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Combinatorial specifications and trees



Combinatorial specifications and their byproducts

[Flajolet & Sedgewick 09]

A combinatorial specification describes (most of the time, recursively) a
combinatorial class C (= a family of discrete objects) by ways of atoms
and admissible constructions, like disjoint union, product, sequence, . . .

Examples:

D = ε+uDdD ;


T = U + B
U = •+

•
B

B = ◦+
◦
U U

;


A1 = Φ1(A1,A2, . . . ,Ap)

A2 = Φ2(A1,A2, . . . ,Ap)

. . .

Ap = Φp(A1,A2, . . . ,Ap)
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U U

;
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A1 = Φ1(A1,A2, . . . ,Ap)

A2 = Φ2(A1,A2, . . . ,Ap)

. . .

Ap = Φp(A1,A2, . . . ,Ap)

Systematic transcription of a specification into:

System of equations for the generating function C (z) =
∑

cnzn

[Flajolet & Sedgewick 09]

Recursive [Flajolet, Zimmerman & Van Cutsem 94] and Boltzmann
random samplers [Duchon, Flajolet, Louchard & Schaeffer 04]
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Combinatorial specifications of trees

Consider classes of (unlabeled ordered) trees,
with nodes from a (finite) set, possibly with
some restrictions on the children of a node.


T = U + B
U = •+

•
B

B = ◦+
◦
U U

These may be described by a specification using disjoint union, product
(and sequence).
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Consider classes of (unlabeled ordered) trees,
with nodes from a (finite) set, possibly with
some restrictions on the children of a node.


T = U + B
U = •+

•
B

B = ◦+
◦
U U

These may be described by a specification using disjoint union, product
(and sequence).

A specification is like an unambiguous context-free grammar of trees.

“Trees are the prototypical recursive structure” [Flajolet & Sedgewick 09]

They are (one of) the most studied combinatorial objects, and a lot is
known about them, both for specific classes of trees, but also for families
of classes of trees.
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Substitution decomposition
and decomposition trees



Substitution decomposition of combinatorial objects

Combinatorial analogue of the decomposition of integers as products of
primes. Applies to relations, graphs, posets, boolean functions, set
systems, . . . and permutations [Möhring & Radermacher 84]
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Substitution decomposition of combinatorial objects

Combinatorial analogue of the decomposition of integers as products of
primes. Applies to relations, graphs, posets, boolean functions, set
systems, . . . and permutations [Möhring & Radermacher 84]

Relies on:

a principle for building objects (permutations, graphs) from smaller
objects: the substitution

some “basic objects” for this construction: simple permutations,
prime graphs

Required properties:

every object can be (recursively) decomposed using only “basic
objects”

this decomposition is unique
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Permutations

Permutation of size n = Bijection from [1..n] to itself.
Set Sn, and S = ∪nSn.

Two lines notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Linear notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σi
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Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example: Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

Not simple:

Simple:
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simple permutations:
12, 21, 2413, 3142, 6 of size 5, . . .
Remark:
It is convenient to consider 12 and 21 not
simple.

Not simple:

Simple:
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Substitution decomposition theorem(s) for permutations

Theorem: [Albert, Atkinson & Klazar 03]

Every σ ( 6= 1) is uniquely decomposed as

12[α(1), α(2)] = ⊕[α(1), α(2)], where α(1) is ⊕-indecomposable

21[α(1), α(2)] = 	[α(1), α(2)], where α(1) is 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Notations:

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

	-indecomposable: that cannot be written as 	[β(1), β(2)]
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⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

	-indecomposable: that cannot be written as 	[β(1), β(2)]

Observation: Equivalently, we may replace the first two items by

12 . . . k[α(1), . . . , α(k)] = ⊕[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)] = 	[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

Decomposing recursively inside the α(i) ⇒ decomposition tree
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Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:

• ⊕ = 12 . . . k , 	 = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]
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Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:

• ⊕ = 12 . . . k , 	 = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Observation: Adapts to binary case via
⊕

T1 T2
. . . Tk

7→ ⊕
T1 ⊕

T2 ⊕
. . . Tk
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Bijection between permutations and their decomposition trees.
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Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:

• ⊕ = 12 . . . k , 	 = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor 	−	.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Computation: Linear time algorithm [Uno & Yagiura 00] [Bui Xuan, Habib &

Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]
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A tree grammar for permutations

S denotes the set of simple permutations

S = •+
⊕

S+ S
+

	

S− S
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S− S
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+ S
+

∑
π∈S

π

S S . . . S
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A tree grammar for permutations

S denotes the set of simple permutations, S(z) their generating function.

S = •+
⊕

S+ S
+

	

S− S
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S− S
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+ S
+

∑
π∈S

π

S S . . . S

Allows to relate the (ordinary) generating function for simples with that of
all permutations (F (z) =

∑
n!zn) [Albert, Atkinson & Klazar 03]:{

F (z) = z + 2I (z)F (z) + (S ◦ F )(z)

I (z) = z + I (z)F (z) + (S ◦ F )(z).
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A tree grammar for permutations
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π
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S+ = •+
	

S− S
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+ S
+

∑
π∈S

π

S S . . . S

Allows to relate the (ordinary) generating function for simples with that of
all permutations (F (z) =

∑
n!zn) [Albert, Atkinson & Klazar 03]:{

F (z) = z + 2I (z)F (z) + (S ◦ F )(z)

I (z) = z + I (z)F (z) + (S ◦ F )(z).

Consequences for the enumeration of simple permutations:

Asymptotically n!
e2

, but no exact enumeration.

The generating function is not D-finite.
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A tree grammar for permutations

S denotes the set of simple permutations, S(z) their generating function.

S = •+
⊕

S+ S
+

	

S− S
+

∑
π∈S

π

S S . . . S

S+ = •+
	

S− S
+

∑
π∈S

π

S S . . . S

S− = •+
⊕

S+ S
+

∑
π∈S

π

S S . . . S

Can we specialize this tree grammar to subsets of S, and in particular to
permutation classes C?

Can we do it automatically? even algorithmically?

Yes, when the number of simple permutations in C is finite.
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Permutation patterns
and permutation classes



Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.
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Permutation patterns

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is in the same relative order (≡) as π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Observation: 4 is a partial order on S =
⋃
n
Sn.

This is the key to defining permutation classes.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

1

12 21

123 132 213 231 312 321

1234 4321. . . . . .. . .1423 3142

σ

means π 4 σ

π

. . .
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

σ

means π 4 σ

π

. . .

C
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 15 / 33



Permutation classes

• A permutation class is a set C of permutations that is downward closed
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• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.

• Observations:

Conversely, every set Av(B) is a permutation class.

There exist infinite antichains, hence some permutation classes have
infinite basis.
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Permutation classes

• A permutation class is a set C of permutations that is downward closed
for 4, i.e. whenever π 4 σ and σ ∈ C, then π ∈ C.

• Notations: Av(π) = the set of permutations that avoid the pattern π
Av(B) =

⋂
π∈B

Av(π)

• Fact: For every permutation class C, C = Av(B) for
B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}.
B is an antichain, called the basis of C.

• Observations:

Conversely, every set Av(B) is a permutation class.

There exist infinite antichains, hence some permutation classes have
infinite basis.

In this talk, we focus on classes with finite basis.
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Main steps of an algorithm to compute a specification

Data: B a finite set of permutations

We are interested in C = Av(B).
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Main steps of an algorithm to compute a specification

Data: B a finite set of permutations

We are interested in C = Av(B).

Step 1: From B (finite) to the simple permutations in C
Test whether they are in finite number.

If yes, compute their set SC .

Step 2: From B and SC (both finite) to a specification for C
From decomposition trees, propagate constraints in the subtrees.
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Efficient random samplers of permutations in C.
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Main steps of an algorithm to compute a specification

Data: B a finite set of permutations

We are interested in C = Av(B).

Step 1: From B (finite) to the simple permutations in C
Test whether they are in finite number.

If yes, compute their set SC .

Step 2: From B and SC (both finite) to a specification for C
From decomposition trees, propagate constraints in the subtrees.

Result: A combinatorial specification for C. Hence also:

A polynomial system for the generating function.

Efficient random samplers of permutations in C.

Remark: Substitution-closed classes are a special (and easier) case.
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One more definition: substitution-closed classes

Def.: A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.
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One more definition: substitution-closed classes

Def.: A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.

SC = the set of simple permutations in C.

Observation: C is substitution-closed iff the decomposition trees of
permutations in C are all decomposition trees built on SC (and ⊕ and 	).
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One more definition: substitution-closed classes

Def.: A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.

SC = the set of simple permutations in C.

Observation: C is substitution-closed iff the decomposition trees of
permutations in C are all decomposition trees built on SC (and ⊕ and 	).

Characterization: C = Av(B) is substitution-closed iff every permutation in
B is simple.

Example: Sep = Av(2413, 3142) is substitution-closed.
It corresponds to decomposition trees with no prime nodes (SSep = ∅).
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One more definition: substitution-closed classes

Def.: A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.

SC = the set of simple permutations in C.

Observation: C is substitution-closed iff the decomposition trees of
permutations in C are all decomposition trees built on SC (and ⊕ and 	).

Characterization: C = Av(B) is substitution-closed iff every permutation in
B is simple.

Example: Sep = Av(2413, 3142) is substitution-closed.
It corresponds to decomposition trees with no prime nodes (SSep = ∅).

Def.: The substitution closure Ĉ of C is the smallest substitution-closed
class containing C.

Characterization: Ĉ is the substitution-closed class built on SC (SC = SĈ).
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From the finite basis of C
to the simple permutations in C



Characterizing when a class contains finitely many simples

Theorem [Brignall, Huczynska & Vatter 08]:
C = Av(B) contains finitely many simple permutations iff C contains:

1. finitely many parallel alternations

2. and finitely many wedge simple permutations

3. and finitely many proper pin-permutations

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 19 / 33



Characterizing when a class contains finitely many simples

Theorem [Brignall, Huczynska & Vatter 08]:
C = Av(B) contains finitely many simple permutations iff C contains:

1. finitely many parallel alternations

2. and finitely many wedge simple permutations

3. and finitely many proper pin-permutations

Decision procedure [Brignall, Ruškuc & Vatter 08]:

1. and 2.: tested by pattern matching of patterns of size 3, 4 in β ∈ B.
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3. and finitely many proper pin-permutations

Decision procedure [Brignall, Ruškuc & Vatter 08]:

1. and 2.: tested by pattern matching of patterns of size 3, 4 in β ∈ B.

3. is decidable: from automata theory, with a (one-to-many) encoding of
proper pin-permutations by strict pin words.

Effectiveness is questionable. Efficiency is not even considered.

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 19 / 33



Characterizing when a class contains finitely many simples

Theorem [Brignall, Huczynska & Vatter 08]:
C = Av(B) contains finitely many simple permutations iff C contains:

1. finitely many parallel alternations

2. and finitely many wedge simple permutations

3. and finitely many proper pin-permutations

Decision procedure [Brignall, Ruškuc & Vatter 08]:

1. and 2.: tested by pattern matching of patterns of size 3, 4 in β ∈ B.

3. is decidable: from automata theory, with a (one-to-many) encoding of
proper pin-permutations by strict pin words.

Effectiveness is questionable. Efficiency is not even considered.

Goal: Give an efficient algorithm instead.
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Testing whether C = Av(B) contains finitely many simples

Easy part: testing whether C contains finitely many parallel alternations
and finitely many wedge simple permutations

↪→ Solved with pattern matching of small patterns in β ∈ B

in O(n log n) with n =
∑

β∈B |β| from [Albert, Aldred, Atkinson &

Holton 01].
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Testing whether C = Av(B) contains finitely many simples

Easy part: testing whether C contains finitely many parallel alternations
and finitely many wedge simple permutations

↪→ Solved with pattern matching of small patterns in β ∈ B

in O(n log n) with n =
∑

β∈B |β| from [Albert, Aldred, Atkinson &

Holton 01].

Hard part: testing whether C contains finitely many proper
pin-permutations

↪→ Solved using pin words and automata

in O(n · 8p + 2k·s·2
s
) from [Brignall, Ruškuc & Vatter 08]

↪→ Improvement from effective and recursive construction of
deterministic and complete automata

in O(n + s2k) = O(n + 2k·2 log s) [Bassino, Bouvel, Pierrot & Rossin 14+]

in O(n) if C is substitution-closed [Bassino, Bouvel, Pierrot & Rossin 10]

where n =
∑

β∈B |β|, s ≤ p = maxβ∈B |β| and k ≤ |B|.
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↪→ Improvement from effective and recursive construction of
deterministic and complete automata

in O(n + s2k) = O(n + 2k·2 log s) [Bassino, Bouvel, Pierrot & Rossin 14+]

in O(n) if C is substitution-closed [Bassino, Bouvel, Pierrot & Rossin 10]

where n =
∑

β∈B |β|, s ≤ p = maxβ∈B |β| and k ≤ |B|.
Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 20 / 33



Computing the set SC of simple permutations in C . . .

(. . . assuming that SC is finite.)

Basic idea: Compute SC,n = SC ∩Sn, for increasing n.
But when to stop?
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Computing the set SC of simple permutations in C . . .

(. . . assuming that SC is finite.)

Basic idea: Compute SC,n = SC ∩Sn, for increasing n.
But when to stop?

Theorem: [Albert & Atkinson 05] [Schmerl & Trotter 93]

If there is n such that C contains no simple permutation of size n nor of
size n + 1, then C contains no simple permutation of size ≥ n.
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Computing the set SC of simple permutations in C . . .

(. . . assuming that SC is finite.)

Basic idea: Compute SC,n = SC ∩Sn, for increasing n.
But when to stop?

Theorem: [Albert & Atkinson 05] [Schmerl & Trotter 93]

If there is n such that C contains no simple permutation of size n nor of
size n + 1, then C contains no simple permutation of size ≥ n.

Algorithm to compute SC :

Naive algorithm: O(
∑

j=1..`+2 j!jp+1 · |B|)
Improved algorithm for substitution-closed classes: O(N · `4)
Using properties of 4 on simple permutations [Pierrot & Rossin 14+]

Adaptation to non substitution-closed classes: O(N · `p+2 · |B|)
where N = |SC |, p = maxβ∈B |β|, ` = maxπ∈SC |π|.
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From the basis of C and the simples in C
to a combinatorial specification for C



From a constructive proof to an algorithm

Theorem:
If C contains a finite number of simple permutations, then it has a finite
basis and an algebraic generating function C (z). [Albert, Atkinson 2005]

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 23 / 33



From a constructive proof to an algorithm

Theorem:
If C contains a finite number of simple permutations, then it has a finite
basis and an algebraic generating function C (z). [Albert, Atkinson 2005]

Constructive proof (the GF part of the theorem):

Specialize the substitution decomposition theorem to C.

Obtain a (possibly ambiguous) context-free tree grammar for C.

Inclusion-exclusion gives a polynomial system for C (z).
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Constructive proof (the GF part of the theorem):

Specialize the substitution decomposition theorem to C.

Obtain a (possibly ambiguous) context-free tree grammar for C.

Inclusion-exclusion gives a polynomial system for C (z).

Goals:

Compute an unambiguous tree grammar (= a specification) for C.

And do it algorithmically.
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From a constructive proof to an algorithm

Theorem:
If C contains a finite number of simple permutations, then it has a finite
basis and an algebraic generating function C (z). [Albert, Atkinson 2005]

Constructive proof (the GF part of the theorem):

Specialize the substitution decomposition theorem to C.

Obtain a (possibly ambiguous) context-free tree grammar for C.

Inclusion-exclusion gives a polynomial system for C (z).

Goals:

Compute an unambiguous tree grammar (= a specification) for C.

And do it algorithmically.

Remark (on the finite basis part of the theorem): The real restriction is
not having a finite basis, but rather containing finitely many simples.
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Substitution-closed classes


C〈B?〉 = •+

⊕

C+ C
〈B?〉+

	

C− C
〈B?〉+

∑
π∈SC

π

C C . . . C
〈B?〉

C+

〈B?〉

= •+
	

C− C

〈B?〉

+
∑

π∈SC
π

C C . . . C

〈B?〉

C−

〈B?〉

= •+
⊕

C+ C

〈B?〉

+
∑

π∈SC
π

C C . . . C

〈B?〉

• When C is substitution-closed,
SC immediately gives an unambiguous tree grammar for C.
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Substitution-closed classes . . . to all classes



Ĉ〈B?〉 = •+
⊕

Ĉ+ Ĉ
〈B?〉+

	

Ĉ− Ĉ
〈B?〉+

∑
π∈SC

π

Ĉ Ĉ . . . Ĉ
〈B?〉

Ĉ+

〈B?〉

= •+
	

Ĉ− Ĉ

〈B?〉

+
∑

π∈SC
π

Ĉ Ĉ . . . Ĉ

〈B?〉

Ĉ−

〈B?〉

= •+
⊕

Ĉ+ Ĉ

〈B?〉

+
∑

π∈SC
π

Ĉ Ĉ . . . Ĉ

〈B?〉

• When C is substitution-closed,
SC immediately gives an unambiguous tree grammar for C.

• When C = Av(B) is not substitution-closed,

It still holds for Ĉ, with SĈ = SC .

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 24 / 33



Substitution-closed classes . . . to all classes


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• When C is substitution-closed,
SC immediately gives an unambiguous tree grammar for C.

• When C = Av(B) is not substitution-closed,

It still holds for Ĉ, with SĈ = SC .

C = Ĉ〈B?〉 = Ĉ ∩ Av(B?), where B? = the non simples in B
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Ĉ− Ĉ
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Ĉ Ĉ . . . Ĉ
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Ĉ Ĉ . . . Ĉ
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• When C is substitution-closed,
SC immediately gives an unambiguous tree grammar for C.

• When C = Av(B) is not substitution-closed,

It still holds for Ĉ, with SĈ = SC .

C = Ĉ〈B?〉 = Ĉ ∩ Av(B?), where B? = the non simples in B

The pattern avoidance constraints need to be pushed in the subtrees,
adding new equations to the system
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Substitution-closed classes . . . to all classes



Ĉ〈B?〉 = •+
⊕

Ĉ+ Ĉ
〈B?〉+

	

Ĉ− Ĉ
〈B?〉+

∑
π∈SC

π

Ĉ Ĉ . . . Ĉ
〈B?〉

Ĉ+〈B?〉 = •+
	

Ĉ− Ĉ
〈B?〉+

∑
π∈SC

π

Ĉ Ĉ . . . Ĉ
〈B?〉

Ĉ−〈B?〉 = •+
⊕

Ĉ+ Ĉ
〈B?〉+

∑
π∈SC

π

Ĉ Ĉ . . . Ĉ
〈B?〉

• When C is substitution-closed,
SC immediately gives an unambiguous tree grammar for C.

• When C = Av(B) is not substitution-closed,

It still holds for Ĉ, with SĈ = SC .

C = Ĉ〈B?〉 = Ĉ ∩ Av(B?), where B? = the non simples in B

The pattern avoidance constraints need to be pushed in the subtrees,
adding new equations to the system . . . and recursively so
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Pushing restrictions in the subtrees

Example: C = Av(231).
We have SC = SĈ = ∅, and C = Ĉ〈231〉.

C = Ĉ〈231〉 = • +
⊕

Ĉ+ Ĉ
〈231〉 +

	

Ĉ− Ĉ
〈231〉

= •

+
⊕

Ĉ+〈231〉 Ĉ〈231〉

+
	

Ĉ−〈12〉 Ĉ〈231〉

Ĉ−〈12〉 = . . .
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+
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Pushing restrictions in the subtrees

Example: C = Av(231).
We have SC = SĈ = ∅, and C = Ĉ〈231〉.

C = Ĉ〈231〉 = • +
⊕

Ĉ+ Ĉ
〈231〉 +

	

Ĉ− Ĉ
〈231〉

= •

+
⊕

Ĉ+〈231〉 Ĉ〈231〉
+

	
Ĉ−〈12〉 Ĉ〈231〉

Ĉ−〈12〉 = . . .

Claim:
	

TL TR

=

σL

σR ∈ Av(231)⇔ σL ∈ Av(12) and σR ∈ Av(231)
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〈231〉

= •

+
⊕
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Claim:
	

TL TR

=

σL

σR ∈ Av(231)⇔ σL ∈ Av(12) and σR ∈ Av(231)

Because of an embedding of 231 into 21 = 	: = 231 ↪→ 21 =
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Pushing restrictions in the subtrees

Example: C = Av(231).
We have SC = SĈ = ∅, and C = Ĉ〈231〉.

C = Ĉ〈231〉 = • +
⊕

Ĉ+ Ĉ
〈231〉 +

	

Ĉ− Ĉ
〈231〉

= • +
⊕

Ĉ+〈231〉 Ĉ〈231〉
+

	
Ĉ−〈12〉 Ĉ〈231〉

Ĉ−〈12〉 = . . .

Claim:
	

TL TR

=

σL

σR ∈ Av(231)⇔ σL ∈ Av(12) and σR ∈ Av(231)

Because of an embedding of 231 into 21 = 	: = 231 ↪→ 21 =

Need of a new equation for Ĉ−〈12〉 . . . And keep going
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Why the grammar may be ambiguous

Pattern avoidance constraints in the subtrees come from
embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}.
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Why the grammar may be ambiguous

Pattern avoidance constraints in the subtrees come from
embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}.

Example with β = 3412 and π = 21. Three embeddings of β into π:

↪→ ; ↪→ ; ↪→
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Why the grammar may be ambiguous

Pattern avoidance constraints in the subtrees come from
embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}.

Example with β = 3412 and π = 21. Three embeddings of β into π:

↪→ ; ↪→ ; ↪→

Hence:
	

Ĉ− Ĉ
〈3412〉 =

	
Ĉ−〈3412〉 Ĉ

∩ 	

Ĉ− Ĉ〈3412〉
∩ (

	
Ĉ−〈12〉 Ĉ

∪ 	

Ĉ− Ĉ〈12〉
)

=
	

Ĉ−〈12〉 Ĉ〈3412〉
∪ 	
Ĉ−〈3412〉 Ĉ〈12〉
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Why the grammar may be ambiguous

Pattern avoidance constraints in the subtrees come from
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∩ 	

Ĉ− Ĉ〈3412〉
∩ (
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Ĉ− Ĉ〈12〉
)

=
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This is not a disjoint union (consider for instance 21).
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Why the grammar may be ambiguous

Pattern avoidance constraints in the subtrees come from
embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}.

Example with β = 3412 and π = 21. Three embeddings of β into π:

↪→ ; ↪→ ; ↪→

Hence:
	

Ĉ− Ĉ
〈3412〉 =

	
Ĉ−〈3412〉 Ĉ

∩ 	

Ĉ− Ĉ〈3412〉
∩ (

	
Ĉ−〈12〉 Ĉ

∪ 	

Ĉ− Ĉ〈12〉
)

=
	

Ĉ−〈12〉 Ĉ〈3412〉
∪ 	
Ĉ−〈3412〉 Ĉ〈12〉

This is not a disjoint union (consider for instance 21).

Observation: The new excluded patterns are some α 4 β ∈ B?
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Need of introducing pattern containment constraints

Example: Disambiguation of
	

Ĉ−〈12〉 Ĉ〈3412〉
∪ 	
Ĉ−〈3412〉 Ĉ〈12〉

.

Method:

A ∪ B = A ∩ B ] A ∩ B ] A ∩ B
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Need of introducing pattern containment constraints

Example: Disambiguation of
	

Ĉ−〈12〉 Ĉ〈3412〉
∪ 	
Ĉ−〈3412〉 Ĉ〈12〉

.

Method:

A ∪ B = A ∩ B ] A ∩ B ] A ∩ B

By complementation, excluded patterns become mandatory patterns:
Cγ for γ 4 β ∈ B?

	

Ĉ− Ĉ
〈3412〉 =

	
Ĉ−〈12〉 Ĉ〈12〉

] 	
Ĉ−12〈3412〉 Ĉ〈12〉

] 	
Ĉ−〈12〉 Ĉ12〈3412〉

.

Notice that the terms
	

Ĉ−〈3412〉 Ĉ3412〈12〉
and

	
Ĉ−3412〈12〉 Ĉ〈3412〉

are empty,

and have been deleted.

Mathilde Bouvel (I-Math, UZH) () Specifications of permutation classes 27 / 33



Need of introducing pattern containment constraints

Example: Disambiguation of
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∪ 	
Ĉ−〈3412〉 Ĉ〈12〉

.

Method:

A ∪ B = A ∩ B ] A ∩ B ] A ∩ B

By complementation, excluded patterns become mandatory patterns:
Cγ for γ 4 β ∈ B?

	

Ĉ− Ĉ
〈3412〉 =

	
Ĉ−〈12〉 Ĉ〈12〉

] 	
Ĉ−12〈3412〉 Ĉ〈12〉

] 	
Ĉ−〈12〉 Ĉ12〈3412〉

.

⇒ Need to propagate avoidance and containment constraints:

Ĉεγ1,...,γp〈α1, . . . , αk〉 with ε ∈ { ,+,−}

Observation: γi and αj are all patterns of some β ∈ B?.
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A first specification for C

Find a specification for all

Ĉεγ1,...,γp〈α1, . . . , αk〉

with {γ1, . . . , γp} ⊆ B̃? and {α1, . . . , αk} ⊆ B̃?,

where B̃? = {α 4 β | β ∈ B?} = set of patterns of some β ∈ B?.

How to:
For α ∈ B̃? and σ = π[α(1), α(2), . . . , α(k)],
considering embeddings of α in π,
we can decide which patterns α occur in σ
from the knowledge of which patterns of B̃? occur in α(i), for all
1 ≤ i ≤ k .
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A first specification for C

Find a specification for all

Ĉεγ1,...,γp〈α1, . . . , αk〉

with {γ1, . . . , γp} ⊆ B̃? and {α1, . . . , αk} ⊆ B̃?,

where B̃? = {α 4 β | β ∈ B?} = set of patterns of some β ∈ B?.

How to:
For α ∈ B̃? and σ = π[α(1), α(2), . . . , α(k)],
considering embeddings of α in π,
we can decide which patterns α occur in σ
from the knowledge of which patterns of B̃? occur in α(i), for all
1 ≤ i ≤ k .

Approach reminiscent of the query-complete sets of [Brignall, Huczynska &

Vatter 08].
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Computing only the necessary restrictions

Algorithm: [Bassino, Bouvel, Pierrot, Pivoteau & Rossin, 14+]

Start from C = Ĉ〈B?〉, C+ and C−, and propagate the pattern
avoidance constraints in the subtrees.

Disambiguate the equations, introducing pattern containment
constraints.

For each term Ĉεγ1,...,γp〈α1, . . . , αk〉 that appears on the RHS, repeat
this process, recursively.

Properties:

This algorithm terminates and produces a specification for C.
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Computing only the necessary restrictions

Algorithm: [Bassino, Bouvel, Pierrot, Pivoteau & Rossin, 14+]

Start from C = Ĉ〈B?〉, C+ and C−, and propagate the pattern
avoidance constraints in the subtrees.

Disambiguate the equations, introducing pattern containment
constraints.

For each term Ĉεγ1,...,γp〈α1, . . . , αk〉 that appears on the RHS, repeat
this process, recursively.

Properties:

This algorithm terminates and produces a specification for C.

Questions:

What is the complexity?

What is the size of the specification produced?

↪→ It can be exponential in |B|. But how big can it be?
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Summary: From the basis to the specification

Algorithmic chain from B finite to a specification for C = Av(B).

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

direct

STOP

O(N. l  )4O(N. l     . |B| )p+2

O(n log n+p    )2k

Compute an ambiguous system 
by propagation of pattern avoidance constraints 

Constraints propagation

Compute an 
unambiguous system 
of equations
for generating 
functions using the 
inclusion-exclusion 
principle

Disambiguation of the 
combinatorial system

- transform intersecting  
  unions into disjoint unions
  introducing complement sets
- express complement sets 
  by means of  pattern 
  containment constraints

Generating functions
Boltzmann sampler

Specification for C

where n =
∑

β∈B |β|, p = maxβ∈B |β|, k = |B|, N = |SC |, ` = maxπ∈SC |π|.

Remark: It succeeds only when C contains finitely many simples (and this
condition is tested algorithmically).
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Byproducts of specifications
and perspectives



A specification for C gives access to. . .

A polynomial system defining C (z) (implicitly)
[Flajolet & Sedgewick 09]

↪→ Can it be used to obtain information on the dominant singularity of
C (z), or equivalently the growth rate of C?
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A specification for C gives access to. . .

A polynomial system defining C (z) (implicitly)
[Flajolet & Sedgewick 09]

↪→ Can it be used to obtain information on the dominant singularity of
C (z), or equivalently the growth rate of C?

Random samplers of permutations in C:

I by the recursive method [Flajolet, Zimmerman & Van Cutsem 94]

I by the Boltzmann method [Duchon, Flajolet, Louchard & Schaeffer 04]

↪→ Implementation (in progress) to observe random permutations in
permutation classes.

↪→ Can we describe the “average shape” or average properties of random
permutations in permutation classes?
For some given classes, or for families of classes?
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Random permutations in permutation classes

• C1 = Av(2413, 3142) = separables.
Substitution-closed with no simples.
10000 permutations of size 100 in C1.

• Substitution-closed class C2,
with simples 2413, 3142 and 24153.
10000 permutations of size 500 in C2.

• C3 = Av(2413, 1243, 2341, 531642, 41352).
Not substitution-closed.
Almost 30000 permutations of size 500 in C3.
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