess} \Lambda L = \sup \left\{ t : \Phi(t) > 0 \right\}$$

In light of previous result, one expects a continuity principle:

$$G_n \text{loc} \rightarrow \frac{}{\rightarrow} L \Rightarrow \varrho^\star(G_n) \rightarrow \varrho^\star(L)$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^\star(G_n)$ without affecting convergence $G_n \rightarrow L$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.

Assume degrees have light tail, i.e., $\limsup_{k \rightarrow \infty} \pi_1/k < 1$.

Then, $\varrho^\star(G_n) \rightarrow \varrho^\star(L)$, where $L = \text{Galton-Watson}(\pi)$.
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess} \Lambda_\mathcal{L} = \sup \{ t : \Phi(t) > 0 \}$$
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle:

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \rightarrow L$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.

Assume degrees have light tail, i.e. $\limsup_{k \to \infty} \pi_1 / k < 1$.

Then, $\varrho^*(G_n) \rightarrow \varrho^*(L)$, where $L = \text{Galton-Watson}(\pi)$.

Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess } \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle:

$$G_n \xrightarrow{loc. \text{ as } n \to \infty} \mathcal{L} \quad \implies \quad \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.

Assume degrees have light tail, i.e. $\limsup_{k \to \infty} \pi_1/k < 1$.

Then, $\varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$, where $\mathcal{L} = \text{Galton-Watson}(\pi)$.
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess } \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle:

$$G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \implies \quad \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Counter-example:
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess } \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle:

$$G_n \xrightarrow{\text{loc.}}_{n \to \infty} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.
Result 2: maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess } \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle:

$$G_n \xrightarrow{loc.}_{n \to \infty} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.
Result 2 : maximum subgraph density of sparse graphs

Extend the definition of ϱ^* to local weak limits by

$$\varrho^*(\mathcal{L}) := \sup \text{ess } \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}$$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \implies \quad \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.
Assume degrees have light tail, i.e. $\limsup_{k \to \infty} \pi_k^{1/k} < 1$.
Result 2: maximum subgraph density of sparse graphs

Extend the definition of \(\varrho^* \) to local weak limits by

\[
\varrho^* (\mathcal{L}) := \sup \text{ess} \Lambda_{\mathcal{L}} = \sup \{ t : \Phi(t) > 0 \}
\]

In light of previous result, one expects a continuity principle:

\[
G_n \xrightarrow{\text{loc.}} n \to \infty \mathcal{L} \quad \implies \quad \varrho^* (G_n) \xrightarrow{n \to \infty} \varrho^* (\mathcal{L})
\]

Counter-example: adding a large but fixed clique to \(G_n \) will arbitrarily boost \(\varrho^* (G_n) \) without affecting convergence \(G_n \to \mathcal{L} \).

Theorem. \(G_n \) uniform with degree distribution \(\{ \pi_k \}_{k \in \mathbb{N}} \).
Assume degrees have light tail, i.e. \(\limsup_{k \to \infty} \pi_k^{1/k} < 1 \). Then,

\[
\varrho^* (G_n) \xrightarrow{n \to \infty} \varrho^* (\mathcal{L}), \text{ where } \mathcal{L} = \text{GALTON-WATSON}(\pi).
\]
Result 3: the case of Galton-Watson trees

Theorem. In the case where $L_{\text{Galton-Watson}}(\pi)$, $\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \{E[D]_{2P(\xi_1 + \xi_2 > 1) - tP(\xi_1 + \cdots + \xi_D > t)}\}$ where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are iid with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0,1])$ such that $\xi_d = \lceil 1 - t + \xi_1 + \cdots + \xi_D \rceil_0$ where $\lfloor \cdot \rfloor_0$ denotes projection onto $[0,1]: \lfloor x \rfloor_0 = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \in [0,1] \\ 1 & \text{if } x > 1 \end{cases}$.
Result 3: the case of Galton-Watson trees

Theorem. In the case where $\mathcal{L} = \text{Galton-Watson}(\pi)$,

$$
\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}
$$
Result 3: the case of Galton-Watson trees

Theorem. In the case where $\mathcal{L} = \text{Galton-Watson}(\pi)$,

$$\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D.

Distributional fixed-point equation: can be solved numerically.
Result 3: the case of Galton-Watson trees

Theorem. In the case where $\mathcal{L} = \text{Galton-Watson}(\pi)$,

$$
\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}
$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0,1])$ such that $\xi_d = \begin{cases} 1 - t + \xi_1 + \cdots + \xi_D & \text{if } x > 1 \\ x & \text{if } x \in [0,1] \\ 1 & \text{if } x < 0 \end{cases}$

Distributional fixed-point equation: can be solved numerically.
Result 3: the case of Galton-Watson trees

Theorem. In the case where $\mathcal{L} = \text{Galton-Watson}(\pi)$,

$$
\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}
$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are i.i.d with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0,1])$ such that

$$
\xi \overset{d}{=} [1 - t + \xi_1 + \cdots + \xi_D]_0^1
$$
Result 3: the case of Galton-Watson trees

Theorem. In the case where \(\mathcal{L} = \text{Galton-Watson}(\pi) \),

\[
\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}
\]

where \(D \sim \pi \) and \(\{\xi_k\}_{k \geq 1} \) are IID with law \(Q \), independent of \(D \). The maximum is over all choices of \(Q \in \mathcal{P}([0,1]) \) such that

\[
\xi \overset{d}{=} [1 - t + \xi_1 + \cdots + \xi_D]_0^1
\]

where \([\bullet]_0^1\) denotes projection onto \([0,1]\):

\[
[x]_0^1 = \begin{cases}
0 & \text{if } x < 0 \\
 x & \text{if } x \in [0, 1] \\
1 & \text{if } x > 1
\end{cases}
\]
Result 3: the case of Galton-Watson trees

Theorem. In the case where $\mathcal{L} = \text{Galton-Watson}(\pi)$,

$$
\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}(\xi_1 + \xi_2 > 1) - t \mathbb{P}(\xi_1 + \cdots + \xi_D > t) \right\}
$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0,1])$ such that

$$
\xi \overset{d}{=} [1 - t + \xi_1 + \cdots + \xi_D]_0^1
$$

where $[\bullet]_0^1$ denotes projection onto $[0,1]: [x]_0^1 = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \in [0,1] \\ 1 & \text{if } x > 1 \end{cases}$

Distributional fixed-point equation : can be solved numerically.
An explicit formula

G_n: Erdős-Rényi (n, c)

$k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - (1 + x + \cdots + x^k) + \frac{x^k}{k!}$

Set $c^* = xe^{f_k^{-1}(x)}$, where x is the unique solution to $xf_k^{-1}(x)f_k(x) = 2^k$.

Theorem:
With probability tending to one as $n \to \infty$,

- If $c < c^*$ then G_n does not contain a k-dense subgraph
- If $c > c^*$ then G_n contains a k-dense subgraph

$k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9, k_{10}, k_{11}, k_{12}, k_{13}, k_{14}, k_{15}, k_{16}, k_{17}, k_{18}, k_{19}, k_{20}$
An explicit formula

\[G_n : \text{Erdős-Rényi} \left(n, \frac{c}{n} \right) \]
An explicit formula

\[G_n : \text{Erdős-Rényi } \left(n, \frac{c}{n} \right) \quad k \in \mathbb{N}^* \text{ fixed} \]
An explicit formula

\[G_n : \text{Erdős-Rényi } \left(n, \frac{c}{n} \right) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?
An explicit formula

\[G_n : \text{Erdős-Rényi } (n, \frac{c}{n}) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!} \right) \)
An explicit formula

\[G_n : \text{Erdős-Rényi } (n, \frac{c}{n}) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!}\right) \)

Set \(c_* = \frac{xe^x}{f_{k-1}(x)} \), where \(x \) unique solution to \(\frac{xf_{k-1}(x)}{f_k(x)} = 2k. \)
An explicit formula

\[G_n : \text{Erdős-Rényi } \left(n, \frac{c}{n}\right) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!}\right) \)

Set \(c^* = \frac{xe^x}{f_{k-1}(x)} \), where \(x \) unique solution to \(\frac{xf_{k-1}(x)}{f_k(x)} = 2k \).

Theorem. With probability tending to one as \(n \to \infty \),
An explicit formula

\[G_n : \text{Erdős-Rényi } (n, \frac{c}{n}) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!} \right) \)

Set \(c_* = \frac{x e^x}{f_{k-1}(x)} \), where \(x \) unique solution to \(\frac{xf_{k-1}(x)}{f_k(x)} = 2k \).

Theorem. With probability tending to one as \(n \to \infty \),

\[\begin{align*}
&\text{If } c < c_* \text{ then } G_n \text{ does not contain a } k \text{-dense subgraph} \\
&\text{If } c > c_* \text{ then } G_n \text{ contains a } k \text{-dense subgraph}
\end{align*} \]
An explicit formula

\[G_n : \text{Erdős-Rényi } \left(n, \frac{c}{n} \right) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!} \right) \)

Set \(c_* = \frac{xe^x}{f_{k-1}(x)} \), where \(x \) unique solution to \(\frac{xf_{k-1}(x)}{f_k(x)} = 2k \).

Theorem. With probability tending to one as \(n \to \infty \),

- If \(c < c_* \) then \(G_n \) does not contain a \(k \)-dense subgraph
- If \(c > c_* \) then \(G_n \) contains a \(k \)-dense subgraph
An explicit formula

\[G_n : \text{Erdős-Rényi } (n, \frac{c}{n}) \quad k \in \mathbb{N}^* \text{ fixed} \]

Question: does \(G_n \) contain a \(k \)-dense subgraph?

Define \(f_k(x) = e^x - \left(1 + x + \cdots + \frac{x^k}{k!}\right) \)

Set \(c_* = \frac{xe^x}{f_{k-1}(x)} \), where \(x \) unique solution to \(\frac{xf_{k-1}(x)}{f_k(x)} = 2k \).

Theorem. With probability tending to one as \(n \to \infty \),

- If \(c < c_* \) then \(G_n \) does not contain a \(k \)-dense subgraph
- If \(c > c_* \) then \(G_n \) contains a \(k \)-dense subgraph

<table>
<thead>
<tr>
<th>(k)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_*)</td>
<td>3.59</td>
<td>5.76</td>
<td>7.84</td>
<td>9.90</td>
<td>11.93</td>
<td>13.95</td>
<td>15.97</td>
<td>17.98</td>
<td>19.98</td>
</tr>
</tbody>
</table>
A few words on the proof

Microscopic contribution:

\[\partial \Theta(G, o) \]

Hope:

\[\partial \Theta(G, o) \]

is insensitive to what lies far away from \(o \):

\[\[G, o \] R = \[G', o' \] R \Rightarrow |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R), \]

where \(f(R) \rightarrow 0 \) as \(R \rightarrow \infty \).

Counter-example:

let \(G \) be a \(d \)-regular graph with girth \(> R \) • \(\partial \Theta(G, o) = d^2 \)

\(R \) is a tree • \(\partial \Theta \leq \varrho \ast < 1 \) on any tree

▶ Balanced loads exhibit long-range dependences!
A few words on the proof

Microscopic contribution:
A few words on the proof

Microscopic contribution: $\partial \Theta(G, o)$
A few words on the proof

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

$\left[G, o \right] R \equiv \left[G', o' \right] R \Rightarrow |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R), \quad \text{where} \quad f(R) \to 0 \quad \text{as} \quad R \to \infty.$

Counter-example: let G be a d-regular graph with girth $> R \cdot \partial \Theta(G, o) = d^2$. R is a tree $\Rightarrow \partial \Theta \leq \rho \star < 1$ on any tree.

Balanced loads exhibit long-range dependences!
A few words on the proof

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

$$[G, o]_R \equiv [G', o']_R \implies \left| \partial \Theta(G, o) - \partial \Theta(G', o') \right| \leq f(R),$$

where $f(R) \to 0$ as $R \to \infty$.

Counter-example: let G be a d-regular graph with girth $> R$.

- $\partial \Theta(G, o) = d^2$.
- $[G, o]_R$ is a tree.
- $\partial \Theta \leq \rho^\star < 1$ on any tree.

Balanced loads exhibit long-range dependences!
A few words on the proof

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

$$[G, o]_R \equiv [G', o']_R \implies |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R),$$

where $f(R) \to 0$ as $R \to \infty$.

Counter-example: let G be a d–regular graph with girth $> R$
A few words on the proof

Microscopic contribution: \(\partial \Theta(G, o) \)

Hope: \(\partial \Theta(G, o) \) is insensitive to what lies far away from \(o \):

\[
[G, o]_R \equiv [G', o']_R \implies |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R),
\]

where \(f(R) \to 0 \) as \(R \to \infty \).

Counter-example: let \(G \) be a \(d \)--regular graph with girth \(> R \)

- \(\partial \Theta(G, o) = \frac{d}{2} \)
A few words on the proof

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

$$[G, o]_R \equiv [G', o']_R \implies |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R),$$

where $f(R) \to 0$ as $R \to \infty$.

Counter-example: let G be a d–regular graph with girth $> R$

- $\partial \Theta(G, o) = \frac{d}{2}$
- $[G, o]_R$ is a tree
A few words on the proof

Microscopic contribution: \(\partial \Theta(G, o) \)

Hope: \(\partial \Theta(G, o) \) is insensitive to what lies far away from \(o \):

\[
[G, o]_R \equiv [G', o']_R \implies |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R),
\]

where \(f(R) \to 0 \) as \(R \to \infty \).

Counter-example: let \(G \) be a \(d \)-regular graph with girth \(> R \)

- \(\partial \Theta(G, o) = \frac{d}{2} \)
- \([G, o]_R \) is a tree
- \(\partial \Theta \leq \varrho^* < 1 \) on any tree
A few words on the proof

Microscopic contribution: \(\partial \Theta(G, o) \)

Hope: \(\partial \Theta(G, o) \) is insensitive to what lies far away from \(o \):

\[
[G, o]_R \equiv [G', o']_R \implies |\partial \Theta(G, o) - \partial \Theta(G', o')| \leq f(R),
\]

where \(f(R) \to 0 \) as \(R \to \infty \).

Counter-example: let \(G \) be a \(d \)--regular graph with girth \(> R \)

- \(\partial \Theta(G, o) = \frac{d}{2} \)
- \([G, o]_R \) is a tree
- \(\partial \Theta \leq \varrho^* < 1 \) on any tree

▶ Balanced loads exhibit long-range dependences!
Solution: relaxed load balancing
Solution: relaxed load balancing

$\varepsilon > 0$: perturbative parameter
Solution: relaxed load balancing

\[\varepsilon > 0 : \text{perturbative parameter} \]

Definition. An allocation \(\theta \) on \(G = (V, E) \) is \(\varepsilon \)-balanced if

\[
\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0^1
\]
Solution: relaxed load balancing

$\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on $G = (V, E)$ is $\varepsilon-$balanced if

$$\theta(i, j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0^1$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i, j) = 0.$
Solution: relaxed load balancing

\(\varepsilon > 0 \): perturbative parameter

Definition. An allocation \(\theta \) on \(G = (V, E) \) is \(\varepsilon \)-balanced if

\[
\theta(i, j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0^1
\]

In particular, \(\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i, j) = 0. \)

Claim 1. There exists a unique \(\varepsilon \)-balanced allocation \(\Theta_\varepsilon \).
Solution: relaxed load balancing

\(\varepsilon > 0 \): perturbative parameter

Definition. An allocation \(\theta \) on \(G = (V, E) \) is \(\varepsilon \)-balanced if

\[
\theta(i, j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0
\]

In particular, \(\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i, j) = 0 \).

Claim 1. There exists a unique \(\varepsilon \)-balanced allocation \(\Theta_\varepsilon \).

Claim 2. If \([G, o]_R \equiv [G', o']_R\), then
Solution: relaxed load balancing

$\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on $G = (V, E)$ is ε-balanced if

$$\theta(i, j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0^1$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i, j) = 0$.

Claim 1. There exists a unique ε-balanced allocation Θ_ε.

Claim 2. If $[G, o]_R \equiv [G', o']_R$, then

$$|\partial \Theta_\varepsilon(G, o) - \partial \Theta_\varepsilon(G', o')| \leq \Delta \left(1 + \frac{2\varepsilon}{\Delta} \right)^{-R}.$$

Corollary. Θ_ε extends continuously to infinite graphs!
Solution: relaxed load balancing

\(\varepsilon > 0 \): perturbative parameter

Definition. An allocation \(\theta \) on \(G = (V, E) \) is \(\varepsilon \)-balanced if

\[
\theta(i, j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon} \right]_0
\]

In particular, \(\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i, j) = 0 \).

Claim 1. There exists a unique \(\varepsilon \)-balanced allocation \(\Theta_\varepsilon \).

Claim 2. If \([G, o]_R \equiv [G', o']_R \), then

\[
|\partial \Theta_\varepsilon(G, o) - \partial \Theta_\varepsilon(G', o')| \leq \Delta \left(1 + \frac{2\varepsilon}{\Delta} \right)^{-R}.
\]

Corollary. \(\Theta_\varepsilon \) extends continuously to infinite graphs!
Proof outline

Assume $G_n \xrightarrow{n \to \infty} L$ with $\int G \star \deg dL < \infty$. Consider a test function $\psi : \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz).

$|V_n| \sum_{o \in V_n} \psi(\partial \Theta(G_n, o)) \xrightarrow{n \to \infty} \int G \star (\psi \circ \partial \Theta)$.
Proof outline

Assume \(G_n \xrightarrow{\text{loc.}} G \xrightarrow{n \to \infty} L \) with \(\int_{G^*} \deg dL < \infty \).
Proof outline

Assume $G_n \xrightarrow{\text{loc.}} L$ with $\int_{G_n} \deg dL < \infty$.

Consider a test function $\psi : \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz)
Proof outline

Assume $G_n \xrightarrow{\text{loc.}} L$ with $\int_{G_n} \deg d\mathcal{L} < \infty$.

Consider a test function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ (bounded, Lipschitz)

$$\frac{1}{|V_n|} \sum_{o \in V_n} \psi(\partial \Theta(G_n, o)) \xrightarrow{??} \int_{G_n} (\psi \circ \partial \Theta)d\mathcal{L}$$
Proof outline

Assume $G_n \xrightarrow{\text{loc.}} \mathcal{L}$ with $\int_{G_\ast} \deg d\mathcal{L} < \infty$.

Consider a test function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ (bounded, Lipschitz)

$$\frac{1}{|V_n|} \sum_{o \in V_n} \psi (\partial \Theta(G_n, o)) \xrightarrow{n \to \infty} \int_{G_\ast} (\psi \circ \partial \Theta) d\mathcal{L}$$

$$\frac{1}{|V_n|} \sum_{o \in V_n} \psi (\partial \Theta_{\varepsilon}(G_n, o)) \xrightarrow{n \to \infty} \int_{G_\ast} (\psi \circ \partial \Theta_{\varepsilon}) d\mathcal{L}$$
Proof outline

Assume \(G_n \xrightarrow{\text{loc.}} \mathcal{L} \) with \(\int_{G_*} \deg d\mathcal{L} < \infty \).

Consider a test function \(\psi : \mathbb{R} \to \mathbb{R} \) (bounded, Lipschitz)

\[
\frac{1}{|V_n|} \sum_{o \in V_n} \psi (\partial \Theta(G_n, o)) \xrightarrow{???} \int_{G_*} (\psi \circ \partial \Theta) d\mathcal{L}
\]

\[\varepsilon \to 0\]

\[
\frac{1}{|V_n|} \sum_{o \in V_n} \psi (\partial \Theta_{\varepsilon}(G_n, o)) \xrightarrow{n \to \infty} \int_{G_*} (\psi \circ \partial \Theta_{\varepsilon}) d\mathcal{L}
\]
Proof outline

Assume $G_n \xrightarrow{\text{loc.}}^\text{loc.} L$ with $\int_{G_*} \deg d\mathcal{L} < \infty$.

Consider a test function $\psi : \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz)

\[
\frac{1}{|V_n|} \sum_{o \in V_n} \psi(\partial \Theta(G_n, o)) \xrightarrow{n \to \infty} \int_{G_*} (\psi \circ \partial \Theta) d\mathcal{L}
\]

\[
\frac{1}{|V_n|} \sum_{o \in V_n} \psi(\partial \Theta_\varepsilon(G_n, o)) \xrightarrow{n \to \infty} \int_{G_*} (\psi \circ \partial \Theta_\varepsilon) d\mathcal{L}
\]

\[\varepsilon \to 0\]
Conclusion

In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry of the graph. This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow{n \to \infty} L = \Rightarrow \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)$$

Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.

Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may sometimes even allow for an explicit determination of $\Phi(L)$.

Many examples: spanning trees, spectrum and rank, matching polynomial, Ising models, dense subgraphs...
Conclusion

▶ In the sparse regime, many important graph parameters Φ are essentially determined by the *local geometry* of the graph.
Conclusion

- In the sparse regime, many important graph parameters \(\Phi \) are essentially determined by the **local geometry** of the graph.
- This can be rigorously formalized by a continuity theorem:

\[
\begin{align*}
G_n & \xrightarrow{\text{loc.}} \mathcal{L} \\
\xrightarrow{n \to \infty} & \Phi(G_n) \xrightarrow{n \to \infty} \Phi(\mathcal{L})
\end{align*}
\]

- Algorithmic implication: \(\Phi \) is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: \(\Phi \) admits a limit along most sparse graph sequences. The distributional self-similarity of \(\mathcal{L} \) may sometimes even allow for an explicit determination of \(\Phi(\mathcal{L}) \).
- Many examples: spanning trees, spectrum and rank, matching polynomial, Ising models, dense subgraphs...
Conclusion

- In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry of the graph.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{loc. \ n \to \infty} L \implies \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)
\]

- **Algorithmic implication:** Φ is efficiently approximable via local distributed algorithms, independently of network size.
Conclusion

- In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.
- This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow{loc. \ n \to \infty} \mathcal{L} \implies \Phi(G_n) \xrightarrow{n \to \infty} \Phi(\mathcal{L})$$

- **Algorithmic implication:** Φ is efficiently approximable via local distributed algorithms, independently of network size.
- **Analytic implication:** Φ admits a limit along most sparse graph sequences. The distributional self-similarity of \mathcal{L} may sometimes even allow for an explicit determination of $\Phi(\mathcal{L})$.
Conclusion

- In the sparse regime, many important graph parameters Φ are essentially determined by the local geometry of the graph.
- This can be rigorously formalized by a continuity theorem:

\[
G_n \xrightarrow{\text{loc.}} L \quad \implies \quad \Phi(G_n) \xrightarrow{n \to \infty} \Phi(L)
\]

- Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may sometimes even allow for an explicit determination of $\Phi(L)$.
- Many examples: spanning trees, spectrum and rank, matching polynomial, Ising models, dense subgraphs...
Thank you!