Exercices

ALEA 2009, Francis Comets,

EXERCISE 1 (directed polymer on the regular tree)

Let $b \geq 2$ be an integer. The **rooted regular tree** with branching number b is the infinite tree where each vertex has the same number b+1 of neighbors except for one which has only b of neighbors. This particular vertex is called the root or origin of the tree¹. We denote this tree by \mathbb{T}_b . It can be uncoded by words of lengths $0, 1, \ldots$ in the alphabet $\{1, 2, \ldots, b\}$,

$$\mathbb{T}_b = \emptyset \cup \{1, 2, \dots, b\} \cup \{1, 2, \dots, b\}^2 \dots \cup \{1, 2, \dots, b\}^n \cup \dots$$

Here, \emptyset is the root, $\{1, 2, ..., b\}^n$ is called the *n*th generation (or level), and the vertex $u = (u_1u_2...u_n) \in \{1, 2, ..., b\}^n$ has for neighbors all its successors uv in $\{1, 2, ..., b\}^{n+1}$ (with $v \in \{1, 2, ..., b\}$) and its predecessor $(u_1u_2...u_{n-1}) \in \{1, 2, ..., b\}^{n-1}$.

The simple random walk on \mathbb{T}_b is obtained by starting from the root and by jumping at each time to one of the b successors of the current location, chosen uniformly at random. More precisely,

$$S_0 = \emptyset$$
 and $P(S_{n+1} = uv | S_n = u) = 1/b$, $v \in \{1, 2, ..., b\}, n \ge 0$.

In particular, S_n belongs to the *n*th generation. As before, we consider an i.i.d. field $\eta = (\eta(u), u \in \mathbb{T}_b \setminus \{\emptyset\})$, and set $\lambda(\beta) = \ln Q[e^{\beta\eta(u)}]$ that we assume to be finite for all β . For $u, u' \in \mathbb{T}_b$, we write

$$u \prec u'$$
 if $\exists u'' \in \mathbb{T}_b : u = u'u''$,

that is, if u' is a successor (in the wide sense) of u. For S a path of length n we define

$$H_n(S) = \sum_{\emptyset \neq u \prec S} \eta(u)$$

where the sum ranges over all the vertices, except the root, on the ray from the root to S_n ; There are n such vertices, and H_n comprises n summands. This defines a polymer model, with partition function given by

$$Z_{n,\beta}^{\eta} = P[\exp \beta H_n(S)]$$

1. For $v \in \mathbb{T}_b$, let θ_v be the shift operator on the environment given by $(\theta_v \eta)(u) = \eta(vu)$. (Here, vu is the concatenation of v and u, it is a word of length equal to the sum of lengths of v and u). Check the recursion formula

$$Z_{n,\beta}^{\eta} = b^{-1} \sum_{i=1}^{b} \exp\{\beta \eta(i)\} \times Z_{n-1,\beta}^{\theta_i \eta},$$
 (0.1)

and that $(Z_{n-1,\beta}^{\theta_i\eta}; i \leq b)$ is i.i.d.

¹The tree is usually called the Bethe lattice with coordination number b+1 in the physics literature

2. In this section we compute the free energy. Let

$$\beta_c$$
 be the root $\beta \in (0, +\infty)$ of $\beta \lambda'(\beta) - \lambda(\beta) = \ln b$

if this equation has a solution, and $\beta_c = \infty$ otherwise. We will prove that, almost surely and in L^p -norm $(1 \le p < \infty)$,

$$\lim_{n \to \infty} n^{-1} \ln Z_{n,\beta}^{\eta} = p(\beta) = \begin{cases} \lambda(\beta) & \text{if } 0 \le \beta \le \beta_c \\ \beta \lambda'(\beta_c) + \ln b & \text{if } \beta > \beta_c \end{cases}$$
(0.2)

Remark: The situation is drastically different on \mathbb{Z}^d , in which case the function p is strictly convex on \mathbb{R} .

- (a) What is the annealed bound here? What is the result of proposition 1.2.6 here?
- (b) Check that we can use the martingale approach developed in the notes: The sequence $W_n = Z_{n,\beta}^{\eta} e^{-n\lambda(\beta)}$ is still a positive martingale, it converges a.s. to some non-negative W_{∞} , which is either a.s. equal to 0, or a.s. positive. In the last case, we have $p(\beta) = \lambda(\beta)$.
- (c) Prove that

$$(e^{(1-\alpha)\ln b - \alpha\lambda(\beta) + \lambda(\alpha\beta)} - 1)Q(W_n^{\alpha}) \le (1-\alpha)b^{1-\alpha}(b-1)Q(W_{n-1}^{\alpha/2})^2 .$$

[Hint: one can use the following inequality. There exists $\alpha_0 \in (0,1)$ such that, for all $\alpha \in (\alpha_0, 1)$,

$$\left(\sum_{i=1}^{b} x_i\right)^{\alpha} \ge \sum_{i=1}^{b} x_i^{\alpha} - 2(1-\alpha) \sum_{1 \le i < j \le b} (x_i x_j)^{\alpha/2} , \qquad x_i > 0, i = 1, \dots, b.$$
 (0.3)

- (d) Deduce from this that $W_{\infty} > 0$ for $0 \le \beta < \beta_c$. [Hint: convergence in probability together with uniform integrability implies L^1 -convergence.]
- (e) Show that, for $\beta \geq \beta_c$, $\liminf_n p_{n,\beta}^{\eta} \geq \beta \lambda'(\beta_c) \ln b$. [Hint: convexity and the above result for β_c]
- (f) Show the reverse inequality for the lim sup, and conclude to the almost sure limit in (0.2). [Hint: show first, with $H_n^* = \max\{H_n(S); S \text{ path of length } n\}$, that $\limsup_{n\to\infty} n^{-1}H_n^* \leq \lambda'(\beta_c)$ (convention $\lambda'(\beta_c) = \lim_{\beta\to\infty} \lambda'(\beta)$ when $\beta_c = \infty$).]
- (g) Prove L^p -convergence.
- 3. Particular case of gaussian environment $\eta(u) \sim \mathcal{N}(0,1)$. Compute the values of β_c , of p and of

$$\beta_2 = \sup \{ \beta \ge 0 : \sup_n QW_n^2 < \infty \}.$$

Conclude that the L^2 -region is a strict subset of the weak disorder region.

4. (Extra question..) Prove (0.3).